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A B S T R A C T   

Music listening involves many simultaneous neural operations, including auditory processing, working memory, 
temporal sequencing, pitch tracking, anticipation, reward, and emotion, and thus, a full investigation of music 
cognition would benefit from whole-brain analyses. Here, we quantify whole-brain activity while participants 
listen to a variety of music and speech auditory pieces using two network measures that are grounded in complex 
systems theory: modularity, which measures the degree to which brain regions are interacting in communities, 
and flexibility, which measures the rate that brain regions switch the communities to which they belong. In a 
music and brain connectivity study that is part of a larger clinical investigation into music listening and stroke 
recovery at Houston Methodist Hospital’s Center for Performing Arts Medicine, functional magnetic resonance 
imaging (fMRI) was performed on healthy participants while they listened to self-selected music to which they 
felt a positive emotional attachment, as well as culturally familiar music (J.S. Bach), culturally unfamiliar music 
(Gagaku court music of medieval Japan), and several excerpts of speech. There was a marked contrast among the 
whole-brain networks during the different types of auditory pieces, in particular for the unfamiliar music. During 
the self-selected and Bach tracks, participants’ whole-brain networks exhibited modular organization that was 
significantly coordinated with the network flexibility. Meanwhile, when the Gagaku music was played, this 
relationship between brain network modularity and flexibility largely disappeared. In addition, while the 
auditory cortex’s flexibility during the self-selected piece was equivalent to that during Bach, it was more flexible 
during Gagaku. The results suggest that the modularity and flexibility measures of whole-brain activity have the 
potential to lead to new insights into the complex neural function that occurs during music perception of real- 
world songs.   

1. Introduction 

Visit any human habitation on earth and you are likely to find music 
woven into the fabric of life: in a meta-analysis of 315 societies, Mehr 
et al. (2019) found evidence of music in all of them. Yet although 
omnipresent as a cultural phenomenon, music itself—ranging from a 
Western orchestra to Aka polyphony, Tuvan throat singing, and Maori 
powhiri—is extremely diverse. As Trehub et al. (2015) write “Strictly 
speaking, there are no structural characteristics that have been 

identified in all known musical systems” (p. 2). Given this heterogeneity, 
many scientists distinguish between musicality and music (Honing et al., 
2015). As Patel (2019) explains, musicality refers to “the set of mental 
capacities underlying basic musical behavior,” whereas music “is a 
construct highly dependent on culture” (p. 460). Music cognition within 
an individual brain lies at the intersection of the two: it is dependent on 
musicality but shaped by culture. 

Patel (2019) has written that “music cognition is not a unitary mental 
phenomenon and instead involves a collection of distinct and interacting 
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mental processes” (p. 459). This includes auditory processing, working 
memory, temporal sequencing, pitch tracking, anticipation, reward, and 
emotion (Zatorre and Salimpoor, 2013). The complex combination of 
neural operations performed in the brain during music cognition ne-
cessitates analytic methods that take the functional activity of the 
whole-brain into account. Furthermore, the use of real-world musical 
stimuli is needed to begin to answer questions about the interaction 
between musicality and culture within the brain. 

A novel functional magnetic resonance imaging (fMRI) study we 
have undertaken at Houston Methodist Hospital’s Center for the Per-
forming Arts Medicine addresses both the needs for a whole-brain 
analysis method and presentation of real-world stimuli. As part of a 
larger investigation of music’s role in stroke rehabilitation, our goal was 
to compare the neurological responses between various musical and 
speech stimuli. Participants without prior musical training were asked to 
listen to long excerpts of six stimuli: a self-selected track for which they 
felt a positive emotional connection, examples of music that were 
culturally familiar (J.S. Bach) and unfamiliar (Gagaku court music of 
medieval Japan), emotional and unemotional English speech, and 
speech from a foreign language. 

To quantify differences in brain response for the different auditory 
pieces, we focus on two whole-brain network measures: modularity and 
flexibility. Modularity has been widely applied to study brain networks 
(Sporns and Betzel, 2016) as it measures the degree to which brain re-
gions can be grouped into modules based on their structural connections 
or functional network of interactions (Newman, 2006). Flexibility is the 
rate that brain regions change their module membership (Bassett et al., 
2011), and therefore can measure how dynamic the network structure is 
while the brain performs a particular task. Importantly for the motiva-
tion of this work, modularity and flexibility are principles of design that 
are rooted in complex systems theory (Simon, 1962) and appear in 
diverse biological systems besides the brain (Bonomo, 2020). The degree 
of dynamic, modular structure in brain networks is associated with 
differences in cognitive performance under different task demands. In 
previous work with this dataset, in which we only looked at the static 
modularity, we found that those with higher modularity during the 
self-selected song exhibited the biggest change in modularity during the 
more novel auditory stimuli, while the familiar stimuli led to less 
perturbation of the network structure (Bonomo et al., 2020). Prior 
theory modeled the benefit of high modularity for performing fast, 
simple cognitive tasks and the benefit of low modularity for longer, more 
complex tasks (Chen and Deem, 2015), and experiments have demon-
strated this dichotomous connection between performance and both 
resting-state (Yue et al., 2017) and task-based (Lebedev et al., 2018) 
modularity. The opposite relationship has been experimentally observed 
for flexibility, where low flexibility correlates with performance on 
simple tasks, and high flexibility correlates with performance on com-
plex tasks (Ramos-Nuñez et al., 2017). Furthermore, there is a negative 
relationship between modularity and flexibility in resting-state fMRI 
data (Ramos-Nuñez et al., 2017). Here, we look at the 
modularity-flexibility relationship during task-based fMRI to study how 
the brain processes auditory pieces of varying familiarity. 

