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Purpose. To elucidate the influence of ionizing radiation (IR) on the oncolytic activity of Parvovirus H-1 (H-1PV) in human high-
grade glioma cells. Methods. Short term cultures of human high-grade gliomas were irradiated at different doses and infected
with H-1PV. Cell viability was assessed by determining relative numbers of surviving cells. Replication of H-1PV was measured by
RT-PCR of viral RNA, fluorescence-activated cell sorter (FACS) analysis and the synthesis of infectious virus particles. To identify
a possible mechanism for radiation induced change in the oncolytic activity of H-1PV we performed cell cycle analyses. Results.
Previous irradiation rendered glioma cells fully permissive to H-1PV infection. Irradiation 24 hours prior to H-1PV infection led
to increased cell killing most notably in radioresistant glioma cells. Intracellular levels of NS-1, the main effector of H-1PV induced
cytotoxicity, were elevated after irradiation. S-phase levels were increased one day after irradiation improving S-phase dependent
viral replication and cytotoxicity. Conclusion. This study demonstrates intact susceptibility of previously irradiated glioma-cells
for H-1PV induced oncolysis. The combination of ionizing radiation followed by H-1PV infection increased viral cytotoxicity,
especially in radioresistant gliomas. These findings support the ongoing development of a clinical trial of H-1PV in patients with
recurrent glioblastomas.

1. Introduction

Malignant gliomas have remained a malignancy with an
extremely unfortunate prognosis [1, 2]. Recent improve-
ments of standard therapies including, when feasible, sur-
gical resection followed by radio-chemotherapy have only
extended the 50% survival from 12 months to 16 months [3–
5]. Long-term survival is rare, only 5% of patients are alive
after 5 years. As a consequence, alternative therapies have to
be investigated.

One new strategy is the use of replication competent
oncolytic viruses that specifically target and destroy tumor
cells while leaving normal cells intact. A number of candidate
oncolytic viruses for glioma therapy are currently under
investigation including genetically modified Herpesviruses

[6], Adenoviruses [7], or Poliovirus [8], and wildtype viruses
such as Reovirus [9], Vesicular-stomatitis virus [10], and
Measles virus [11]. We previously reported the efficient
killing of glioma cells of human and rat origin by Parvovirus
H-1 (H-1PV), a single stranded nonenveloped DNA virus of
5.1 kb. H-1PV induced lytic infection of glioma cells even
when the cells were resistant to agents inducing apoptosis
[12, 13]. In animal experiments, H-1PV infection of rats
bearing large intracranial gliomas led to tumor regression
and prolonged survival (Geletneky et al., accepted, 2010).
The natural host of H-1PV is the rat; however, the virus can
efficiently infect cells of other species including humans. In
contrast to some other wildtype viruses under investigation
for glioma-treatment, H-1PV does not cause any pathology
in rodents or humans [14].
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Radiation therapy prolongs survival in patients with
malignant gliomas and is used as standard treatment of
primary high-grade glial tumors [15]. However, as high
grade gliomas are resistant to radiation therapy and a clear
dose-limitation exists due to cytotoxic effects on the sur-
rounding brain tissue, this treatment modality is not curative
and strategies to improve radiation efficiency are under
investigation. The combination of radiation therapy with the
oral alkylating agent temozolomide has already proved to be
superior to either therapy alone and has become the standard
of care for the majority of patients with newly diagnosed
glioblastoma multiforme [3, 5]. Recent studies of the role
of radiation therapy for recurrent gliomas that were already
irradiated as part of the primary treatment demonstrated
some effect when radiation was applied as a boost to smaller
tumor regions [4]. Therefore, depending on the individual
situation of the patient, radiation therapy can also be an
option for recurrent tumors, but methods to augment the
limited therapeutic effect would clearly be beneficial.

Clinical trials with different oncolytic viruses were able
to demonstrate the safety of this novel therapeutic approach;
however, the positive therapeutic effects were restricted
to individual patients [16]. Therefore, the combination of
oncolytic viruses with standard therapeutics has become
one important focus to improve viral cytotoxicity. Radiation
therapy is a part of therapeutic protocols for the majority
of malignancies, and an enhanced effect of the oncolytic
activity of viruses by radiation therapy could be observed for
tumor cells of various histology [17]. This is of particular
interest for gliomas, as both treatments, radiation therapy
and virotherapy, are primarily designed as regional therapies.
For glioma cells, the oncolytic effect of Herpesvirus [18],
Adenoviruses [19], Reovirus [20], and Measles virus [21] was
shown to be enhanced by IR.

