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ABSTRACT
Background: Retina fundus images conducted in Greenland are telemedically assessed for 
diabetic retinopathy by ophthalmological nurses in Denmark. Applying an AI grading solution, 
in a Greenlandic setting, could potentially improve the efficiency and cost-effectiveness of DR 
screening.
Method: We developed an AI model using retina fundus photos, performed on persons regis-
tered with diabetes in Greenland and Denmark, using Optos® ultra wide-field scanning laser 
ophthalmoscope, graded according to ICDR.

Using the ResNet50 network we compared the model’s ability to distinguish between different 
images of ICDR severity levels in a confusion matrix.
Results: Comparing images with ICDR level 0 to images of ICDR level 4 resulted in an accuracy of 
0.9655, AUC of 0.9905, sensitivity and specificity of 96.6%.

Comparing ICDR levels 0,1,2 with ICDR levels 3,4, we achieved a performance with an accuracy 
of 0.8077, an AUC of 0.8728, a sensitivity of 84.6% and a specificity of 78.8%. For the other 
comparisons, we achieved a modest performance.
Conclusion: We developed an AI model using Greenlandic data, to automatically detect DR on 
Optos retina fundus images. The sensitivity and specificity were too low for our model to be 
applied directly in a clinical setting, thus optimising the model should be prioritised.
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Introduction

Diabetic retinopathy (DR) is a microvascular complica-
tion of diabetes, leading to vision loss if not detected 
and treated. Thus, regular screening of the retina is 
essential for early detection and treatment, in order to 
prevent vision loss [1–3].

Greenland is populated by 56.000 inhabitants living 
around 17 towns and 56 settlements spread along the 
44.000 km ice-free coastline, where each destination only 
can be reached by plane or boat, depending on the 
weather. Today, the majority (87.5%) of the population 
lives in towns and a minority (12.5%) of the population 
lives in smaller settlements with 3–500 inhabitants [4].

In Greenland, nine out of 17 towns are equipped with 
Optos® ultra wide-field fundus cameras and persons regis-
tered with diabetes are invited for regular screenings in the 
town closest to their home. Images and other screening 
data are uploaded through a server, and telemedically 

assessed for DR, by two specialist ophthalmologist nurses 
at Steno Diabetes Center Copenhagen

(SDCC)/Rigshospitalet-Glostrup University Hospital in 
Denmark, according to the International Clinical 
Diabetes Retinopathy disease severity scale (ICDR) [5].

The distances in Greenland are however so vast, travel-
ling to the nearest eye screening station can take days, and 
at least one week’s delay can be expected, when awaiting 
the result of the eye examination. Advanced diagnostics 
and treatment are done either by visiting ophthalmologists 
or in Denmark, as there are no regular ophthalmologists in 
Greenland.

Through time, artificial intelligence (AI) has emerged as a 
major frontier in computer science research [6]. Several AI 
solutions to detect microvascular lesions in conventional 
retina fundus photos have been developed, using deep 
learning techniques [7–9]. Deep learning is a machine learn-
ing technique where a neural network is trained to detect 
diabetic retinopathy from the intensities of the pixels in the 
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images to form fundus images already graded by ophthal-
mologists. The model then “learns” how an image with a 
specific grading appears [7].

The technique has the potential to be an important 
screening tool, reducing the workload of healthcare 
professionals and ensuring timely diagnosis [10].

In Singapore, an integrated DR screening pro-
gramme using AI has resulted in a better accuracy of 
the screenings (90% sensitivity and specificity), and 
faster response of the screening [11,12].

Further, algorithms for automatic grading in detec-
tion of DR have been developed in the

Netherlands, and found to be valid for use in the 
primary care [13].

