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Abstract: The strengthening effect of a mild temperature treatment on the antimicrobial efficacy of
essential oils has been widely reported, often leading to an underestimation or a misinterpretation of
the product’s microbial status. In the present study, both a traditional culture-based method and Flow
Cytometry (FCM) were applied to monitor the individual or combined effect of Origanum vulgare
essential oil (OEO) and mild heat treatment on the culturability and viability of Escherichia coli in
a conventional culture medium and in a fruit juice challenge test. The results obtained in the culture
medium showed bacterial inactivation with an increasing treatment temperature (55 ◦C, 60 ◦C, 65 ◦C),
highlighting an overestimation of the dead population using the culture-based method; in fact, when
the FCM method was applied, the prevalence of injured bacterial cells in a viable but non-culturable
(VBNC) state was observed. When commercial fruit juice with a pH of 3.8 and buffered at pH 7.0 was
inoculated with E. coli ATCC 25922, a bactericidal action of OEO and a higher efficiency of the mild
heat at 65 ◦C for 5′ combined with OEO were found. Overall, the combination of mild heat and OEO
treatment represents a promising antimicrobial alternative to improve the safety of fruit juice.

Keywords: food safety; shelf-life; mild heat treatment; Origanum essential oil; fruit juice; E. coli

1. Introduction

Alternative food processing and preservation technologies have been explored ex-
tensively in recent years to develop products with an extended shelf-life, as well as to
preserve their nutritional and organoleptic characteristics in agreement with changing
consumer demand [1]. The perishability and stability of food products over the course
of their shelf life depends on both their intrinsic properties (pH, activity water -aw-, oxi-
doreduction potential) and extrinsic ones (storage temperature, gaseous atmosphere, and
relative humidity) [2]. These factors influence the survival and growth of both spoilage
and pathogenic microorganisms. Unlike the spoilage microorganisms, pathogens that are
present in low levels may not produce noticeable changes in the food appearance. Hence,
microbial growth control is essential to minimize foodborne diseases [3].
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Recent interest in fresh fruit juices has induced researchers to develop alternative
preservation methods which can maintain the nutritional compounds (e.g., vitamins, min-
erals, pigments, antioxidants, bioactive compounds) for longer periods [4–7]. Fruit juice
plays an important role in daily nutrition as it is rich in antioxidant and beneficial com-
pounds. The industrial process of pasteurization and aseptic filling allow the stabilization
and preservation of the fruit juice at room temperature; however, the intensity of thermal
treatment can negatively affect the nutritional and organoleptic characteristics of the final
product [1,8]. To prevent spoilage and preserve the freshness of the fruit juice, several
processing technologies have been applied, such as ohmic heating, microwave heating,
thermosonication, pulsed electric fields, ultraviolet irradiation, high hydrostatic pressure,
and pulsed electric field [9,10]. However, most of these processes require cutting edge
technology and high financial investments, representing a significant barrier especially
for many small and medium enterprises [11,12]. In addition, their individual activity can
show only a slight efficacy on microorganism inactivation or even a negative effect on the
physicochemical characteristics of the juice [10,13–15].

During the last decade, a combination of antimicrobial compounds—such as essential
oils (EOs)—and other preservation technologies, such as low temperature treatments, have
been proposed for fruit juices that are stored at room temperature, in order to reduce the
survival and growth of both spoilage and pathogenic microorganisms [16–21]. EOs are
“generally recognized as safe” (GRAS) food additives with antimicrobial properties and
are approved by the USFDA for their use in foods and drinks (USFDA 2015). Essential
oils of different Origanum species have exhibited good antimicrobial effects against several
bacteria, such as Staphylococcus aureus, Salmonella spp., Pseudomonas spp., and Escherichia coli,
and fungi including Candida albicans and Aspergillus spp. It was shown that oregano (Orig-
anum vulgare) and thyme (Thymus vulgaris: light and red varieties) EOs had the strongest
bacteriostatic and bactericidal properties against E. coli strains [22]. The Origanum essential
oil is known to be rich in compounds like thymol, carvacrol, and γ-terpinene, as well as
cis- and trans-sabinene hydrate, with effective antimicrobial activity [23]. The character-
istic hydrophobicity of EOs enables them to penetrate the cell membrane, determining
the leakage of cell content [24]. On the other hand, mild heat treatment can enhance the
antimicrobial activity of EOs by promoting the formation of the vapor pressures of the
volatile organic compounds, which, in turn, increases their solubility in the cell membrane,
the first target of their antimicrobial activity [13]. The efficacy of EOs combined with mild
heat treatment can represent a safe, cost-effective compromise, minimizing the damages
caused by high temperatures.