For the musical pieces, we find that during the self-selected song and 
Bach, there is a significant negative correlation between a participant’s 
whole-brain modularity and flexibility. This relationship largely disap-
pears when the culturally unfamiliar Gagaku music is played. Further-
more, the auditory cortex is equally flexible during the self-selected 
piece and Bach, while it was more flexible during Gagaku. We hypoth-
esize that the negative modularity-flexibility correlation may denote 
that the brain, as a complex system, is configured to efficiently process 
familiar stimuli, whereas it may be driven out of this configuration by 
highly novel stimuli that require more effort to process. Overall, our 
results suggest that the modularity and flexibility measures of whole- 
brain activity have the potential to lead to new insights into the com-
plex neural function that occurs during music perception, in particular 
during real-world music stimuli. 

2. Methods 

We performed fMRI as 25 healthy adult participants actively listened 
to six excerpts of music and speech. The neuroimaging run for each 
auditory piece lasted 312 s. Further technical details about the partici-
pants and scans are found in Section 8. The auditory pieces included a 
self-selected song (Self) and a playlist created by the researchers. The 
playlist consisted of auditory selections chosen for their cultural famil-
iarity and unfamiliarity to the participants in the study (Bach and 
Gagaku, respectively), emotional speech from Charlie Chaplin in the 
film “The Great Dictator” (Chaplin), an unemotional newscast read by 
Walter Cronkite (Cronkite), and unfamiliar foreign speech from the 
South African Xhosa tribe (Xhosa). 

We were particularly interested in seeing the contrasts in whole- 
brain activity during the different musical pieces. For the self-selected 
piece, participants were instructed to choose a song to which they felt 
a strong emotional attachment. For the culturally familiar music, we 
chose J.S. Bach’s 2-part Invention in C-Major, BWV 772, a short piano 
work representative of traditional classical music originating in Europe 
during the common practice period (17th to early 20th centuries AD). 
For the culturally unfamiliar music, we selected a performance of 
Gagaku, the court music of Japan. Dating from the 8th–12th centuries 
AD, Gagaku is widely considered to be the oldest orchestral music in the 
world and one of the oldest unbroken musical traditions. However, in 
both sound and rhetoric, this aristocratic music is considered “remote” 
and “esoteric” (Tanaka and Koto, 2016, p. 18). It is particularly dis-
orienting for naïve listeners given the unique instrumental techniques, 
including “glissandi, an accelerating repetition of the same note, an 
undulation of the notes, noises such as that of breathings [and] shouts, 
etc…” (Tamba, 1976, p. 8). The Gagaku track thus provided a strong 
contrast to the other musical selections. Indeed, by quantifying 
perceptual musical features, Bach and Self songs were more musically 
similar to each other than either was to Gagaku (see Section 8). 

To conduct a network analysis, we divided the brain into 84 
anatomical regions (Brodmann areas, or BAs) and averaged the BOLD 
signal over all fMRI voxels in each region (see Fig. 1). If two brain re-
gions exhibited similar BOLD signal time series during the neuroimaging 
run, we inferred that these regions were working together to process the 
stimulus and drew a network link between them. The resulting func-
tional activity network was then representative of how each auditory 
piece was processed by the whole brain. In our analysis, we focused on 
two measures to quantify the network structure: modularity (Newman, 
2006), which gave us an overall summary of the brain network, and 
flexibility (Bassett et al., 2011), which gave us information about how 
dynamic the brain network was over time. 

Modularity measures the extent to which the brain regions can be 
grouped into communities, known as modules, based on sharing many 
functional connections and having limited connections to the rest of the 
brain (see Fig. 1A). In other words, a module contains communities of 
brain regions that appear to all have highly coordinated activity while 
processing the stimulus. Modularity is expressed as the number of links 
inside modules divided by the total links in the network. High modu-
larity means that the network consists of discrete communities that are 
substantially isolated from each other; in other words, these networks 
have mostly intra-module links. Low modularity means that the com-
munities are less distinct and are substantially connected to other 
communities; these networks have mostly inter-module links. 

Meanwhile, flexibility determines how dynamic the network is over 
the course of the auditory piece based on the rate that each brain region 
changes its module membership (see Fig. 1B). To determine flexibility, 
we used a sliding-window approach and extracted 80 short overlapping 
portions of the neuroimaging run. A network was constructed for each of 
these time windows; the modular structure was determined for each 
network; and flexibility was computed for individual brain regions 
based on differences in the network modules from one time window to 
the next. It was calculated as the number of times that a brain region 
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changed its module membership divided by the number of subsequent 
time windows. High flexibility means that the brain region has a high 
rate of switching modules; in other words, the brain region is found to be 
a part of a different community in almost every time window. Low 
flexibility means that the brain region has a low rate of switching 
modules; it mostly stays with its same community throughout the entire 
run. The results were averaged over all brain regions to assign an overall 
flexibility value to a participant’s brain during a particular auditory 
piece. 

The modularity and flexibility measures are based on similar 
network principles; however, they are not inherently related. In 
randomly simulated brain networks, the correlation coefficient between 
the modularity and flexibility plotted for these networks is zero 
(Ramos-Nuñez et al., 2017). The correlation coefficient (r) quantifies 
whether a straight line can be drawn through the data points, thus 
determining if there is a significant relationship between the two mea-
sures. A strong positive relationship (r close to 1) means that higher 
modularity is accompanied by higher flexibility, and lower modularity is 
accompanied by lower flexibility. A stronger negative relationship (r 
close to − 1) means that higher modularity is associated with lower 
flexibility, and vice versa. A null relationship (r = 0) means that there is 
no overall trend between modularity and flexibility. The 
modularity-flexibility relationship has not yet been explored during 
task-based fMRI as we describe here. We were interested in whether this 
relationship could distinguish differences in how participants processed 
each auditory piece and, importantly, the culturally familiar music 
versus the unfamiliar Gagaku. 