Applying an AI grading solution, in a Greenlandic 
setting for automatically distinguishing images with 
and without microvascular lesions, would mean that 
only patients in need of treatment and/or further 
diagnostics would need their images sent to 
Denmark and/or to be seen by the specialist ophthal-
mologist nurses and doctors. This would save 
resources, previously used for image grading and pro-
vide immediate diagnoses to the population, reducing 
the need for patient travels. Studies have shown, 
directly applying an AI algorithm developed on, e.g., 
a Western population to other ethnic populations may 
reduce the performance of the algorithm [14,15], 
hence the algorithm must be trained on data, repre-
sentative of the population it is aimed for.

Thus, our aim was to develop an AI model, which 
automatically can detect DR on retina images, specific 
for the Greenlandic population and the Optos fundus 
camera, used in Greenland.

Material and methods

We developed an AI model, using retina fundus photos, 
gradings and diagnoses from routine DR screenings on 
non-dilated pupils, performed on persons registered 
with diabetes in Greenland.

Since, the prevalence of severe DR is rare in 
Greenland [16], we had to supplement our data, with 
Optos retina fundus photos from a Danish population, 
to have sufficient amounts of images with all DR grad-
ings. In order for the model to learn how to distinguish 
between all ICDR gradings, the model has to be fed 
with sufficient amounts of images representing all ICDR 
categories.

Study population and data collection

Pseudo-anonymised data for the Greenlandic popula-
tion, registered with type 1 diabetes (T1D) or type 2 

diabetes (T2D), with screenings for DR performed 
between 2015 and 2020, was extracted from the 
electronic medical record systems, Cosmic and 
Æskulap, for East Greenland [17]. All retina fundus 
photos were manually exported from a server, to a 
hard disk and stored in an encrypted server, labelled 
with their corresponding ICDR grading one by one. 
We extracted retina fundus photos, from a Danish 
clinical study, OPTIMISM (unpublished), where per-
sons with T1D and T2D were imaged, using Optos® 
ultra wide-field scanning laser ophthalmoscope at 
SDCC and at an eye clinic in a small town in 
Northern Jutland during 2019 and 2021. All images 
from the

OPTIMISM study were graded by the same ophthal-
mological nurses, grading the images from

Greenland. All images were graded according to the 
ICDR scale [5], consisting of four severity levels.

● Level 0: No DR – No abnormalities
● Level 1: Mild non-proliferative diabetic retinopathy 

(NPDR)
● Level 2: Moderate non-proliferative DR
● Level 3: Severe non-proliferative DR
● Level 4: Proliferative DR (PDR)

All data from the OPTIMISM study were registered in a 
RedCap database, with remote access [18].

Data processing

All data consisted of colour images with a pixel range of 
4000 × 4000.

The classes of the DR gradings were divided into 
folders, with their corresponding grading. Images 
were excluded in the downloading process, if they 
were ungradable or if a laser treatment had been 
conducted. Laser treatments were common with 
images that had PDR and were excluded due to the 
nature of the grading system. If laser tracks are pre-
sent, then the image will always be categorised as an 
ICDR 4 grading, regardless of whether or not PDR is 
present. As we wanted the AI model to be able to 
detect PDR and not laser treatment, we excluded 
images with laser treatment. Figures 1 and 2 illustrate 
images in which laser treatment had been conducted 
and images which were ungradable.

If the presence of cataract and vitreous opacity dis-
turbed the image to an extent that made it nongrad-
able the images were also excluded. If the images were 
gradable, they were included and no measures were 
taken to account for cataract.
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Deep learning model

We developed our model using the ResNet50 network, 
a pre-trained network with over a million images from 
the ImageNet database [19].

In the experimental phase of our model, we devel-
oped and compared models using the two networks 
ResNet50 and VGG16. In addition, we compared differ-
ent preprocessing techniques. From our tests, we 
achieved the best results when using cropping, green 
channel extraction, and brightness and contrast for 
preprocessing when both using VGG16 and ResNet50. 
This preprocessing method was used, in our final 
models.