Despite the recent progress in elucidating the synergistic activity of EOs and mild
heat treatment [7,13,16,17,25–30], little is known about the effect of antimicrobial-assisted
pasteurization of fruit juice on food pathogen viability [21,31,32]. It is well known that the
use of traditional, culture-based microbiological approaches can lead to an overestimation
of treatment efficacy [33]. Indeed, foodborne bacteria, induced by stressful conditions,
such as low temperature, pH, high osmolarity, and nutrient starvation can enter into
a particular physiological state named “viable but nonculturable (VBNC)”. The main
characteristic of VBNC cells is their non-cultivability. These cells are not able to grow
and replicate on standard solid culture media, eluding detection by using conventional
microbial culture-based techniques. VBNC bacteria cells exhibit a state of dormancy
or a basal metabolic activity but, being in this state reversible under certain conditions,
they can “resuscitate”, keeping their pathogenic potential and regaining virulence in the
environment and therefore posing a serious threat to food safety and public health [34–36].

E. coli represents a threat to global public health as it is implicated in many food-borne
outbreaks, especially those that are associated with unpasteurized fruit juices, including
apple and orange juice, but also to fermented apple juice, and cider [13,37]. EOs addition
and mild heat treatment can inactivate and induce VBNC E. coli during food processing [38].
Therefore, the evaluation of the ratio of death and VBNC cells that is related to the applied
treatment represents a crucial point to ensure food safety, in order to avoid the processing
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conditions that are suitable for the induction of VBNC E. coli [39,40]. An innovative
approach to assess both the culturability and viability of food pathogens in complex
matrices such as juice fruit is needed to optimize the protocol used for food production
and evaluate the effectiveness of preservation treatments. Among the culture-independent
techniques, flow cytometry (FCM) has been displayed to be a valid and sensitive tool
for the fast analysis of bacterial populations, providing unique information on bacterial
viability and physiology [41–43]. Moreover, flow cell sorting (FACS) associated with FCM
allows the physical isolation of specific subpopulations, characterizing their physiological
state. This single-cell approach offers the opportunity to estimate the VBNC “resuscitation”
phenomenon and, consequently, the specific food preservation method’s effectiveness. In
reality, most of the available food-related studies use FCM for liquid samples, including
fruit juice, for a rapid and reliable detection of foodborne pathogens in the food industry,
in order to minimize foodborne diseases [41]. In the present work, we aimed at exploiting
the synergistic effect of Origanum EO and mild heat treatment on the E. coli inactivation in
a conventional culture medium (in vitro test), and in a fruit juice challenge test, evaluating
both culturability and viability following the combined treatments.

2. Materials and Methods
2.1. Bacterial Strain and Inoculum Preparation

The microorganism used in this work was the non-pathogenic E. coli ATCC 25922 strain.
This strain was used as a reference strain and chosen for its ability to survive at relative low
pH values, as previously stated by Tchuenchieu et al. [17]. The stock culture was stored at
−80 ◦C in 15% (v/v) glycerol for further use. A sample was sub-cultured into 5 mL of fresh
Brain Heart Infusion (BHI) medium (Merck KGaA, Darmstadt, Germany) and incubated
without shaking for 24 h at 37 ◦C. Then, an aliquot of 1 mL was transferred into 9 mL of
fresh BHI medium. After 24 h of incubation at 37 ◦C, 1 mL was transferred into 30 mL
of fresh medium and incubated at 37 ◦C for 24 h. Starting from the refreshed culture, the
E. coli ATCC 25922 initial concentration that was applied in antimicrobial treatments was
6 Log CFU/mL.

2.2. Bacterial Culturability and Viability Assays

The bacterial survival ratio of E. coli ATCC 25922 after different treatment conditions
was estimated using both the culture-based method by plating procedure on MacConkey
agar, and the FCM methods applying SYBR Green I/Propidium Iodide (PI) double-staining.

The effect of thermal treatment on the culturability and viability of E. coli was evaluated
at 55, 60, and 65 ◦C, according to the procedure described by Tchuenchieu et al. [25].
Briefly, for each of the tested conditions, it consisted of a vial that was introduced in
a thermostatically controlled water bath whose temperature was fixed to the desired
temperature. Then, 1 mL of a tenfold dilution of the cell culture was inoculated into the vial
containing 99 mL of Phosphate Buffer Solution (PBS, pH 7.4) that was already preheated at
the desired temperature. The initial concentration was 6 Log cell/mL. The vial was then
kept in the water bath for 30 min and immediately cooled by immersion in a cryogenic
solution. The untreated E. coli in BHI was used as a positive control, and the E. coli sample
in BHI autoclaved at 121 ◦C for 15 min as a negative one.

The effect of Origanum essential oil (OEO) alone and in combination with mild heat
treatment was evaluated in the in vitro tests, in BHI medium. Different temperatures (55 ◦C
for 30 min and 65 ◦C for 5 min), chosen based on the thermal treatments results as described
above, were investigated. The 100% OEO [Farmalabor Srl, cod. 1686A, Canosa di Puglia
(BT), Italy] was diluted in ethanol (absolute, ≥99.8%), to obtain stock solutions of 1% (v/v)
and 0.5% (v/v), then filtered through a 0.2 µm pore size polycarbonate membrane [21].
Each tube for each treatment contained 9.8 mL of BHI; 0.1 mL of 6 Log cell/mL bacterial
culture; and 0.1 mL of OEO, 1% or 0.5%, achieving a final concentration of 100 and 50 ppm,
respectively [16]. Three biological replicates were prepared for each tested condition and
analyzed immediately after inoculation (T = 0), and after 4, and 24 h of incubation at 37 ◦C.
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The positive control was the not-thermally treated E. coli in BHI and the negative one was
the E. coli sample in BHI autoclaved at 121 ◦C for 15 min which was also used.