The aim of this study was to assess the influence of IR on
the oncolytic activity of H-1PV in glioma cells. The possible
interaction of IR with H-1PV oncolytic virotherapy could
be twofold: (i) as the use of an oncolytic virus in glioma
patients would preferably include the treatment of recurrent
tumors originating from previously irradiated remaining
tumor cells, it has to be shown whether previous radiation
therapy would interfere with viral oncolysis or replication in
pretreated gliomas and (ii) administration of radiation ther-
apy together with H-1PV oncolytic virotherapy could lead
to improved efficacy of either treatment alone. We therefore
investigated the treatment of early-passage glioma cells with
IR before or after infection with H-1PV and assessed cyto-
toxicity, viral replication, and treatment-induced changes of
the cell cycle. These findings are important to define patient
populations for a clinical trial of oncolytic virotherapy of
malignant gliomas and to possibly use H-1PV to increase
radiation efficacy in this dismal tumor entity.

2. Methods and Materials

2.1. Cell Culture. Human short term cultures derived from
histologically confirmed glioblastomas (NCH-82, NCH-89,
NCH-307) and a gliosarcoma (NCH-37) were established
and characterized at the Department of Neurosurgery,

Heidelberg, Germany as described previously [12]. NCH-
307 is a recurrent glioblastoma cell line that had been
irradiated in vivo prior to resection of the recurrent tumor.
NCH-37, NCH-89, and NCH-307 were tested at low-passage
numbers <30; NCH-82 was tested at a passage number of
100. The ethylnitrosourea-induced rat glioma cell line RG2
was previously shown to be highly susceptibly for H-1PV
[12] and was used for virus-titration experiments. All cells
were grown in DEME (Sigma-Aldrich, Steinheim, Germany)
supplemented with 10% FCS (BiochromKG, Berlin, Ger-
many) and 1% antibiotics (penicillin/streptomycin; Gibca,
Invitrogen Corporation, Karlsruhe, Germany) in a 5% CO2

humidified atmosphere at 37◦C.

2.2. Treatment with Ionizing Radiation (IR). Radiation of
cell cultures was performed at room temperature in a linear
accelerator (Siemens Mevatron KD2, 6-MV photons) at
doses of 5 Gy,10 Gy, or 20 Gy as indicated for the respective
experiment (dose rate: 3 Gy/min; distance from source
to flask: 95 cm). Control cells were transported to the
accelerator but not exposed to IR (0 Gy). NCH-307 recurrent
glioblastoma cells were not reexposed to IR in vitro.

2.3. H-1 Virus Production and Infection. H-1PV was prop-
agated in human NB324K cells, and purified as described
previously [22]. Monolayers of all glioma cell cultures were
infected under standard conditions: cells were inoculated
with H-1PV diluted in PBS at a multiplicity of infection
(MOI) of 5 plaque forming units (PFU) per cell or 100
PFU/cell as indicated for the respective experiment. After
60 minutes, virus suspensions were removed, cells were
washed with medium, and cultures were allowed to grow.
The corresponding mock-infected cultures were subjected
to the same procedure using virus-free PBS instead of virus
suspensions.

2.4. Cell Viability. To asses cell viability, glioma cells (NCH-
37, NCH-82, NCH-89) were seeded at 3 × 104 cells/well
into 12-well dishes and irradiated after 24 hours with 0 Gy,
5 Gy, 10 Gy, or 20 Gy. Cells were infected (MOI = 5 PFU/cell
or mock-infection) at 2 different time points: 24 hours
post-IR (early infection) or 9 days post-IR (late infection).
In vivo irradiated NCH-307 cells were seeded at 3 × 104

cells/well into 12-well dishes and infected (MOI = 5 PFU/cell,
100 PFU/cell or mock-infection) 24 hours postseeding. The
MOI of H-1PV was calculated based on counts of living cells
immediately prior to infection. Cells were harvested 3 days
after H-1PV infection/mock-infection and counted with
an electronic counter (Casy, Schaerfe System, Reutlingen,
Germany) in triplicate and results were confirmed with the
typan blue exclusion test as described previously [12].