3. Results 

When first comparing familiar music and speech, we found distinct 
modularity-flexibility relationships (see Fig. 2A and B). There were 
strong negative correlations during Chaplin (r = − 0.68, p-value =
0.030) and Cronkite (r = − 0.58, p-value = 0.063). In contrast, the 
negative correlations were weaker during Self (r = − 0.44, p-value =
0.032) and Bach (r = − 0.46, p-value = 0.024). Though we are working 
on the scale of the whole-brain, this result is consistent with an earlier 
study of the auditory cortex, which found unique responses for music 
and speech (Norman-Haignere et al., 2015). This suggests that the 
modularity-flexibility relationship is able to distinguish different brain 
states during auditory processing. 

We then compared the self-selected and Bach with the Gagaku and 
again found distinct modularity-flexibility relationships (see Fig. 2B and 
C). The overall negative correlation reported above for Self and Bach 
was absent during Gagaku: instead, there was no statistically significant 
trend (r = − 0.19, p-value = 0.507). A few participants’ brains exhibited 
higher modularity and lower flexibility than the group averages, or vice 
versa, however, the majority did not, suggesting that the participants’ 
brains were behaving more idiosyncratically than when listening to Self 
and Bach. The same was true for Xhosa (r = 0.01, p-value = 0.966). 

We performed power analyses for the Pearson correlation co-
efficients to determine the probability that our study found statistically 
significant effects when these effects actually do exist (see Section 8). 
For Chaplin, Cronkite, Self, and Bach there was very sufficient power (1- 
β = 1.00) in the sample sizes for rejecting the null hypothesis, i.e., 
determining that the correlation coefficients were not r = 0. For Gagaku, 
there was a marginally acceptable Type II error rate (β = 0.234) for not 
rejecting the null hypothesis, i.e., correctly concluding that there was no 

Fig. 1. The whole-brain network analysis methods. (A) The brain is divided into 84 anatomical regions that serve as network nodes. The BOLD signals for each brain 
region from fMRI are compared to determine the network connections. A link is drawn between two brain regions if their signals are correlated over time: the 
complete time series is used for modularity, while short overlapping windows of the time series are used for flexibility. (B) Modularity Analysis: Modularity is defined 
as the ratio of links within modules to the total number of links. The main example has three modules with 13 intra-module links of 16 total links, and modularity is 
therefore 0.8. Example networks for minimum (M = 0) and maximum (M = 1) modularity are also shown. (C) Flexibility Analysis: Flexibility for each brain region is 
defined as the number of times the brain region changes its module membership, from one time window to the next, divided by the number of time windows. The 
example network shows that Region 1 changes from the yellow to blue module one time over the two subsequent time windows, and its flexibility is therefore 0.5. 
The overall flexibility is then the average of the flexibility values for individual brain regions. More details and full equations are described in the Section 8. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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correlation between modularity and flexibility. For Xhosa, however, 
there was a very high Type II error rate (β = 0.947) for not rejecting the 
null hypothesis; in other words, we cannot necessarily conclude there is 
a zero correlation. However, there is sufficient power to determine that 
the correlations between modularity and flexibility for Gagaku (1- 
β = 0.871) and Xhosa (1-β = 0.996) are not r = − 0.4, and we can 

therefore conclude that the modularity-flexibility relationships are 
weaker than they are for the other auditory pieces. Additional partici-
pants listening to Gagaku and Xhosa would be needed in order to narrow 
down exactly how weak the correlations are. 

Furthermore, we computed the non-parametric Spearman’s rank 
correlation coefficient, ρ, for the relationship between each participant’s 

Fig. 2. The modularity-flexibility relationship during (A) English speech (Chaplin and Cronkite), (B) self-selected and culturally familiar music (Bach), and (C) 
culturally unfamiliar music (Gagaku) and speech (Xhosa). Data points represent individual participants (colors for each participant are consistent across all six 
graphs), and N is the number of participants that listened to that piece. Black lines represent linear fits, r is the Pearson correlation coefficient, p indicates the p-value 
for two-tailed null hypothesis testing of r = 0, 1-β indicates the statistical power to reject the null hypothesis, and β is the Type II error rate when the null hypothesis 
was not rejected. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. The flexibilities for each brain region averaged over all participants. The color bar indicates the flexibility value, which can range from F = 0 to 1 (F = 0.60 
was the maximum in our dataset). F = 0 means that the brain region never switched which module it was in throughout the auditory piece; F = 1 would mean that 
the brain region switched its module membership at every time window. The brain figure keys at the bottom show the locations of each BA brain region and several 
groups of functionally significant BAs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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modularity and flexibility during different auditory pieces, and we 
found similar trends to the Pearson correlations. There is a strong 
negative correlation that is statistically significant for the two English 
speech excerpts (Chaplin, ρ = − 0.75, p-value = 0.013; Cronkite, 
ρ = − 0.76, p-value = 0.006). There were weaker negative correlations 
that was statistically significant for Bach (ρ = − 0.48, p-value = 0.017) 
and marginally insignificant for Self (ρ = − 0.32, p-value = 0.128). The 
modularity and flexibility correlations were again highly insignificant 
for Gagaku (ρ = − 0.16, p-value = 0.566) and Click (ρ = − 0.17, p-value 
= 0.582). 