The juice fruit challenge test was performed using a commercial fruit juice [“Tantifrutti”
apricot, peaches and apple with basil) produced by the company Rigoni di Asiago Srl,
Asiago (VI), Italy]. The juice was first centrifuged at 8000× g for 10 min and 4 ◦C to reduce
the aspecific background; the supernatant was used for the experiments, and the pH value
was determined using a portable pH meter [edge® pH/ORP, Hanna Instruments Italia
Srl, Villafranca Padovana (PD), Italy]. The fruit juice was artificially contaminated with
a concentration of 5 Log cell/mL of E. coli ATCC 25922 strain in two different conditions: at
its own pH 3.8, and a pH adjusted up to 7 with NaOH 0.5 M. As a positive control, E. coli
grown in BHI medium was used. A combination of mild heat treatment (65 ◦C for 5 min)
and OEO at 50 and 100 ppm was applied. The bacterial survival ratio at room temperature
(25 ◦C) was estimated by using culture based and FCM methods.

2.2.1. Standard Plate Count Method

One-hundred microliters of serial 10-fold dilutions in a saline solution (NaCl 0.9%
w/v) of bacterial suspensions from in vitro and fresh fruit juice experiments were plated
on MacConkey agar. The colonies were counted after 24 h of incubation at 37 ◦C and 25 ◦C,
for the in vitro experiments and juice fruit challenge test respectively. Final data, given
as log CFU/mL (Colony Formation Unit: CFU), resulted from at least three independent
experiments with three replicates each.

2.2.2. Flow Cytometry Analysis (FCM)

FCM analyses were carried out using a flow analyzer CytoFLEX S (Beckman Coulter,
Flow Cytometry, Milan, Italy), and a flow cell sorter FACS Vantage SE (Becton Dickinson,
Biosciences Unit, Milan, Italy). Regions of interest were defined in relation to the positive
and negative controls using a double-staining procedure [SYBR Green I (using a 1:10,000
dilution of the stock reagent) and Propidium Iodide (PI) 10 µg/mL] [21]. The viable cells
exhibited a green signal (SYBR positive) while the damaged/dead cells showed an orange-
red fluorescence (PI positive). Subpopulations (viable, damaged, and dead populations)
were marked on an SYBR Green I vs. PI dot plot according to a different green/red
fluorescence ratio, and their relative positions were delimited on all subsequent FCM dot
plot and density plot analyses [21]. FCM samples were prepared with a one-hundredfold
dilution of the samples in filtered (0.2 µm) PBS (pH 7.4), double-stained, distributed
in 96-well plates, and incubated for 15 min at 37 ◦C before use. The cell suspensions
were analyzed by using the blue laser (ext. 488 nm) and the bandpass filters collecting
fluorescence emissions at BP525/40 and BP675/50 for the SYBR Green I and PI fluorescence,
respectively. Acquisition of 30,000 events per sample was carried on in 3 replicates with
a medium flow rate (30 µL/min). The signal trigger was set on a dual-parameters mode as
Side Scatter SSC, which approximates the particle shape and texture vs. PI red fluorescence
(PI sensor gain set at background intensity levels), in order to allow a reduction in non-
specific signals generated by very small debris during the analysis. Microspheres of 2.5 µm
in diameter (Alignflow™ for Blue Lasers, Thermo Fisher Scientific Life Science Solutions,
Milan, Italy) were used as an internal reference standard in each sample. The parameters
were acquired with a logarithmic scale and analyzed using the CytExpert software v. 2.3
(Beckman Coulter Flow Cytometry, Milan, Italy)). Flow cell sorting was carried out through
a FACS VANTAGE SE (Beckton Dickinson, Biosciences Unit, Milan, Italy) equipped with
a 488 nm ext. laser at 400 mW power output using a 70 µm ceramic nozzle and 20 psi
sheath fluid pressure. The fluorescence was collected through a band pass 530/30 nm filter
for the SYBR Green I and a long pass 620 nm filter for PI, and analyzed by a CellQUEST
v. 4.1 (Becton Dickinson, Biosciences Unit, Milan, Italy). The cells that were identified by
each subpopulation were automatically distributed in 96-well plates filled with MacConkey
Broth culture medium at concentrations of 1, 10 and 100 cells/well using a computer-
controlled cell deposition unit (ACDU, Becton Dickinson, Biosciences Unit, Milan, Italy).
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Growth was evaluated by measuring the OD at 595 nm using a microplate-based assay
(VICTOR plate reader, PerkinElmer, Milan, Italy).