2.5. Statistical Analysis. The numbers of living cells were
estimated as means and standard deviations of three inde-
pendent assays. Cell viability (in % + /− standard error) was
defined as the number of living treated cells over the number
of living untreated cells multiplied by 100; standard error
was calculated using the Gaussian law of error propagation.
Statistical analysis was performed using a two-way ANOVA
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with virotherapy and IR as independent factors. Comparative
analyses between groups were performed using post-hoc
analysis. The SPSS software package (SPSS Inc., Chicago, IL)
was used to perform statistical analysis.

2.6. RT-PCR Analysis. For RT-PCR analysis of viral RNA,
cells (NCH-37, NCH-82, NCH-89) were plated at a density
of 3 × 106 cells in 17 cm2 culture flasks, irradiated (10 Gy)
after 24 hours and infected (MOI = 5 PFU/cell or mock-
infection) 24 hours post-IR; NCH-307 cells were infected
(MOI = 5 PFU/cell or mock-infection) 24 hours postseeding.
Briefly, cells were harvested 24 hours p.i., washed with PBS
and immediately shock frozen on dry ice. RNA was purified
using the High Pure RNA Isolation Kit (Roche Diagnos-
tics, Mannheim, Germany) according to the manufacturer’s
instructions. RT-PCR was performed with the C. therm.
Polymerase One-Step RT-PCR-System (Roche Diagnostics,
Mannheim, Germany) according to the manufacturer’s
instructions. To detect H-1PV NS-transcripts, the following
specific primers were used: sense primer (position nt 1996–
2016) 5′-TCA ATG CGC TCA CCA TCT CTG-3′; antisense
primer (position nt 2510–2490) 5′-TCG TAG GCT TCG
TCG TGT TCT-3′.

2.7. Fluorescence-Activated Cell Sorter (FACS) Analysis of
Intracellular NS-1 Protein. Cells (NCH-37, NCH-82, NCH-
89) were plated at a density of 3 × 106 cells in 17
cm2 culture flasks, irradiated (0 Gy, 10 Gy) after 24 hours
and infected (MOI = 5 PFU/cell or mock-infection) 24
hours post-IR (early infection). For late infection, cells were
infected 9 days post-IR. Recurrent glioblastoma NCH-307
cells were infected (MOI = 5 PFU/cell or mock-infection)
24 hours postseeding. All cell cultures were harvested 24
hours p.i. (postinfection). In short, cells were fixed with 4%
paraformaldehyde and 100% methanol and permeabilized
with 0.1% Triton-X-100 (Sigma-Aldrich, Taufkirchen, Ger-
many). To identify NS-1 protein, probes were blocked with
fetal calf serum and incubated on ice for 30 minutes with
a polyclonal rabbit-anti-NS-1 antibody (SP8, courtesy of N.
Salome, DKFZ, Heidelberg, Germany) in a concentration
of 1: 25. The FITC-conjugated secondary goat-anti-rabbit-
antibody (Jackson ImmunoResearch, Suffolk, UK) was incu-
bated in a 1:250 dilution for 20 minutes on ice. Probes
were analyzed for intracellular NS-1 content by measuring
of fluorescence intensity, using a cytometer (FACScan flow
cytometer, Becton Dickinson, Heidelberg, Germany) at an
excitation wavelength of 525 nm. The data were analyzed
with the aid of a software program (FlowJo, Tree Star, Olten,
Switzerland) with dead cells gated out using pulse processing.
A cell was determined as NS-1-positive when its fluorescence
intensity (FL1-H) was greater than a certain threshold value
of 5% of false positive mock infected cells.

2.8. Release of Infectious Viral Particles. Cells (NCH-37,
NCH-82, NCH-89) were seeded at a density of 1.5 × 105

cells/well in 6-well dishes, irradiated 24 hours postseeding
(10 Gy), and infected (MOI = 5 PFU/cell or mock-infection)
24 hours post-IR. NCH-307 was infected (MOI = 5 PFU/cell

or mock-infection) 24 hours postseeding. The quantity of
infectious viral particles in the supernatant of glioma cells
was determined 1 hour and 3 days p.i. by titration on highly
susceptible RG2 cells.