In each of these cases, the reported flexibility values were averaged 
over all brain regions. We then looked at the contributions of individual 
regions. Fig. 3 shows the flexibilities of each brain region during each 
auditory piece as averaged over all participants. 

Brain regions involved in visual processing and somatosensory 
function were generally the least flexible across all auditory pieces, 
indicating that the activity within these respective groups of regions 
remained synchronized throughout the duration of each auditory piece. 
The anterior cingulate cortex (BA 33), a core emotion processing region 
(Pereira et al., 2011), and the parahippocampal gyrus (BA 27) were the 
most flexible across all auditory pieces, indicating that activity within 
these regions was not highly correlated with the activity in other brain 
regions. This suggests that part of the procedure for emotion during an 
auditory stimulus (as estimated by activity in BAs 27 and 33) is a process 
independent of the rest of the brain. 

There was notably higher flexibility in several regions associated 
with contentment during all three musical pieces versus during all three 
speech excerpts. One was the inferior frontal gyrus (BAs 44, 45, 46), 
which has been implicated in determining musical enjoyment (Koelsch 
et al., 2006). Additionally, there was higher flexibility in the primary 
and supplementary motor cortex (BAs 4 and 6, respectively) than during 
the three speech pieces. The ventral tegmental area, a dopaminergic 
region where activity is a proxy for pleasure, projects into these brain 
regions (Hosp et al., 2019). These regions may be more dynamic with 
which brain regions they interact during music as the participants 
determine musical enjoyment.” 

We took a closer look at the flexibility of the brain regions involved 
in auditory processing (see Fig. 4). There was a significant difference in 
the response of these regions during familiar music and speech, which 
was in line with our results reported above and those reported by Nor-
man-Haignere et al. (2015). The flexibility was the same in these brain 
regions during both Self and Bach. Interestingly, there was higher flex-
ibility during the Gagaku than during these familiar pieces. In other 
words, the auditory regions were more dynamic and had a higher rate of 

changing modules during Gagaku: the auditory cortex was interacting 
with more diverse groups of regions across the brain throughout the 
unfamiliar music in order to process it. It is difficult to assess to what 
degree these differences were due to the nature of the music itself or to 
its unfamiliarity—after all, the two are intertwined. Nevertheless, our 
experiment indicates that whole brain analysis is a promising way to 
probe the brain’s responses to real-world exemplars. 

4. Discussion 

Our study analyzed the whole-brain processing of music and speech 
and quantified the activity using the relationship between modularity 
and flexibility. We found distinct contrasts in how the brain behaved 
when listening to speech versus music, as well as Self and Bach versus 
Gagaku. These results are in line with existing evidence for the impact of 
enculturation in shaping musical minds (Neuhaus, 2003; Hannon and 
Trehub, 2005a, 2005b; Hannon and Trainor, 2007; Morrison et al., 
2008; Nan et al., 2008, Morrison and Demorest, 2009; Soley and Han-
non, 2010; Cameron et al., 2015; Haumann et al., 2018). To the best of 
our knowledge, our work is the first to examine differences in the dy-
namic modular organization of the functional brain network when 
participants listen to music that differs in cultural familiarity. 

During both Self and Bach, there was an overall relationship between 
modularity and flexibility: the degree of community structure in a par-
ticipant’s brain network was negatively correlated with the dynamics of 
the communities. However, during Gagaku, there was no significant 
correlation between these measures. In addition, whereas the flexibility 
of the auditory cortex was the same during Self and Bach, there was 
increased flexibility during Gagaku. During an earlier stage of this study, 
we analyzed brain activation for the first 12 participants (Karmonik 
et al., 2016). On average over these participants, there was enhanced 
blood oxygenation level dependent (BOLD) signals, increased functional 
connectivity among activated voxels, and increased information flow 
during the three musical excerpts, as compared to the speech pieces. 
Furthermore, while there was individual variation, the average activa-
tion maps for Self, Bach, and Gagaku exhibited distinct traits. For 
instance, while all three musical examples engaged the primary auditory 
cortex, Gagaku showed the least overlap with the other stimuli. Self and 
Bach both activated the superior frontal gyrus, involved in introspective 
thought (Goldberg et al., 2006), while Gagaku uniquely activated the 
superior parietal lobule, necessary for working memory (Koenigs et al., 
2009). The contrast with Self was particularly noticeable: while, as 
anticipated, Self activated emotional centers such as the periaqueductal 
gray and the anterior cingulate cortex (Pereira et al., 2011), the Gagaku 
did not. Taken as a whole, we found that Self and Bach were more 
closely related, while Gagaku was an outlier. These previous results, in 
tandem with our modularity-flexibility analysis here, suggest that the 
adult brain may treat culturally familiar repertoire in a significantly 
different way than culturally unfamiliar music. 