2.3. Statistical Analysis

The statistical analysis was performed by using Past4©. Data are presented as
mean ± Standard Deviations (SD) based on triplicates from at least three independent
experiments. Data were compared using several-sample tests of ANOVA, with Tukey’s
pairwise test at p < 0.05 considered statistically significant (95% confidence interval).

3. Results and Discussion

The effect of OEO and mild heat treatment on the culturability and viability of E. coli
ATCC 25922 was assessed in conventional culture medium and inoculated fruit juice
through culture-based methods and FCM. In a previous work [17], the use of a natu-
ral antimicrobial compound such as carvacrol [44] that is present in high proportions in
Origanum spp. essential oil [45] was found to increase the efficiency of mild heat treat-
ments and to counteract the enhanced thermal resistance of acid-adapted E. coli ATCC
25922 cells. During the last decade, many researchers demonstrated the potentiating effect
of a mild temperature treatment on the antimicrobial efficacy of essential oils and microbial
inactivation [18,26].

In the current work, we aimed at investigating the effect of the use of mild thermal in
combination with OEO treatment on both the culturability on BHI medium and the viabil-
ity assessed by flow cytometry. The combination of both detection methods was applied
to determine the proportions of the different viability states of bacteria and to highlight
discrepancies between the viability and culturability data. SYBRGreen I/Propidium Iodide
(PI) double-staining was used to differentiate the subpopulations (dead, live, damaged
cells), since the SYBR Green I stains the nucleic acids of all cells to produce green fluo-
rescence, while the PI is a membrane-impermeant dye that intercalates into nucleic acids
of dead or damaged cells to generate red fluorescence [46]. Bacteria that is characterized
by a certain degree of injured membrane presents staining characteristics of both dye
emissions, according to the amount of PI able to penetrate the cells, and depending on the
significance of the membrane damage [24]. Single-cell data generated by FCM analyses
allow the defining of signals that are measured as Total Fluorescent Units (TFU), including
all stained cells emitting fluorescence, and embracing viable, dead, and damaged ones.
The ability to discriminate viable cells from damaged and dead cells enables a way of
numbering viable cells as Active Fluorescent Units (AFU: total cell number minus damaged
and dead ones), thus complementing plate counting (CFU) and membrane integrity (AFU)
via FCM measurements [47].

3.1. Effect of Thermal Treatments on E. coli ATCC 25922

Under the heat effect, bacteria cells are inactivated, as their DNA, ribosomes, proteins,
and enzymes are affected, and their outer layers and membrane are damaged, depending
on the severity of the treatment [48]. The E. coli ATCC 25922 inactivation and evaluated
by a culture-based method clearly showed an overestimation of the dead population as
the treatment temperature increased, compared to FCM methods. The plate count method
merely enumerates those cells that can replicate under the specific conditions, wrongly
assuming that all the others are dead. Thermal treatments can trigger the occurrence of
VBNC populations, which were stressed and lost their ability to grow on agar medium [43].
Therefore, although bacteria cells still presented metabolic activity, the quantification of
VBNC bacteria was not possible with conventional plating [49]. The FCM method detects
cells and gives information on bacterial load and those dead or under sublethal conditions,
despite their ability to survive. Unlike the time-consuming and labor-intensive standard
methods (culture and PCR techniques), FCM provides a quick response and the possibility
to observe the injured bacterial subpopulations and evaluate the presence of VBNC [50,51].
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In the present study, a decrease in the culturability of >99% was observed after treatment at
55 ◦C for 30 min. Interestingly, 78% of the cells resulted as alive by FCM analysis (Table 1).

Table 1. Estimation of E. coli ATCC 25922 growth by using culture-based method (Log CFU/mL) and
population distribution by FCM analysis (Log AFU/mL).

Treatment
Culture-Based Method Flow Cytometry (% of Events) *

Equivalent Alive
Cell Content

(Log AFU/mL) **

Log CFU/mL Eq Log
Reduction

Eq % of
Dead Ells Alive Damaged Dead

Untreated sample 7.44 ± 0.23 a 0 0 98.90 ± 0.13 0.30 ± 0.08 0.80 ± 0.06 7.23 ± 0.02 a

55 ◦C-30 min 4.99 ± 0.90 a −2.45 ± 0.90 98.68 ± 2.07 78.06 ± 0.88 18.37 ± 0.88 3.57 ± 0.09 7.05 ± 0.01 b

60 ◦C-30 min 3.96 ± 0.82 a −3.48 ± 0.82 99.60 ± 0.16 33.14 ± 0.27 46.42 ± 0.60 20.44 ± 0.40 6.72 ± 0.01 b

65 ◦C-30 min 1.33 ± 1.24 a −6.11 ± 1.24 99.99 ± 0.001 1.15 ± 0.18 34.33 ± 3.51 64.59 ± 3.43 5.25 ± 0.05 b

* The percentage presented excludes the background signal obtained with PBS alone on the plots. ** FCM cell
content is expressed in Log AFU/mL (Active Fluorescent Units). Within each row, different letters indicate
significant differences at p < 0.05.