2.9. Cell Cycle Analysis. Cells (NCH-37, NCH-82, NCH-89)
were plated at a density of 3 × 106 cells in 17 cm2 culture
flasks and irradiated (0 Gy, 10 Gy) after 24 hours. Cells were
harvested 24 hours and 48 hours post-IR and fixed in 80%
ice-cold ethanol at 4◦C overnight. After fixation, cells were
incubated in 2 mg/mL RNase (Sigma-Aldrich, Taufkirchen,
Germany), and 0,1 mg/mL PI (Sigma-Aldrich, Taufkirchen,
Germany) for 30 minutes in the dark. Samples of 10,000 cells
were analyzed for DNA content by flow cytometry (FACScan
flow cytometer, Becton Dickinson, Heidelberg, Germany),
and cell cycle phase distributions were analyzed with FlowJo
software using the Dean-Jett-Fox model [23].

3. Results

3.1. Susceptibility of Irradiated Glioma Cells to Infection
with H-1PV. As previous radiation therapy of tumor cells
induces genetic alterations that could interfere with the
susceptibility and efficiency of H-1PV infection, we infected
glioma cells with a delay of 9 days after IR (late infection)
when the cells had reentered the cell cycle. The goal of this
experiment was to mimic and evaluate the possibility of H-
1PV virotherapy of recurrent tumors after completion of
radiation therapy as part of the initial standard treatment. In
addition to testing tumor cells from primary gliomas (NCH-
37, NCH-82, NCH-89), we also included NCH-307 cells
that were established from a recurrent glioblastoma that had
been irradiated several months prior to secondary surgical
resection.

Cells (NCH-37, NCH-82, and NCH-89) were treated
with IR of 10 Gy and had resumed to proliferate 9 days
after radiation therapy. However, the growth rate was
clearly reduced compared with untreated controls indicating
persisting long-term effects of the treatment. In comparison,
cell cultures of NCH-37 cells were less affected by radiation-
induced growth retardation than NCH-82, and NCH-
89 cells. Upon late infection with H-1PV with an MOI
of 5 PFU/cell, all cells (NCH-37, NCH-82, and NCH-89)
showed a significant (P < .001) reduction of surviving cells 3
days p.i.. Cell viability of infected cells was 65.04 (+/−11.5)
% in NCH-37 cultures, 67.00 (+/−11.9) % in NCH-82 cells,
and 61.04 (+/−13.8) % in NCH-89 cell cultures indicating
intact susceptibility to H-1PV induced cell killing (Figure 1).

NCH-307 recurrent glioma cells were infected with a
low (5 PFU/cell) and a high (100 PFU/cell) MOI (Figure 1).
Cell viability of NCH-307 cells was significantly (P < .001)
reduced to 55.39 (+/− 6.6) % (low MOI) and 25.97 (+/−
8.8) % (high MOI) indicating dose-dependent cytotoxicity
of H-1PV also in recurrent glioma cells.

3.2. Combination of IR and H-1PV Infection. In initial
experiments, the effect of radiation therapy or H-1PV
infection alone was examined prior to testing combination
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Figure 1: Effects of late parvovirus H-1 (H-1PV) infection on human
high-grade glioma cells surviving ionizing radiation (IR). Short-
term cultures of human gliosarcoma NCH-37, human glioblastoma
NCH-82, and human glioblastoma NCH-89 were seeded at 30,000
cells/well, irradiated with 10 Gy and infected with H-1PV at an
MOI of 5 PFU/cell 9 days post-IR (MOI 5) and compared to mock-
infected cells surviving IR (MOCK). The short-term culture of
in vivo irradiated recurrent glioblastoma NCH-307 was seeded
at 30,000 cells/well and infected with H-1PV at low (MOI =
5 PFU/cell: MOI 5) or high (MOI = 100 PFU/cell: MOI 100)
virus doses and compared to mock-infected cells. All experiments
were performed in three independent assays. Viability (%) was
assessed as the number of living treated cells over the number of
living untreated cells three days post (mock-) infection. Error bars
represent the respective standard error. (∗) indicates significant
differences (P < .001) between the number of living infected and
the corresponding number of living MOCK-infected cells.

treatment. At radiation-doses of 5 Gy, growth rates in all
cell lines (NCH-37, NCH-82, NCH-89) were only slightly
affected: cell viability was 70 (+/−9.9) % in NCH-37, 76
(+/−4.5) % in NCH-82, and 91 (+/−7.0) % in NCH-89.
IR with 10 Gy had a strong effect on NCH-82 and NCH-
89 cells with a cell viability of 25.64 (+/−1.8) % (NCH-
82) and 22.81 (+/−4.7) % (NCH-89). NCH-37 cells were
much less sensitive, the cell viability was reduced to 54.25
(+/−7.2) %. A dose of 20 Gy had a slightly stronger effect
in all cell cultures: NCH-82 21.53 (+/−3.8) % and NCH-89
15.93 (+/−5.6) % cell viability, however in NCH-37 cultures
45.19 (+/−5.6) % of cells were still alive (Figure 2).