By using ResNet50 as the pretrained network for 
transfer learning, it outperforms VGG16 in all of our 
models. The networks ResNet50 and VGG16 are quite 
similar, as they both are trained on the same millions of 
images from ImageNet, have a similar architecture con-
sisting of convolutional layers, pooling layers and a fully 
connected layer, and are commonly used in medical 
image analysis. The most significant difference between 
the two networks is the depth of the layers [20–22]. The 
network is 50 layer deep and consists of convolutional 

layers, pooling layers and a fully connected layer, clas-
sifying the images based on their label.

Using K-fold cross-validation, we extracted 20% of 
our data to create a test set. Thus, we used 80% of the 
remaining data as a training set and 20% as validation 
data. By using K-fold cross-validation, all of the training 
and validation data are used, by splitting the data into K 
non-overlapping subsets [23]. The most common is to 
have a K between 5 or 10. Afterwards, the model is 
trained with K-1 fold and then validated with the Kth 
fold. This is repeated until all the data has functioned as 
both training and validation [24]. After all the folds are 
trained, it is possible to estimate the mean test error, 
which is the average from each fold [23]. By training a 
model 5 folds, this will increase the computational cost 
of the model, because it is similar to training a “normal” 
model five times consequently.

Since we wanted to transfer the network onto our 
own images, we had to replace the final layers of each 
network. Thus, we extracted every layer of the architec-
ture, except the last three, when building the model for 
ResNet50. We replaced and defined the new last three 
layers with a new fully connected layer, a softmax layer 
and a classification layer. The classification layer was 
replaced with our classes defined by the labels of our 
images as the new classes for the new classification 
layer.

We sat the fully connected layer to have a 
WeightLearnRateFactor and a BiasLearnRateFactor at 
20 [25]. In the preprocessing function, we extracted 
the green channel of the image [26]. We used a crop-
ping function, resizing the images to 2473 × 2980pixels, 
centred on the macula and adjusted the brightness and 
contrast level, followed by concatenating the arrays to 
match the 3 colour channels. We used data augmenta-
tion to resize all images to the network’s size, 224 ×  
224pixels, and to create more images by applying ran-
dom rotation, reflection and shear to the dataset.

For our model, we used an Adam optimising algo-
rithm, with an initial learning rate of 0.0001.

Measuring performance

We assessed the performance of our model in four sets; 
images with ICDR grading 0 vs. 4, images with ICDR 
grading 0 vs. 3 & 4, images with ICDR grading 0–2 vs. 3 
& 4 (also classified as “nonreferable” vs. “referable” DR) 
[27], and lastly images with ICDR grading 0 vs. 1–2 vs. 
3–4.

To visualise and describe the performance of our 
model, we used a confusion matrix.

Figure 1. Image inwhich laser treatment has been conducted. 

Figure 2. Ungradable image. 
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The confusion matrix gave multiple metrics, such as 
the classes true positive (TP), false positive (FP), true 
negative (TN) and false negative (FN).

From these values, we calculated the Sensitivity: 
TP/(TP+FN), Specificity: TN/(FP+TN) and the Accuracy 
(TP+TN)/(TP+TN+FP+FN) [28].

We modelled the confusion matrix of our labels, 
comparing the predicted labels from the model with 
the actual labels and calculated the accuracy, a good 
predictor of how well the model predicts the sensitivity, 
measuring how many of the positive images classified 
as correct by the model, the specificity, measuring how 
many of the negative images are correctly predicted as 
negative by the model, and the Area Under the Curve 
(AUC) [28], calculated by the Receiver Operator 
Characteristic (ROC) curve [29], constructed by plotting 
the true positive rate against the false positive rate, 
illustrating the predictive accuracy well.

Ethics

Ethical approval was granted by the ethical review com-
mittee for Greenland (KVUG 2017–10) and by the 
Greenland Health Authorities. All participants of the 
Danish OPTIMISM study had given their informed consent, 
and ethical approval was granted by the National 
Committee on Health Research Ethics (journal no. 
H19044875).

Results

A total of 1700 images from the Greenlandic population 
were manually extracted from the Greenlandic health 
server to a hard disk. From the Danish OPTIMISM study, 
5000 images were available.