The discrepancy between culturability and viability was also observed in the other
conditions (60 ◦C and 65 ◦C), therefore suggesting that a high fraction of treated cells
remained alive but became non-culturable after exposure to heat treatment (Figure 1). In
fact, exposure to unfavorable environmental conditions, including extreme temperature, ox-
idative stress, acid stress, and nutritional starvation had already been reported as inducing
a VBNC state in bacteria [52,53].
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The running of PBS that was inoculated with stained E. coli culture on FCM enabled
definition of the region corresponding to this microorganism live population. Based on
this and on the negative control, three regions were defined: P1, P2, and P3. It appeared
that with the increase in treatment temperatures the population shifted from region P1
(alive cells) to P2, and then from P2 to P3 (Figure 1). Considering the 60 ◦C and 65 ◦C
heat treatments, an increase in injured cells was observed (46% and 34%, respectively), in
comparison with the 55◦C treatment, suggesting a later potential cell recovery. Except for
the not-thermally treated sample (positive control), a significant difference was noticed
when evaluating alive cell content in each sample with both methods, what with flow
cytometry being faster and more sensitive, considering the small standard error obtained.

3.2. Effect of OEO Treatment

The efficiency of OEO treatment was evaluated by comparing the culturability and
viability, quantifying the bacterial cells that were able to replicate using plate counts, and
extrapolating the percentage of cell viability that was obtained from the FCM analysis,
representing the subpopulations with different levels of resistance to the antimicrobial
agent. The E. coli cells were exposed to sub-inhibitory growth concentrations of OEO
(50 and 100 ppm) [54]. Plate counts showed a significant decrease in CFU/mL for both
50 and 100 ppm, compared to the untreated sample (0 ppm) (p < 0.05) (Figure 2). The
density plot displayed a shift in the PI region (Figure 3).
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Figure 2. E. coli cell load in Brain Heart Infusion medium and plated on MacConkey agar (Log
CFU/mL): OEO (0, 50, and 100 ppm).

An immediate significant effect of 100 ppm OEO on viable cells was observed, with
a decrease of 15% of alive cells and an increase of 13% of dead cells (Figure 4). The treatment
efficacy with 100 ppm of essential oil was still evident after 4 h of incubation, corresponding
to a significant decrease in viable cells by the FCM analysis (−14%; Figure 4). OEO
antimicrobial activity could be attributed to its high ratio of phenolic compounds (carvacrol,
thymol, p-cymene, and their precursor c-terpinene) [55]. Through their hydrophobicity,
phenols exert an inhibitory effect, interacting with microorganisms’ cell membrane, altering
its permeability, thus producing a loss of ions such as protons, phosphorus, and potassium.
The loss of ions has tremendous effects on the proton motive force, thus reducing the
content of intracellular ATP and compromising the total cell activity [56]. Nevertheless,
after 24 h of incubation, no significant differences between treated and untreated samples
were observed. A subsequent increase in the cells into the viable region was detected
(Figure 3), suggesting a diminishing effect of OEO when E. coli grows in optimal conditions
(pH 7.4). This is probably due to the hydrophobicity of EOs, which typically increases at
lower pH values, allowing them to dissolve more easily into the cell membrane lipids of
bacteria [13].
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Figure 3. Double-staining density dot plot of E. coli cells in BHI broth diluted in PBS (pH 7.4): 50 ppm
and 100 ppm essential oil treatment compared to 0 ppm (control) (at 0, 4 and 24 h of incubation).
Cells were stained with SYBR Green I and PI simultaneously. H1-LL: unstained debris; H1-LR: intact
cells/viable cells (SYBR Green I); H1-UR: injured cell population; H1-UL: permeabilized/dead cells
(PI). In the upper right side of the plot, a defined single population represents standard beads.
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Figure 4. Percentage of alive, dead, and damaged cells calculated on total FCM events (100%): 50 ppm
and 100 ppm OEO treatment at 0, 4, and 24 h compared to 0 ppm. The shown values correspond to
the means and standard deviations for replicates, independently analysed. p-value less than 0.001 is
flagged with three stars (***).

3.3. Effect of Antimicrobial Treatment in Synthetic Medium and Recovery Ability: Mild Heat-OEO

The effect of the 55 ◦C for 30 min thermal treatment, immediately after the inoculation,
assessed by the culture-based analysis, determined a significant decrease in culturable cells
compared to the untreated sample (0 ppm) (p < 0.05), whereas the combined treatment
revealed no growth at the initial incubation time. A slight and total recovery after 4 and
24 h, respectively, was observed in all tested conditions (Figure 5).