The infection of glioma cells with H-1PV at an MOI of
5 PFU/cell had a strong cytopathic effect in NCH-82 and
NCH-89 cell cultures, with only 22.19 (+/− 3.0) % (NCH-
82) and 9.73 (+/− 2.1) % (NCH-89) cell viability. NCH-
37 cells were less sensitive to H-1PV; cell viability was 45.94
(+/− 6.0) % (Figure 2).

To assess whether the combination of radiation therapy
and H-1PV virotherapy increases the therapeutic efficacy
of either treatment alone and to evaluate the influence of
the order of treatments on cytotoxicity, we performed two

separate experiments: (i) glioma cells were irradiated with
3 different doses and infected 1 day after IR (Figure 2,
combination treatment: IR →H-1) and (ii) glioma cells were
infected first and subsequently irradiated with a dose of
10 Gy 24 hours p.i. (Figure 2, combination treatment: H-
1 → IR, far right column). Two-way-ANOVA showed that
in all cell lines tested (NCH-37, NCH-82, NCH-89), both
independent factors (IR and H-1PV infection) had a signifi-
cant influence on the number of surviving cells. There were
significant interactions between IR and H-1PV infection for
all of the data presented in Figure 2. Comparative analyses
between groups revealed the following: in all glioma cell
cultures (NCH-37, NCH-82, NCH-89), combination of H-
1PV infection 1 day after IR was significantly (P < .05) more
effective than IR alone (Figure 2). Compared with H-1PV
infection alone, combination treatment was significantly
(P < .05) more effective after previous IR with 5 Gy, 10 Gy,
or 20 Gy in NCH-37 cells and after previous IR with 20 Gy
in NCH-82 cells. When the order of treatments was reversed
and H-1PV infection was performed 24 hours prior to IR,
combination treatment only led to significantly (P < .05)
improved cell killing in NCH-37 when compared to IR alone,
but not when compared to H-1PV infection alone or in the
other cell lines tested.

3.3. Long-Term Effects of IR Followed by H-1PV Infection.
Even though high-dose radiation of NCH-37, NCH-82, and
NCH-89 cells with 20 Gy or infection with H-1PV was highly
cytotoxic, approximately 2 weeks after single treatment with
IR or H-1PV alone, all cell lines resumed to proliferate from
surviving clones, albeit at a much reduced rate (Table 1).
Thus, neither IR nor H-1PV infection alone was able to
eradicate all tumor cells. In contrast, when glioma cell
cultures were treated with the combination of IR (20 Gy)
and H-1PV infection (MOI = 5 PFU/cell) 24 hours after
IR, no surviving tumor cells could be observed on day 21
p.i. or at later time points after treatment in any of the
tested cell cultures (NCH-37, NCH-82, NCH-89) indicating
long-term efficiency of combination treatment (Table 1 and
Figure 3). The experiment was confirmed in triplicate in all
cell cultures.

3.4. Replication of H-1PV in Human Glioma Cells after IR.
Replication of H-1PV in infected glioma cells was tested (i)
by the presence of viral NS-1-specific RNA by RT-PCR, (ii)
by the detection of the viral protein NS-1 as the main effector
of parvoviral cytotoxicity [14] by FACS analysis, and (iii) by
the release of infectious viral particles into the supernatant of
cell cultures.

(i) Detection of viral RNA: cells (NCH-37, NCH-82, and
NCH-89) were irradiated with 10 Gy and infected with H-
1PV at an MOI of 5 pfu/cell 24 hours later. NCH-307 recur-
rent glioma cells were infected without additional radiation.
RNA was extracted 24 hours p.i. and viral transcripts were
detected by RT-PCR. In all cells-lines RT-PCR was positive
for the presence of viral RNA indicating transcription from
viral DNA (Figure 4(e)).