Images which were not “single colour image” and 
images with no DR were excluded to attempt to 
achieve balanced dataset including all ICDR gradings. 
Thus, a total of 248 images from the Greenlandic popu-
lation and 551 images from the OPTIMISM study were 
included in the present study. Our final dataset con-
sisted of 799 retina images from a Greenlandic and 
Danish study population, assessed according to ICDR 
(Table 1).

We compared the model’s ability of distinguishing 
between different image ICDR severity levels (see 
Table 2); firstly, we compared images graded 0, with 
images graded 4. We found a good model perfor-
mance with an accuracy of 0.9655, AUC of 0.9905, 
sensitivity and specificity of 96.6%. Secondly, we com-
pared images graded 0 with images graded 3–4. The 
model performance was modest with an accuracy of 
0.8171, an AUC of 0.8543, a sensitivity at 78% and a 

specificity at 87.8%. Thirdly, we compared images 
graded 0, 1 and 2, with images graded 3 and 4. The 
performance was similar to the comparisons above 
with an accuracy of 0.8077 and an AUC of 0.8728. The 
sensitivity was higher than above (84.6%) however, 
the specificity was correspondingly lower (78.8%). 
Fourthly, we assessed the performance of the model 
in distinguishing between images grade 0 versus 
images graded 1 and 2 versus images graded 3 and 
4. The models ability to distinguish these three grad-
ings from each other, was lower than in the other 
comparisons, with an accuracy of 0.6583, an AUC of 
0.8063, a sensitivity of 60% and a specificity of 74.6%.

Discussion

In this study, we aimed to develop an AI model, to auto-
matically detect DR on retina fundus images, specific for 
the Greenlandic population and the Optos® ultra wide- 
field scanning laser ophthalmoscope, used for DR screen-
ing in Greenland. We developed a model with the ability 
to distinguish between images of different ICDR severity 
levels and achieved a very good performance and speci-
ficity, when we compared images of ICDR level 0 to 
images of ICDR level 4. However, the performance was 
suboptimal when comparing no/mild vs. severe DR with 
sensitivity and specificity for the models of around 80%.

An autonomous approach, independently grades 
images, without human expert reading of the images, 
and provides an immediate detection of the DR level. 
The approach should have a high sensitivity and speci-
ficity as there is no human check involved, in order to 
be applied in a clinical setting [30].

Table 1. Overview of the final dataset.

ICDR scale Danish Greenlandic Total

0 (No DR) 124 83 207

1 (Mild NPDR*) 78 63 141
2 (Moderate NPDR) 130 54 184

3 (Severe NPDR) 95 29 124
4 (PDR**) 124 19 143
Total 551 248 799

*Non-proliferative diabetic retinopathy ** Proliferative diabetic retinopathy. 

Table 2. Performance of the model for different images 
gradings.

ICDR level
Accuracy/ 

Performance AUC* Sensitivity Specificity

0 vs. 4 0.9655 0.9905 96.6% 96.6%

0 vs. 3+4 0.8171 0.8543 78.0% 87.8%
0+1+2 vs. 3+4 0.8077 0.8728 84.6% 78.8%

0 vs. 1+2 vs. 3+4 0.6583 0.8063 60.0% 74.6%

*Area Under the Curve . 
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In China, a study aimed to assess the accuracy of AI- 
based screening for DR, and explore the feasibility of 
applying the technique to a community hospital [31].

The study enrolled 889 subjects, in which nonmy-
driatic fundus photos were taken using Topcon