The FCM density plot presented a decrease in viable cells in thermal treatment com-
bined with OEO at time 0 (−17% at 50 ppm and −42% at 100 ppm) and after 4 h of
incubation (−25% and −35% at 50 ppm and 100 ppm, respectively). After 24 h, there was
still a significant difference in terms of dead cells between thermal and combined treatment,
with no significant variation among the oil concentration that was tested. However, a shift
towards the alive region was found (Figures 6a and 7a).
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Figure 5. E. coli cell load in Brain Heart Infusion medium and plated on MacConkey agar (Log
CFU/mL). Thermal treatment (55 ◦C 30 min) alone and combined with OEO (50 and 100 ppm);
thermal treatment (65 ◦C 5 min) alone and combined with OEO (50 and 100 ppm).
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Figure 6. Double-staining density dot plot of E. coli cells in BHI broth diluted in PBS (pH 7.4):
(a) combined thermal treatment at 55 ◦C 30’ and (b) 65 ◦C with or without OEO (50 and 100 ppm) at 0,
4, and 24 h of incubation, compared to thermal treatment alone. Cells were stained with SYBR-Green
I and PI simultaneously. H1-LL: unstained debris; H1-LR: intact cells/viable cells (SYBR Green I);
H1-UR: injured cell population; H1-UL: permeabilized/dead cells (PI). In the upper right side of the
plot, a defined single population represents standard beads.

The treatment of OEO at 65 ◦C led to a clear reduction in the alive population by
47–50%, compared to the untreated sample (Figure 7b). Immediately after the incubation,
a significant increase in injured cells in thermal treatment and a corresponding increase in
dead cells in the combined treatment with OEO, 50 and 100 ppm was observed. A similar
trend after 4 h of incubation was detected even if a shift towards the damaged region was
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highlighted. The growth recovery after 24 h is well pointed out in the dot plot (Figure 6b),
whereas a complete loss of cell culturability for the combined mild heat treatment and
OEO at 100 ppm was observed, validating the bacteriostatic effect of OEO [23] (Figure 5).
Stressed cells constitute an “undetectable” population that are not able to grow on agar
plates, therefore leaving an open question on the potential risks for real food matrices if
suitable preservation and monitoring practices are not followed. Mild heat treatments
increase the inhibitory effect of OEO by altering the membrane fluidity and composition
and promoting the formation of the vapor phase of the oil’s volatile compounds [7,13].
OEO can coagulate the cytoplasm and determine damage to lipids and proteins, potentially
leading to cell lysis [24]. Comparing the two mild heat treatments, the higher temperature
determined more substantial damage to the cells, although the exposure times were lower,
thus increasing the OEO effect. In fact, the temperature-induced cellular stress enhanced
its bacteriostatic action even at a non-acid pH [13]. Moreover, during these combined
treatments, the antimicrobial activity of OEO was possibly enhanced by its vapor pressure
and its octanol/water partition coefficient (hydrophobicity) that varied with the tested
treatment temperature [7].
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Figure 7. Percentage of alive, dead, and damaged cells calculated on total FCM events (100%):
(a) combined thermal treatment at 55 ◦C 30 min and (b) 65 ◦C with or without OEO at 0, 4, and 24 h
of incubation, compared to thermal treatment alone. The shown values correspond to the means and
standard deviations for replicates, independently analysed. P-value less than 0.05 is flagged with one
star (*), less than 0.01 with 2 stars (**) and less than 0.001 with three stars (***).

3.4. In Vitro Treatments Efficacy Assessment: Subpopulations Culturability

The flow cell sorting was performed on viable and dead cells (Figure S1: H1-LR
viable and H1-UL dead, respectively) to verify the effectiveness of treatments on E. coli
ATCC 25922 and the cloning capabilities. In the viable control, cells from the alive region
showed a variable percentage of growth depending on cell plating density: 75%, 88%,
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and 100% of wells revealed colony formation by inoculating 1, 10, and 100 cells per well,
respectively. No growth was observed in the inoculated wells that were sorted from the
dead region (Figure S1; H1-UL), thus confirming the validity of flow sorting based on
FCM data and the dual staining procedure for the counting of dead/inactivated cells.
A decrease in the growth percentage by 10–25% and 25–37% was observed in the viable
region (H1-LR) for the samples that were treated with a combined thermal treatment at
55 ◦C for 30 min and 65 ◦C for 5 min, respectively. In particular, for the samples that
were subjected to OEO and mild heat thermal treatment, the cells that were identified
by each subpopulation were also inoculated on MacConkey Agar plates according to
a flow sorting matrix structure of 128 cells. The viable fraction was thus calculated as
a percentage of colonies on the total numbers of cells inoculated per plate (Figure S1).
The multiparametric FCM method, by staining different cellular targets, can be used to
define the subpopulations of interest. Therefore, this single-cell approach produces data
from a large population and provides a more complete profile of the internal population
heterogeneity [57]. For the food industry, FCM offers the real-time analysis of a large
number of cells from a small sample volume [58]. The application of the fluorescence-
activated cell sorting (FACS) technique allows the isolation of specific FCM subpopulations
for subsequent manipulations. FACS consents to evaluate the real treatment’s efficacy at
a single-cell level, following the potential recovery of the sub-lethal damaged cells (on
liquid or agar medium) after mild treatments [59,60]. The potential of an FCM analysis
is its ability to reveal several levels of population heterogeneity that are induced from
different degrees of cell damage not detectable by traditional methods [57,61]. The results
obtained open the possibility to conduct additional investigations for correlating different
methods’ data. FACS is a unique technique allowing the identification and sorting of
single cell types according to molecular and physiological features, extracting diversity
from heterogenic cellular populations. Thus, FACS represents a powerful tool to deeply
investigate the relationship between FCM and traditional techniques, creating a strong link
between different but complementary methodological approaches [62].