(ii) Expression of NS-1 protein: irradiated (10 Gy)
or untreated control cells were either H-1PV infected
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Figure 2: Effects of ionizing radiation (IR), parvovirus H-1 (H-1PV) infection, and combination of IR and H-1PV infection on human high-
grade glioma cells. Short-term cultures of human gliosarcoma NCH-37 (a), human glioblastoma NCH-82 (b), and human glioblastoma
NCH-89 (c) were seeded at 30,000 cells/well, irradiated with 5 Gy, 10 Gy, or 20 Gy, and infected with H-1PV at an MOI of 5 PFU/cell 24
hours post-IR (IR→H-1) or cells were infected with H-1PV at an MOI of 5 PFU/cell and irradiated with 10 Gy 24 hours post-infection (H-
1→ IR). Effects on cell survival were compared to single treatment with IR or single treatment with H-1PV. Control cells were mock-infected
and transported to the accelerator but not exposed to IR (0 Gy). All experiments were performed in three independent assays. Viability (%)
was assessed as the number of living treated cells over the number of living untreated cells three days post (mock-) infection. Error bars
represent the respective standard error. Significant differences (P < .05) between single treatment and combination treatment groups are
indicated by brackets.

(MOI = 5 pfu/cell) or mock-infected 24 hours post-IR
(early infection) or 9 days post-IR (late infection). Recurrent
glioblastoma cells (NCH-307) were infected with an MOI
of 5 pfu/cell without additional IR. 24 hours after (mock-)
infection, intracellular NS-1 was marked with a FITC-
conjugated antibody as described above. NS-1 protein
expression of unirradiated glioma cells ranged from 50% of
NS-1-positive NCH-37 cells to 43% in NCH-82 cells and
42% in NCH-89 cells 24 hours p.i. (Figure 4(a)–4(c)). The
recurrent glioblastoma cell line NCH-307 showed NS-1
expression in 44% of cells 24 hours p.i. (Figure 4(d)). When
cells were irradiated with 10 Gy and infected with H-1PV
24 hours (early infection) or 9 days (late infection) after
IR, ratios of NS-1 expression 24 hours p.i. were as follows:
NCH-37 cells showed an increase of NS-1-positive cells to
78% after early infection and to 67% after late infection. In
NCH-82 cells, NS-1 expression increased to 51% after early

infection and dropped to 21% after late infection. The NS-1
expression level in NCH-89 remained nearly unchanged
with 42% of NS-1-positive cells after early infection and 39%
after late infection.

(iii) Production of infectious H-1 virus particles: in order
to assess whether cytopathic H-1PV infection of irradiated
glioma cells resulted in the production of infectious progeny
particles, virus yields were determined by titration on highly
susceptibly RG2 cells. As demonstrated in Table 2, a 103

log-fold higher virus titer could be detected compared with
input virus within 3 days after infection irrespective if
cells were irradiated (10 Gy) or not (0 Gy). Results were
similar in all cell lines tested (NCH-37, NCH-82, NCH-89),
demonstrating persisting assembly of progeny virus after IR.

3.5. Cell Cycle Alterations Induced by IR, H-1PV Infection,
and Combination Treatment. One possible mechanism for
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Figure 3: Long-term effect of combined ionizing radiation (IR) and parvovirus H-1 (H-1PV) infection on human high-grade glioma cells. Short-
term cultures of human glioblastoma NCH-89 were irradiated with 20 Gy, and infected with H-1PV at an MOI of 5 PFU/cell 24 hours
post-IR. 3-week postseeding photographs of culture dishes were taken at a magnification of 400× and no surviving cells could be found (a).
In comparison, after mono treatment with H-1PV at an MOI of 5 PFU/cell or after mono treatment with IR (data not shown), proliferating
cell clones could be observed (b).
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Figure 4: Replication of parvovirus H-1 (H-1PV) in irradiated human high-grade glioma cells. FACS analysis of intracellular cytotoxic
parvoviral protein NS-1 in short-term cultures of human gliosarcoma NCH-37 (a), human glioblastoma NCH-82 (b), and human
glioblastoma NCH-89 (c) after infection with H-1PV. To analyse the influence of radiation therapy, glioma cells were irradiated with 10 Gy
or transported to the accelerator but not exposed to IR (0 Gy). For early infection experiments, cells were infected at an MOI of 5 PFU/cell 24
hours post-IR (MOI 5-E) or mock-infected (MOCK); for late infection experiments cells were infected at an MOI of 5 PFU/cell 9 days post-
IR (MOI 5-L). The short-term culture of in vivo irradiated recurrent glioblastoma NCH-307 (d) was infected with an MOI of 5 PFU/cell
(MOI5) or mock-infected (MOCK). All cell cultures were harvested 24 hours p.i. and the percentage of cells positive for intracellular NS-1
was determined by FACS-analysis. (e) Detection of H-1PV RNA by RT-PCR. All cell lines except for NCH-307 were irradiated with 10 Gy.
24 hours post-IR and 24 postseeding for NCH-307, respectively, cells were infected with H-1PV at an MOI of 5 PFU/cell (MOI5). RNA was
isolated 24 hours p.i. amplified by RT-PCR and compared with RNA of mock-infected cells (MOCK). For positive control, RNA of H-1PV
infected unirradiated highly susceptible RG2 rat glioma cells was used.
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Figure 5: Effects of ionizing radiation (IR) on the cell cycle of human high-grade glioma cells. Short-term cultures of human gliosarcoma NCH-
37, human glioblastoma NCH-82, and human glioblastoma NCH-89 were irradiated with 10 Gy, and cell cycle analyses were performed 24
hours post-IR (a, middle column) or 48 hours post-IR (a, right column). Control cells (a, left column) were transported to the accelerator but
not exposed to IR (ctrl.). (b) IR induced increase of S-Phase fraction in percent of unirradiated control cells.