The modularity-flexibility relationship indicated that processing Self 
and Bach was more similar to processing the English speech excerpts 
than it was to processing Gagaku. We hypothesize that this may reflect 
differences in processing efficiency. For context, previous work found a 
strong negative correlation between modularity and flexibility 
(r = − 0.78) during resting-state fMRI (Ramos-Nuñez et al., 2017), in 
which participants are not presented with any external stimulus. Since 
the brain is not being tasked with anything to process, the 
modularity-flexibility relationship could indicate an optimized, 
energy-saving network configuration. During a listening task, the brain 
perceives each auditory stimulus by comparing it to known stimuli 
templates in its auditory memory (Peretz and Coltheart, 2003; Zatorre 
and Salimpoor, 2013). Self and Bach, recognized by the brain as familiar 
music, could promote the negative correlation between modularity and 
flexibility because the brain can efficiently process these musical pieces. 
The novel and unpredictable composition of a culturally unfamiliar 
piece makes it inherently more difficult to process (Zatorre and 

Fig. 4. The average flexibilities of brain regions involved in auditory process-
ing (BAs 22, 41, 42) for all participants. Error bars indicate standard error. The 
asterisk indicates a statistical significance of at least p-value < 0.05, and “n.s.” 
indicates that the specified values are not significant. Individual significant p- 
values are: Gagaku-Self p = 0.001, Gagaku-Bach p = 0.042, Gagaku-Xhosa 
p < 0.001, Gagaku-Chaplin p < 0.001, Gagaku-Cronkite p < 0.001, Self- 
Chaplin p = 0.002, Self-Cronkite p = 0.007, Bach-Chaplin p < 0.001, Bach- 
Cronkite p = 0.001, Chaplin-Xhosa p = 0.006, Cronkite-Xhosa p = 0.017. 

M.E. Bonomo et al.                                                                                                                                                                                                                             



IBRO Neuroscience Reports 12 (2022) 98–107

103

Salimpoor, 2013). The optimized functional organization may therefore 
break down during Gagaku, as indicated by the lack of clear modular-
ity-flexibility relationship. The concept can be visualized by imagining 
different configurations of the brain network representing different 
possible states. These states can be mapped onto an energy landscape, 
which is graph of the energy associated with all possible configurations 
of a complex system. In our case, each configuration state is character-
ized by a modularity value, which represents the depth of the state, and 
a flexibility value, which represents the rate that the brain transitions 
from one state to another. Given that higher modularity makes a com-
plex system more stable (Simon, 1962) and more energy is needed to 
overcome a larger barrier between states, the system is more likely to 
transition from shallow states (low modularity, high flexibility) and less 
likely to transition out of deeper states (high modularity, low flexibility). 
This qualitative perspective was first put forward by Ramos-Nuñez et al. 
(2017). Applying this perspective to our work, a negative 
modularity-flexibility relationship is assumed to be an optimal config-
uration for the brain to function efficiently and minimize energy. When 
this relationship is not present, the brain is either using extra energy to 
try to quickly explore the landscape and transition between deep states 
(high modularity, high flexibility), or it is inefficiently exploring the 
landscape by transitioning slowly between shallow states (low modu-
larity, low flexibility). A more rigorous theoretical investigation of this 
hypothesis is needed and could be accomplished utilizing the mathe-
matical formalism commonly employed to study the energy landscape of 
complex systems in condensed matter (Pietrucci, 2017). 

Researchers have speculated about the degree to which the neural 
communities involved in music perception are task-specific or shared 
with other cognitive tasks. For instance, music and language processing 
show considerable overlap, especially during early childhood (Patel, 
2012; Patel, 2015; Patel and Morgan, 2017; Brandt et al., 2012). Like-
wise, while musical vernaculars differ widely between cultures, Mehr 
et al. (2019) have shown that naïve listeners often successfully rely on 
affective cues such as complexity and levels of arousal to accurately 
interpret the function of unfamiliar songs—succeeding precisely 
because these affective cues are related to social cues in everyday life. 
For the adult brain, listening to familiar repertoire has likely been 
streamlined into more domain-specific networks, which may explain the 
equal flexibility of the auditory cortex that we observed during Self and 
Bach. The higher flexibility of the auditory cortex that we found during 
Gagaku may suggest that participants’ brains are utilizing alternative 
cues in order to decipher the culturally unfamiliar music. 

It is worth noting that, the Bach and Gagaku have many other dif-
ferences in addition to the familiarity of their musical languages—for 
instance, the Bach is a piano piece, but the Gagaku is written for an 
ensemble of Asian instruments. While previous studies have mapped the 
subsections of the auditory cortex that process specific musical features 
(Woods et al., 2009; Leaver and Rauschecker, 2010; Norman-Haignere 
et al., 2015), our study analyzed brain activity at a larger resolution in 
which the auditory cortex was treated as a homogenous brain region. We 
hypothesize that the whole-brain network approach would not be sen-
sitive enough to distinguish differences in traditional acoustical prop-
erties, such as pitch and timbre. In any case, consideration of the 
differences in acoustical properties of the stimuli that impact brain 
activation at the cellular level is less relevant to the aim of present study: 
to study how the brain, as a complex system, adapts its functional or-
ganization while listening to a well-known song (Self), an unknown song 
that contains musical features customary to the listener (Bach), and an 
unknown song that contains musical features that are uncustomary to 
the listener (Gagaku).” It is often difficult to interpret how activations in 
particular regions integrate with the activity of the rest of the brain to 
holistically process a stimulus (de-Wit et al., 2016), and so by taking a 
whole-brain network approach, we are able to quantify differences in 
the large-scale architecture of different brain states during music 
listening. Additionally, isolated instances of pitch or other acoustic 
features cannot necessarily be culturally grounded (Morrison and 

Demorest, 2009), and so by presenting longer stimuli, our participants 
have a greater awareness of the musical character and continuity of each 
selection. 

5. Limitations 

There are a few limitations of the present work. First, this is a small- 
scale, pilot study. The results we present offer a promising new analysis 
approach for the field and would be strengthened by including more 
participants, furthermore, to adequately address the potential influence 
of age and gender. Second, given the scale of the study, we were limited 
in the number of stimuli we could test. Earlier studies found that even 
when testing culturally different repertoires on participants of different 
nationalities, a lack of difference in activation patterns can result when 
the musical features of the repertoires are to similar (Demorest and 
Morrison, 2003). 