3.5. Effect of Antimicrobial Treatment in Fruit Juice and Recovery Ability: Mild Heat-OEO
3.5.1. Microbial Challenge Test in Fruit Juice at pH 3.8

When OEO alone was used, results revealed that at the inoculation time in all sam-
ples (0, 50, 100 ppm) the damaged subpopulation was predominant but not significantly
different (p > 0.05), probably as a result of the low pH effect on E. coli growth. However,
a significant biocidal effect of OEO 100 ppm was observed (+13% of dead cells population
vs. untreated samples) (Figure 8a).

After 24 and 48 h of incubation, a biocidal effect of OEO 50 ppm (+18% and +7% of
dead cells at 24 h and 48 h) and 100 ppm (+24% and +26% of dead cells at 24 h and 48 h) was
detected and a significant decreased of culturable cells was observed (p < 0.05), consistently
(Figure 9a).

At 48 h of incubation, samples that were treated with 50 ppm of OEO displayed
a higher percentage of injured cells (69%) compared to 100 ppm (48%), while the latter
showed a similar percentage of damaged and dead cells (48% and 44%, respectively)
(Figures 8a and 10a). These results showed that the fruit juice’s low pH promoted the
OEO’s hydrophobicity and, therefore, the OEO was able to carry out its biocidal activity. In
this case, the consistency between the data obtained with plate count and FCM methods
emphasized how FCM can reveal the real presence or absence of VBNC. Moreover, FCM
analysis allowed us to quantify damaged cells from different sub-lethal OEO concentrations
and evaluate the different efficacy ratios [21].
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Figure 8. Percentage of alive, dead, and damaged cells concerning total FCM events (100%) in Fruit
Juice (pH 3.8): (a) OEO treatment and (b) combined treatment at 65 ◦C 5 min. The shown values
correspond to the means and respective standard deviations of replicates, independently analyzed.
p-value less than 0.05 is flagged with one star (*), less than 0.01 with 2 stars (**) and less than 0.001
with three stars (***).
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Figure 9. E. coli cell load in fruit juice of pH 3.8 plated on MacConkey agar (Log CFU/mL). (a) OEO
(0, 50, and 100 ppm) treatment and (b) thermal treatment 65 ◦C 5 min alone and combined with OEO
(50 and 100 ppm).
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Figure 10. Double-staining density dot plot of E. coli cells in fruit juice (pH 3.8) diluted in PBS
(pH 7.4): (a) 50 ppm and 100 ppm essential oil treatment and (b) combined thermal treatment at
65 ◦C with or without OEO at 0, 24 and 48 h of incubation. Cells were stained with SYBR-Green I
and PI simultaneously. H1-LL: unstained debris; H1-LR: intact cells/viable cells; H1-UR: injured cell
population; H1-UL: permeabilized/dead cells. In the upper right side of the plot, a defined single
population represents standard beads.

When mild heat-OEO treatment was used, results suggest that temperature affects
alive cells, i.e., a significant decrease in alive cells at inoculation time up to 48 h of incubation
compared to the untreated control was observed (p < 0.05). A high percentage of injured
cells after 24 h of incubation was detected in all tested conditions. Figure 8b indicated
a significant biocidal effect of OEO at 50 ppm and mild heat treatment as indicated by
an increase in dead cells of 11% was detected at inoculation time, rising to 12% after
24 h of incubation, compared to the thermal treatment alone. As the oil concentration
increased (100 ppm), there was an increment in dead cells of 12% and 20% (time 0 h
and 24 h, respectively) (Figures 8b and 10b). No bacterial growth by plating E. coli was
observed in all conditions, confirming the presence of stressed subpopulations that are
not able to grow on agar plates (Figure 9b). The synergy between mild thermal treatment
and essential oils has already been widely demonstrated for several microorganisms [63].
Interestingly, a recent study found that the mild heat treatment when combined with
thymol and carvacrol caused a partial or total inactivation of Listeria monocytogenes, mainly
affecting cell culturability rather than viability. The culturability of the cells was also less
affected when the inoculum derived from a single colony, indicating the importance of the
physiological state of the cells that are used in an antimicrobial assay [32]. The discrepancy
between the culturability and viability that was observed in the present study highlighted
the overestimation of the treatment success if considering the classical plate counting. As
for the results that were obtained in vitro, the FCM analysis provided information on the
cell sub-populations’ distribution based on their physiological state, showing that most of
the cells were damaged rather than dead [21,64].
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3.5.2. Microbial Challenge Test in Fruit Juice at pH 7.0