Table 1: Long-term effect of ionizing radiation (IR) and/or
parvovirus H-1 (H-1PV) infection on human high-grade glioma
cells cultures.

cell line IR H-1PV
1 week

p.i.
2 weeks

p.i.
3 weeks

p.i.

NCH-37 0 MOCK ++++ ++++ ++++

0 MOI 5 + ++ +++

20 MOCK + ++ ++

20 MOI 5 + + 0

NCH-82 0 MOCK ++++ ++++ ++++

0 MOI 5 + ++ ++

20 MOCK + ++ ++

20 MOI 5 + + 0

NCH-89 0 MOCK ++++ ++++ ++++

0 MOI 5 + ++ ++

20 MOCK + + ++

20 MOI5 + + 0

(++++) confluent cell layer.
(+++) conflating cell clones.
(++) single cell clones.
(+) single cells.
(0) no cells.

an improved cytotoxicity of H-1PV infection after IR could
be associated to changes of the cell cycle as H-1PV replication
is restricted to cells in S-phase. We therefore analyzed the

effect of IR on the cell cycle of glioma cell lines (NCH-37,
NCH-82, NCH-89). IR of glioma cell cultures with 10 Gy
resulted in an increase of cells in S-phase 24 hours post-IR
(Figure 5). In NCH-37 the increase was +67%, in NCH-82
+114%, and in NCH-89 +72% (Figure 5(b)). The increase
was transient as 48 hours post-IR; the amount of cells in the
S-phase decreased to +12% in NCH-37, to control level in
NCH-82, and to +10% in NCH-89. In parallel, at this time,
the overall cell cycle distribution of NCH-37 and NCH-89
cells had almost returned to control levels, whereas NCH-82
cells were blocked in G2/M (Figure 5(a)) and reached control
levels 4 days post-IR (data not shown). In comparison, upon
H-1PV infection, cell cultures showed less homogeneous
results. While NCH-82 and NCH-89 cells that were most
sensitive to H-1 infection showed increased ratios of cells in
S-phase, the amount of less sensitive NCH-37 cells in S-phase
was unchanged. The cell cycle changes after combination of
radiation therapy and H-1PV infection were identical to H-
1PV infection alone (data not shown).

4. Discussion

Oncolytic virotherapy is a promising new approach for the
treatment of a variety of malignancies including malignant
brain tumors. In early phase clinical trials, intracerebral
infection of patients with oncolytic viruses of different genera
was well tolerated. However, only in a few patients tumor
regression and a prolongation of progression-free survival
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Table 2: Titer of infectious virus particles in the supernatant
of irradiated (10 Gy) or nonirradiated (0 Gy) human high-grade
glioma cell lines 1 hour and 3 days post H-1PV infection.

1 hour p.i. 3 days p.i.