We therefore aimed for strongly contrasting ones, feeling that those 
would provoke the most measurable results. However, this introduces 
confounds and makes it hard to ascribe the brain behavior to any single 
cause. Our methodology in follow-up work will be refined to create more 
overlap in surface musical features, such as instrumentation, to further 
tease out the effects of familiarity and unfamiliarity. Third, we were 
certain that Bach was representative of recognizable classical music and 
that Gagaku was representative of an unknown repertoire to the par-
ticipants in this study. However, the collection of psychological mea-
sures to specifically quantify music familiarity, comprehension, 
preference, and emotional stimulation would allow us to further probe 
how conscious experience contributes to differences in whole-brain 
processing. This would also open the door for distinguishing how indi-
vidual participants process the various auditory pieces. Finally, an 
additional caveat of our study is that many of the self-selected tracks 
chosen by our participants contained lyrics. In future studies, it would be 
advantageous to probe the impact of mixing language and music. 

6. Future research 

Scientists have long speculated the degree to which music cognition 
is innate or acquired through exposure and learning. Our study helps lay 
the groundwork for further research into this question. An increasing 
number of cross-cultural music studies are being conducted, and while a 
few involve neuroimaging (for instance, Demorest and Morrison, 2003; 
Nan et al., 2008; Demorest et al., 2009), more are needed to explore the 
varied brain responses during music cognition. Some researchers note 
that it is increasingly difficult to find listeners who have never heard 
Western music (McDermott et al., 2016; Stevens, 2012). However, 
cross-cultural studies need not include Western music as one of the 
musical traditions being analyzed (Jacoby et al., 2020). Music famil-
iarity and brain response from any two, or more, cultures could be 
compared. In fact, investigations into the extent to which cultural 
exposure shapes music cognition in a wide diversity of populations will 
be crucial contributions to this field of research. 

Seeing as our study was limited to those accustomed to Western 
music, a logical next step would be to perform the same study with 
aficionados of Gagaku music, as well as those conversant with both 
Gagaku and Western musical traditions. It would be interesting to see 
how the brain responses of each of these groups compared. Wong et al. 
(2009) performed memory and recognition tasks with participants 
raised with exposure to both Indian and Western musical traditions and 
compared them with participants familiar with one musical culture or 
the other. While most participants showed an in-culture bias, those who 
were familiar with both Indian and Western music exhibited equal brain 
responses to the music of both cultures (Wong et al., 2009). We would be 
interested to see how the activation patterns and whole-brain network 
measures of experts of Gagaku compare to those who were completely 
unaccustomed to it. 

Our study deliberately excluded trained musicians, but it would be 
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salient to compare them to untrained listeners. Demorest and Morrison 
(2003) found increased activation in both Chinese and American per-
formers in response to culturally familiar and unfamiliar stimuli as 
compared to untrained listeners. It would be of particular interest to 
explore whether the negative correlation between modularity and 
flexibility also breaks down for professional musicians when listening to 
culturally unfamiliar music. 

7. Conclusion 

In summary, we studied whole-brain activity from fMRI of a group of 
healthy adult participants while they listened to various music and 
speech pieces. Our complex systems theory approach and use of longer 
excerpts of real-world stimuli allowed us to explore differences in music 
processing of culturally familiar versus culturally unfamiliar music. 
While there were significant trends in network modularity and flexi-
bility during Self and Bach, there was no trend during Gagaku. There 
was also a noteworthy increase in the flexibility of the auditory cortex 
for all participants during Gagaku, which suggests that participants’ 
brains were drawing upon novel resources to decipher this music. 

Studying the whole brain enables us to study the complex synergies 
between different brain regions and examine the degree to which it is 
the same for everyone. This is germane in areas such as music therapy, 
which must concern itself with the degree to which musical in-
terventions can be generalized or must be customized for individual 
patients. Indeed, our results suggest that music processing may take 
individual components of musicality and assemble them into interacting 
communities based on both cultural exposure and personal preferences. 

Because it is culturally omnipresent yet enormously varied, music 
offers a particularly revealing window into how our brain engages with 
experiences both familiar and new. Our work demonstrates the utility of 
the modularity and flexibility measures of whole-brain network activity 
to quantify the complex neural operations occurring during music 
perception and to propose a theoretical grounding for why the brain 
organizes and reorganizes itself during different types of music. As 
Eagleman (2020) writes, “For humans at birth, the brain is remarkably 
unfinished, and interaction with the world is necessary to complete it” 
(p. 20). By using real world samples and whole brain analysis, we can 
better understand how those interactions with the world shape our 
musical brains. 

8. Extended methods 

8.1. Musical feature extraction 

To quantify the difference in human perception of these auditory 
pieces, as a proxy for differences in the overall listening experience, we 
utilized the Rhythm Pattern feature extractor (Lidy and Schindler, 2016; 
Lidy and Rauber, 2005; Rauber et al., 2003). This extractor calculates 
the similarity between auditory signals by quantifying the combined 
human perception of rhythm, pitch/melody, and timbre information 
during an auditory piece. The feature set was developed to capture 
differences in psychoacoustic phenomena while listening to music, 
which we feel is more meaningful to our present study than differences 
in acoustic statistics calculated directly from the auditory waveform. 