TRC-NW400 camera. Similarly to our study, all the fun-
dus photos were graded to by two independently 
ophthalmologist, using the ICDR scale. The study mana-
ged to develop a model for referable DR, defined as more 
than mild NPDR and/or macula oedema, with a sensitivity 
of 91,18% and a specificity of 98,7%, which is much higher 
compared to the performance of our model. The study 
finds the results to be feasible in a clinical setting, how-
ever they recommend further research to assess the effec-
tiveness of DR detection. Likewise, a clinical trial in the US 
involving 900 subjects compared Optical Coherence 
Tomography (OCT) images from the Wisconsin Fundus 
Photograph Reading Center, to an autonomous AI diag-
nostic system to detect more than mild DR and diabetes 
macula oedema. The AI system performed very well with a 
sensitivity of 87.2% and a specificity of 90.7%, and was the 
first autonomous AI-based diagnostic system for detec-
tion of DR in primary care, approved by the US Food and 
Drug Administration [30]. The sensitivity and specificity of 
our model lie well below the sensitivities and specificities 
in the abovementioned studies, and therefore non-applic-
able for use in its current state in Greenland. Had the 
performance been better, especially the sensitivity in our 
model, we could have initiated a feasibility study on 
future screenings in Greenland where we could assess 
the accuracy of the AI grading, the acceptance of AI 
grading among patients and health care workers, and 
potential cost-savings.

Application of our model

In 1995, a consensus view was put forward by clin-
icians at a meeting of the British Diabetic 
Association in Exeter, that screening for DR should 
have a minimum sensitivity of 80% and a specificity 
of 95% [32].

In Greenland, we would need an autonomous model 
with high specificity, sensitivity as well as overall good 
performance, to distinguish referable from non-refer-
able images, as the imaging health care personnel in 
Greenland are not trained in image grading.

Our model achieved a high performance and speci-
ficity/sensitivity, when we compared no DR to ICDR 
level 4. However, detecting DR before it has advanced 
to a very severe stage and visual symptoms is crucial for 
adequate treatment outcomes [33], it would be too 
risky to directly implement a model only capable of 
recognising very severe forms of DR, for autonomous 

grading in Greenland. Thus, despite a very good perfor-
mance, the model would not be applicable in a 
Greenlandic setting. Though, the model could be 
applied as a potential decision tool, to immediately 
identify proliferative changes at the screening station 
and thus, avoid delays in referral and treatment con-
sidering that advanced diagnosis and treatment must 
be done telemedically or in Denmark.

In China, a semi-automated deep learning algorithm- 
assisted approach has been developed on Topcon 
retina fundus photos, to detect vision-threatening refer-
able DR [34]. The approach combined both AI and 
human grading procedures. The model detected 
vision-threatening referable DR, of which the high-risk 
cases, detected by the model, were manually graded by 
a senior ophthalmologist. Applying the model, in a 
clinical setting, presented advantages in time and eco-
nomic savings for grading the images, enabling accu-
rate and efficient diagnoses. However, this would not 
be feasible in Greenland, where the photographers are 
not trained in image grading.

In line with the study above, our model achieved a 
good performance, in distinguishing images of ICDR 
level 0–2 (non-referable DR) compared with ICDR level 
3–4 (referable DR).

The model could be utilised at the point of screening 
in Greenland, with a higher sensitivity and specificity, 
thus only images labelled “referable DR”, would be 
telemedically assessed by the Danish ophthalmological 
staff. However, the sensitivity of 84%, would lead to too 
many false negatives to exclusively rely on the model 
for DR screening. In order to develop an AI model, that 
could function more or less autonomous in a clinical 
setting, we would need a model with high specificity 
and sensitivity as well as overall good performance, to 
distinguish referable from nonreferable images autono-
mously, as the imaging healthcare professionals in 
Greenland are not trained in image grading.

Applying an autonomous AI system for referable 
detection of DR, in a Greenlandic setting, with a high 
prevalence of diabetes [35,36], could potentially improve 
the efficiency and cost-effectiveness of DR screening, by 
minimising the cost for travelling and the workload of 
healthcare professionals and finally ensuring timely 
diagnosis. However, a recent study, conducted in 
Greenland, found an overall prevalence of DR of 13.6% 
and less than 2.5% had severe-none proliferative DR or 
PDR [16]. Thus, specialist examination and treatment, 
could be reserved for the small group of diabetic 
patients with more severe changes. In order for our 
model, to be used as an autonomous AI model in 
Greenland, the model should be optimised, by develop-
ment of a large training and evaluation dataset [6].
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Optimizing the assessment of the images with more 
ophthalmological nurses grading the same images, 
could reduce the potential human errors and increase 
the quality of the training data [37]. Finally, our model 
would have to be strictly validated in pre-registered 
studies for safety, efficacy and equity, involving real- 
work [38]. This could be done by testing the model in 
the capital, Nuuk, and at the same time get the 
ophthalmological nurses at SDCC, to give their assess-
ment of the same image, and we could hereby get an 
indication of what the model does not recognise.