NCH-37 10 Gy 1: 100 1: 10,000

0 Gy 1: 10 1: 1,000

NCH-82 10 Gy 1: 100 1: 10,000

0 Gy 1: 100 1: 10,000

NCH-89 10 Gy 1: 100 1: 10,000

0 Gy 1: 100 1: 10,000

NCH-307 in vivo∗ 1: 10 1: 1,000
∗

in vivo irradiated recurrent glioblastoma cell line NCH-307 was not
irradiated in vitro.

could be demonstrated. This led to numerous attempts not
only to further improve the oncolytic activity of viruses but
also to investigate the combination treatment of viral infec-
tion of tumor cells with established conventional therapies.

Radiation therapy is a standard treatment of patients
with high-grade malignant gliomas. It is administered locally
to the tumor region and the surrounding brain tissue.
Recurrences occur in 70 to 80% of cases within 2 cm of the
primary tumor site and will therefore develop from cells
that were already hit by a radiation dose of up to 60 Gy. As
radiation therapy is known to induce long-term changes in
cellular genomes, this could potentially lead to an altered
effect of virus infection compared with unirradiated primary
glioma cells. In addition to other studies, we therefore
specifically investigated the oncolytic potential of H-1PV in
glioma cells that grew from irradiated clones.

A cell culture established from a recurrent glioma that
was irradiated with 56 Gy during the initial treatment of the
patient, and that had its origin in the radiation field, was
fully permissive to H-1PV infection and cell killing was dose-
dependent. This finding was confirmed in primary glioma
cultures that were irradiated in vitro with a sublethal dose,
allowed to regrow, and infected with H-1PV in a time interval
of several days. The intact susceptibility of glioma cells to H-
1PV infection after IR is of clinical significance as patients
with recurrent gliomas who face an even worse prognosis
with oftentimes less therapeutic options are prime candidates
for experimental therapies. As a consequence, the group of
patients with recurrent gliomas is usually the main patient
population of early clinical trials of oncolytic virotherapy.
However, to our knowledge the response of previously
irradiated glioma cells to the oncolytic infection has never
been specifically addressed for other oncolytic viruses.

When H-1PV infection was performed early after IR, our
data show improved killing of glioma cells, most pronounced
in the most radioresistant cell line tested. These findings are
in line with studies conducted with other oncolytic viruses
that is, Herpesvirus [18], Adenovirus [24], Reovirus [20],
and Measles virus [21] that also showed an enhanced efficacy
of viral oncolysis in combination with radiation therapy.
Whether this effect can also be demonstrated in vivo was
beyond this proof of concept study and should be addressed
in future experiments.

When radiation treatment was performed one day before
H-1PV infection, combination treatment was significantly
better in all cell lines than single treatment. Virus infection
followed by IR was less efficient in all cell cultures and
had a reduced cytotoxic effect. One possible reason for the
improved cytotoxicity of H-1PV after IR is the increased
level of glioma cells positive for NS-1 expression 24 hours
after early infection. Previous studies revealed that NS-1 is
the key-mediator of parvoviral cytotoxicity and its expression
is strongly S-Phase dependent [14, 25]. Cell cycle analyses
revealed that in all primary glioma cell cultures tested, the
rate of cells in S-phase was increased 24 hours post-IR.
Even though improved viral cytotoxicity may depend on
several factors, this altered cell cycle distribution supports
the finding of increased viral transcription and increased cell
killing. As a consequence, when cells were infected when the
cell cycle had returned to control levels (late infection), NS-1
expression decreased.

The glioma cell cultures in our study, like other glioma
cell lines, were relatively radio-resistant and even after
treatment with 20 Gy remaining cell clones continued to
grow. Recent data suggests that stem-like cells exist within
high-grade gliomas which are radioresistant and capable of
initiating tumour regrowth. This is considered to be due to
upregulated DNA damage checkpoint pathways [26]. In our
system, neither radiation therapy nor H-1PV infection was
able to kill all tumor cells. However, combined treatment
with a high-radiation dose resulted in complete cytotoxicity
in all cell cultures, indicating improved efficacy also in
relatively resistant clones. These results may warrant to
test whether the combination of radiation and H-1PV
infection could also overcome the resistance of glioma
cells expressing stem cell markers thereby offering a new
treatment opportunity in these therapy refractory cells.

In conclusion, irradiated glioma-cells show intact sus-
ceptibility for H-1PV infection with even improved cell
killing by combining IR with H-1PV, most pronounced in
radioresistant glioma cells. These results further support the
ongoing development of a phase-I clinical trial for the use of
H-1PV in malignant gliomas, allowing for the inclusion of
pretreated patients into the study population.
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