Briefly, a Fourier transform is first computed for the audio signal, and 
the frequencies are grouped into 24 psycho-acoustically motivated 
critical-bands on the perceptual Bark scale (Zwicker, 1961). Spectral 
masking is then performed to reproduce the phenomena of quiet sounds 
being occluded from human hearing by louder sounds that are present 
simultaneously, closely before, or closely after. Further processing is 
performed, including transformation into different perceived loudness 
scales. Another discrete Fourier Transform is computed to create a 
time-invariant representation of the spectrum, known as the Rhythm 
Pattern. This quantifies the amplitude modulations of the loudness in 
individual Bark scale bands. These modulations of the loudness occur at 

different frequencies; the algorithm cuts off at 10 Hz, which corresponds 
to a modulation of 600 bpm in the Bark scale bands. The amplitude 
modulations are binned into 60 modulation frequencies per each of the 
24 Bark bands, leading to a 1440-dimensional feature vector. The 
Rhythm Pattern results for Bach and Gagaku are shown in Fig. 5. 

Given the high dimensionality of these data (Aggarwal et al., 2001), 
the Manhattan distance was used to calculate the distance between 
musical feature vectors. A larger Manhattan distance means that the 
auditory pieces were more musically distinct. The average distance from 
Bach to Self songs was 869 ± 31 (standard error of mean). The average 
distance from Gagaku to Self songs was 1007 ± 38, and the distance 
from Gagaku to Bach was 1302. 

8.2. Neuroimaging 

Data were acquired from 25 participants (ages 18–82, nine males) 
recruited from the Houston community that were not taking chronic 
medication or psychoactive drugs. The group was heterogeneous in 
gender, age, and degree of music education. The Houston Methodist 
Hospital Institutional Review Board approved the research, and 
informed consent was obtained from all participants. Imaging data were 
collected at the MRI core of Houston Methodist Research Institute on a 
Philips Ingenia 3.0 T scanner. Scans for the first 12 participants were 
acquired during an earlier stage of the study (Karmonik et al., 2016; 
Karmonik et al., 2020). Anatomical reference scans used a turbo field 
echo pulse sequence with a field of view of 24 × 24 × 16.5 cm (1.0 mm 
isotropic resolution, 8.2 ms repetition time, 3.8 ms echo time). The 
task-based functional scans used an echo planar imaging pulse sequence 
with a field of view of 22 × 22 × 12 cm for 130 brain volumes in each 
run (1.5 × 1.5 × 3.0 mm resolution, axial orientation, 2400 ms repeti-
tion time, 35 ms echo time). 

Based on the fMRI repetition time, each volume represented 2.4 s of 
activity. The listening task followed a block design in which each scan 
began with 24 s of silence, followed by 12 blocks of alternating auditory 
stimulus and silence (each for 24 s), for a total run of 312 s (130 vol-
umes). The first 24 s of silence at the start of each run were not used in 
analyses, leaving a 288 s time series with 120 volumes. Analyses were 
conducted across the 288 s time series without specific regard for indi-
vidual blocks. We were interested in looking at the network architecture 
of the sustained brain state as a whole during each run. It is assumed that 
the brain is processing both auditory features and psychological 
response (e.g., emotion, pleasure, memory) when the stimulus is on, and 
only the latter when the stimulus is off. The block design encourages 
better cognitive engagement, whereas presentation of the uninterrupted 
auditory stimulus for 2 min 24 s (144 s) may lead to less active listening 
during portions of the time series that would differ among participants. 
Additionally, previous work with this dataset was able to determine 
stimulus-specific activation in regions of interest using the silence block 
as a control condition (Karmonik et al., 2016). The number of auditory 
pieces that each participant listened to varied depending on the par-
ticipant’s tolerance for the total MRI scan duration. Data from one 
participant were excluded due to technical difficulty. In the analyzed 
data, 24 participants listened to Self, 24 listened to Bach, 15 listened to 
Gagaku, 13 listened to Xhosa, 11 listened to Cronkite, and 10 listened to 
Chaplin. 

Standard preprocessing steps were taken to reduce artifacts in the 
fMRI data, including correcting for motion, constant offset, and high- 
frequency contributions in the BOLD signal, and implemented as 
described in Karmonik et al. (2016). To construct the whole-brain 
network, functional and anatomical MRI scans were combined using 
AFNI software (Cox, 2012) and transformed into Talairach coordinates, 
which spatially warps each participant’s brain image to a standardized, 
three-dimensional space. The brain was then parcellated into 84 Brod-
mann areas (BAs). In prior work, the functional network was constructed 
using other parcellation schemes and consistent trends were observed in 
modularity analyses (Yue et al., 2017). Functional connectivity between 
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BAs was determined by calculating pairwise Pearson correlation co-
efficients of BOLD time series. The undirected functional connectivity 
matrix was then binarized to keep the top 400 edges, 11.5% network 
density, to improve the signal-to-noise ratio (Yue et al., 2017; Chen and 
Deem, 2015). 

8.3. Quantifying brain response 

Modularity, M, is calculated from the inferred functional networks of 
each participant as they listened to each auditory piece using Newman’s 
algorithm (Newman, 2006; Chen and Deem, 2015). The algorithm as-
signs BAs into modules, σ, based on the configuration that maximizes M 
defined as 

M({σ}) = 1
2L

∑

k

∑

ij∈σk

(
Aij −

aiaj

2L

)

where L is the total number of links in the network, Aij is 1 if there is a 
link between BA i and BA j or otherwise 0, and ai is the total number of 
links of BA i. The inner sum is evaluated for all ij pairs of BAs in module 
k, σk, and the outer sum is evaluated for all modules in the network. The 
aiaj /2L term reduces M by the modularity that would be expected in a 
random network. 