Strengths

This is the first study to develop an AI model, which 
automatically can detect DR on retina images, specific 
for the Greenlandic population, conducted on the 
Optos fundus camera.

All retina fundus photos from both the Greenlandic 
and the Danish study populations included in this study 
were manually graded by the same two specialist 
ophthalmological nurses.

Limitations

Due to the low prevalence of severe DR in Greenland 
[16], we had to include images from a Danish popula-
tion in order to achieve an acceptable performance. 
This could mean that the model could perform poorer 
when exclusively applied to Greenlandic data.

However, during recent centuries, the Greenlandic 
population have intermixed with Europeans, leading 
to a relatively high proportion of genetic European 
ancestry in modern Greenlanders, where the average 
estimated degree of European ancestry admixture in 
present day Inuit in Greenland is 25%, varying with 
the degree of geographical isolation [39]. Thus, many 
of the people screened for DR in Greenland today will 
share many common features with an ethnic Danish 
population, suggesting that the model might perform 
well in Greenland despite its training on partially Danish 
data. Our model was only developed to detect DR, thus 
other ocular diseases are not detected when using the 
model. Currently, the ophthalmological nurses assess 
the fundus images and supplementary information, for 
signs of other ocular diseases and refer persons to 
ophthalmologists if deemed necessary. Nonetheless, 
the assessment of other ocular diseases can be seen 
as an extra service for persons with diabetes, as the 
primary aim of DR screening is to assess images for DR.

In Greenland, a range of other eye data including 
ocular pressure, autorefraction, visual acuity and opti-
cal coherence tomography (OCT) are also performed 

during DR screening. While the screening technician 
could refer a patient with high values of ocular pres-
sure and declining visual acuity for telemedical 
assessment, the results of the OCT still needs to be 
interpreted by a specialist.

We excluded images in the downloading process, if 
they were ungradable or if a laser treatment had been 
conducted, however blurry or partial images could disturb 
the accuracy of the model. Preprocessing the images and 
splitting the images of their respective grading, according 
to quality, and train the model with high quality images 
first and during the training add blurry or partial images of 
less quality, could further improve the model [40].

Conclusion

In this study, we developed an AI model, to automatically 
detect DR on different retina fundus images, based on 
ICDR levels, specific for a Greenlandic population and the 
Optos fundus camera. We developed a model, with the 
potential to be applied in the clinic, for autonomous 
detection of DR. To apply the model more or less auton-
omous in a clinical setting, we would need a model with a 
higher specificity and sensitivity as well as overall good 
performance, to distinguish referable from non-referable 
images autonomously.

For safety reasons, sensitivity should be prioritised 
over specificity, to ensure a true detection of DR and 
minimise the false-positive referrals.

Future perspectives

Improving the current model should be prioritised, 
both in terms of adding more Greenlandic or other 
Inuit population images, as well as improving the 
model predictions with more images of severe DR. At 
present the model is not suitable for autonomous grad-
ing, however to be of advantage in the Greenlandic 
health system where telemedicine is an integrated 
part of the health care delivery, it is important that it 
can autonomously grade images with high accuracy. 
After the development of a well performing model, it 
is important to assess the feasibility of implementing 
such a model in a Greenlandic setting, and compare the 
costs and effects to other potential scenarios.

In addition, qualitative studies should be undertaken 
to assess the attitudes and uptake of an AI model for 
DR screening, both among patients and healthcare pro-
fessionals. Furthermore, it could be assessed how the 
model could be adapted to screening programmes in 
other arctic populations.
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