OEO alone significantly affected bacterial growth up to 24 h. In particular, the treat-
ment with 100 ppm OEO was more effective in reducing the bacterial load (−21%, and
−10% of alive cells at 0 and 24 h of incubation, respectively), according to the results
that were obtained in the in vitro experiment. The percentage of viable cells decreased in
correlation with the essential oil concentration, showing, at the same time, a percentage
increase in damaged and dead cells. After 48 h of incubation, the optimal growth con-
ditions resulted in the bacterial growth recovery (85% and 89% of alive cells for 50 ppm
and 100 ppm treatment, respectively), determining no significant differences between the
treated and untreated samples (Figures 11 and 12a).
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Figure 11. Double-staining density dot plot of E. coli cells in fruit juice (pH 7) diluted in PBS (pH 7.4):
(a) 50 ppm and 100 ppm essential oil treatment and (b) combined thermal treatment at 65 ◦C with or
without aroma compounds at 0, 24 and 48 h of incubation. Cells were stained with SYBR-Green I
and PI simultaneously. H1-LL: unstained debris; H1-LR: intact cells/viable cells; H1-UR: injured cell
population; H1-UL: permeabilized/dead cells. In the upper right side of the plot, a defined single
population represents standard beads.

The plate cell count displayed a similar trend, with a significant difference at the
inoculation time (0 h) for the 100 ppm EO treatment (p < 0.05) (Figure 13). As for the in vitro
results, the OEO treatment appeared to be less effective, probably due to the interaction
with the bacterial membrane, inhibited by the neutral pH [24].

The thermal treatment at 65 ◦C for 5’ determined a significant reduction of 31% of the
alive population compared to the untreated control (Figure 12b). When mild heat-OEO
treatment was used, a complete loss of cell culturability was detected up to 48 h, suggesting
the prolonged efficacy of this treatment compared to the thermal one (Figure 13b). Nev-
ertheless, the high percentage of damaged cells population (between 49% and 65%) at all
incubation times revealed the prevalence of injured cells, which was detectable only by the
FCM analysis (Figures 11 and 12b). The combined treatment proved to be more effective
compared to the thermal treatment and OEO applied separately: the thermal treatment
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was effective up to 24 h, while together with OEO, the antimicrobial effect was observed
up to 48 h. Indeed, mild heat is responsible for the first cellular damage step, an essential
prerequisite for OEO antimicrobial activity on target cells. The membrane injuries increase
permeability, causing the leakage of ions and molecules from the cell [22].
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4. Conclusions

There is a need for alternative combined mild treatments that can preserve the safety
of fruit juices and, at the same time, allow them to maintain the properties of “cold-pressed
juices”. We found that mild heat treatment induced the VBNC state of E. coli ATCC
25922 while a strong reduction in VBNC induction was found when used in combination
with OEO. The study highlighted the importance of combining traditional culture-based
analytical methods with fast and high-throughput ones for monitoring the microbiological
safety of fruit juice. The comparison (solely on an economic basis) between the classic
microbiological technique and flow cytometry for food applications clearly works in favor of
the classic technique, but FCM is a tool which extends microbiological analyses capabilities
and has a huge number of applications in several fields [65–67], and diminishing costs and
user-friendly software are increasingly promoting its use. Flow cytometry proved to be
capable of providing information on a large number of cells during the different phases
of their growth, exceeding the limitation of the traditional culture-based methods, which
underestimated bacterial growth. Indeed, the use of FCM is essential as a real-time early
warning monitoring system for preventing the risk of the spread of food-borne disease. In
perspective, to avoid bacterial food contamination, it is important to perform a thorough
investigation into the VBNC population, which presents potential recovery under certain
favorable environmental conditions, even remaining non-culturable. The analysis of the
VBNC induction will be extremely helpful in investigating its viability vs. culturability,
and in deeply exploring the different factors that trigger the exit of the cells from the VBNC
state. Further, the sorting of damaged cells could help in understanding how VBNC cells
retain the capacity to recover their ability to replicate and cloning, and to verify the effects
of antibiotic agents on controlling this competence.

In conclusion, the present research showed how mild heat treatment combined with
essential oil can be a valuable alternative for food preservation technologies. Nowadays,
finding alternative to the traditional methods is crucial for responding to the increasingly
conscious consumer’s request for food with unchanged organoleptic properties that are as
similar as possible to fresh products. Additional and more detailed studies should focus on
fully understanding the thermal treatment combined with the natural aroma compounds’
mechanism of action for elaborating predictive models that are suitable for application in
industrial processes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11111615/s1, Figure S1: Flow cell sorting analysis of E. coli
in different conditions and treatments.
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