The number and composition of modules are not predefined, but 
rather deduced by the algorithm based on the grouping of brain regions 
that optimizes the function for M. Briefly, the functional connectivity 
matrix is input into the algorithm, and the algorithm takes a top-down 
approach in determining modules. The nodes are first divided into two 
groups based on the largest eigenvector of the connectivity matrix, and 
modularity is calculated from this arrangement. Next the algorithm 
checks what the modularity would be by moving each node between 
groups. If modularity increases (above a threshold of 0.01), the best 
move of nodes that maximizes modularity is performed. The algorithm 
then attempts to subdivide the groups and repeats testing how modu-
larity would change when each node is moved among groups. This 
continues until subdividing the groups further does not increase the 
calculated modularity. The resulting groups are determined to be the 
functional modules. This data-driven approach means that there is no 
bias in assigning brain regions into particular modules based on any 
assumed functional relationships. Since the modules are not universally 
established or constrained, this allows us to meaningfully compute the 
modularity and the rate that the modules are reorganized for different 
auditory pieces. 

Flexibility, F, is defined by the average rate that BA nodes changed 
their module allegiance, as determined using a sliding window approach 
(Bassett et al., 2011; Hutchison et al., 2013). Consistent with previous 
studies, a 40-volume window is used, which is approximately where the 
time series autocorrelations return to zero (Ramos-Nuñez et al., 2017). 
The windows are moved forward one volume at a time until reaching the 
end of the 120-volume time series. A network is constructed in each 
window, and Newman’s algorithm is used to determine the assignment 
of BAs to modules. Since the algorithm may artificially label the same 

module differently in two subsequent windows, the relabeling process 
devised by Ramos-Nuñez et al. (2017) is used. The average flexibility F 
for all brain regions is then calculated as, 

F =
1

N(T − 1)
∑N

i

∑T

t

(
1 − δmi,tmi,t+1

)

where N = 84 is the number of BAs, T = 80 is the number of time 
windows of 40 volumes each, and mi,t is the module assignment of BA i in 
window t. The δ is the Kronecker delta, which is 1 if the module 
assignment of BA i is the same in time windows t and t + 1 or otherwise 
0. The T-1 is included in the denominator to scale flexibility between 
0 and 1, where F = 1 means that all brain regions switched which 
module that they were in at every consecutive time window, and F = 0 
means that the division of brain regions into modules is completely static 
over the duration of the stimulus. When analyzing the flexibility of in-
dividual BAs, F is calculated without computing the average over N. 

We were motivated to look at the modularity-flexibility relationship 
to study how the brain processes different auditory pieces because the 
degree of dynamic, modular structure in brain networks is associated 
with differences in cognitive performance under different task demands. 
Prior theory modeled the benefit of high modularity for performing fast, 
simple cognitive tasks and the benefit of low modularity for longer, more 
complex tasks (Chen and Deem, 2015), and experiments have demon-
strated this dichotomous connection between performance and both 
resting-state (Yue et al., 2017) and task-based (Lebedev et al., 2018) 
modularity. The opposite relationship has been experimentally observed 
for flexibility, where low flexibility correlates with performance on 
simple tasks, and high flexibility correlates with performance on com-
plex tasks (Ramos-Nuñez et al., 2017). Furthermore, there is a negative 
relationship between modularity and flexibility in resting-state fMRI 
data (Ramos-Nuñez et al., 2017). Ramos-Nuñez et al. (2017) previously 
put forward a dynamical systems perspective, in which different orga-
nizations of the functional network represent different attractor states, 
to intuitively explain this relationship: the modularity of the network 
represents the depth of the state, and flexibility represents the rate that 
the brain transitions from one attractor state to another; the system is 
less likely to transition out of deeper states and more likely to transition 
from shallow states. Using this perspective, a negative 
modularity-flexibility relationship is assumed to be an optimal config-
uration for the brain to minimize energy and efficiently process stimuli. 

8.4. Statistical analyses 

All statistics and hypothesis testing were carried out using the 
functions available in the MATLAB Statistics and Machine Learning 
Toolbox (MATLAB, 2020). In our interpretation of the results, we 
considered a p-value < 0.10 as an acceptable Type I error rate for 
rejecting the null hypothesis, where p-value < 0.05 is considered sta-
tistically significant and p-value < 0.10 is marginally significant. We 
considered 1-β > 0.8 as sufficient statistical power and β < 0.2 as an 
acceptable Type II error rate for not rejecting the null hypothesis. 

Fig. 5. Rhythm Patterns calculated using the 
algorithm developed by Lidy and Schindler 
(2016) (Lidy and Rauber, 2005; Rauber et al., 
2003) for Bach and Gagaku. The Bark fre-
quencies are 24 bands determined from psy-
choacoustic testing to be important to human 
perception (Zwicker, 1961). The colormap 
represents the amplitude modulation at the 
binned frequency on the x-axis (bin 0 is a 
modulation frequency of 0 Hz and bin 60 is a 
modulation of 10 Hz). (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the web version of this 
article.)   
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In particular for the power analyses of the modularity-flexibility 
relationship effect sizes, we calculated the power achieved for the 
number of participants who listened to each auditory piece, when the 
true values are the observed Pearson correlation coefficients (r), and the 
null hypothesis is r = 0. For the auditory pieces in which we did not 
reject the null hypothesis (Gagaku and Xhosa), we calculated the Type II 
error rate β as 1 – power. We conducted brief secondary power analyses 
on Gagaku and Xhosa to assess if the modularity-flexibility relationship 
effect sizes for these pieces (r = − 0.19 and r = − 0.01, respectively) 
were weaker than those of the other auditory pieces (all having 
r < − 0.4); the statistical power achieved when the null hypothesis being 
rejected is r = − 0.4 was calculated. 
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