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Genome‑wide association studies 
of grain quality traits in maize
Yunxiao Zheng1,2,3, Fan Yuan1,2,3, Yaqun Huang1,2,3, Yongfeng Zhao1,2,3, Xiaoyan Jia1,2,3, 
Liying Zhu1,2,3 & Jinjie Guo1,2,3*

High quality is the main goal of today’s maize breeding and the investigation of grain quality traits 
would help to breed high‑quality varieties in maize. In this study, genome‑wide association studies in 
a set of 248 diverse inbred lines were performed with 83,057 single nucleotide polymorphisms (SNPs), 
and five grain quality traits were investigated in diverse environments for two years. The results 
showed that maize inbred lines showed substantial natural variations of grain quality and these traits 
showed high broad‑sense heritability. A total of 49 SNPs were found to be significantly associated with 
grain quality traits. Among these SNPs, four co‑localized sites were commonly detected by multiple 
traits. The candidate genes which were searched for can be classified into 11 biological processes, 
13 cellular components, and 6 molecular functions. Finally, we found 29 grain quality‑related genes. 
These genes and the SNPs identified in the study would offer essential information for high‑quality 
varieties breeding programs in maize.

Maize (Zea mays L.) has become one of the most important crops globally for food, feed, and fuel since it 
appeared and spread  widely1. In the past few years, more and more people paid attention to the quality of maize 
grain due to the rapid development of animal husbandry and processing industry. However, the nutritional qual-
ity of maize grain remains poor, especially the deficiency of lysine in the maize grain, which can not meet the 
nutritional and health requirements of  people2. Thus, the genetic enhancement of nutritional quality in maize 
grains is essential to increase the nutritional value and conduct high-quality maize  breeding2.

The results of genetic studies have indicated that variations in nutritional quality in maize grain characterize 
quantitative traits. Over the past two decades, genetic dissection of nutritional quality in maize kernels by classical 
QTL mapping has resulted in the identification of numerous nutritional quality QTLs. Mangolin et al.3 detected 
13 QTLs by QTL mapping of maize kernel oil content in  F2:3 population. Liu et al.4 detected seven QTLs associ-
ated with protein content, six QTLs associated with starch content, and five QTLs associated with oil content 
using  F2:3 population and  BC2F2 population. Wang et al.5 detected 38 QTLs for maize grain quality traits using 
three RIL populations in three environments. To date, many genes related to maize proteins have been cloned, 
such as opaque1 (o1), floury4 (fl4) and Mucronate (Mc)6–8. Some genes such as linoleic acid1 (ln1), Oleic acid 
content1 (olc1), fatty acid desaturation 2 (fad2), and fad6 have been reported to influence oil content in  maize9–11. 
A few starch content-related genes such as Shrunken1 (Sh1), Sh2 and Brittle2 (Bt2) have been  identified12,13.

Genome-wide association study (GWAS) is becoming a powerful tool to address interspecies genotype–phe-
notype association based on the development of next-generation sequencing technology. In maize, GWAS has 
made a significant progress in the past decade. For example, Li et al.14 used GWAS to dissect the genetic archi-
tecture of oil biosynthesis in maize kernels. Luo et al.15 used GWAS to detect 57 loci significantly associated 
with salt tolerance, and 49 candidate genes from these loci. It can be seen that GWAS is widely used in maize. 
However, there is still a huge problem about how to obtain phenotypic data accurately and quickly. Traditionally, 
phenotyping method for grain quality, such as chemical method, is not only laborious and time-consuming, 
but also damages the integrity of maize kernels. By contrast, Near Infrared Reflectance Spectroscopy (NIRS) is 
a fast, reliable, and non-destructive method. NIRS has been increasingly used in plant phenotyping measure-
ments, such as maize kernel starch  content16 and wheat protein  content17. Therefore, NIRS can fully measure 
maize grain nutritional quality.

Although some potential grain quality genes and QTLs have been identified in maize, the genetic studies of 
grain quality are limited. In this study, we used NIRS to measure the main nutritional quality traits of 248 maize 
inbred lines and used 83,057 single nucleotide polymorphism (SNPs) markers to conduct GWAS. Our study was 
designed to accomplish the following objectives: (1) perform GWAS to identify SNPs responsible for moisture, 
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protein, oil, starch and lysine contents in maize kernels, (2) compare our GWAS results with previous QTL map-
ping results, and (3) predict and identify candidate genes of these quality traits for future studies.

Results
Phenotypic variations of grain quality traits. The phenotypes of grain quality traits are shown in 
Tables 1 and 2 and Fig. 1. As displayed in Table 1, the results indicated that there were abundant phenotypic 
variations in the 248 inbred lines and all grain quality traits followed a normal distribution, which benefited the 
dissection of the genetic architecture of the grain.

Significant correlations were detected among grain quality traits, except for the correlation between moisture 
content and protein content (p = − 0.13) and the correlation between oil content and lysine content (p = 0.079) 
(Fig. 1). In addition, starch content had significant negative correlation with protein content, oil content, and 
lysine content, whereas the correlation among the remaining traits was positive.

Analysis of variance (ANOVA) indicated that highly significant variations for genotypes and environments 
were found (Table 2). However, the genotype-by-environment interaction was not significant except for the 
genotype-by-environment interaction of moisture content and oil content. The broad-sense heritability ( h2 , %) 
for grain quality traits across the four environments in the 248 inbred lines ranged from 70.16 (lysine content) 
to 80.37 (starch content), indicating the predominant role of genetic factors in determining these traits (Table 2). 
Overall, the grain quality exhibited significant genetic variations and it was suitable for association analysis.

Genome‑wide association analysis. With the BLUP value of each grain quality trait, we conducted a 
GWAS with 83,057 genome-wide SNPs. In total, we detected 3, 7, 21, 8 and 10 SNPs to be significantly associ-
ated with moisture content, protein content, oil content, starch content and lysine content, respectively (Table 3, 

Table 1.  Statistical analysis of grain quality traits in different environments. BD and SJZ stand for Baoding and 
Shijiazhuang.

Trait Environment Range Mean SD Skewness Kurtosis CV(%)

Moisture content (%)

2016BD 4.24–12.78 8.03 1.60 0.17 − 0.25 19.88

2017BD 3.78–11.34 6.97 1.31 0.13 0.03 18.75

2016SJZ 5.41–16.17 10.52 1.83 0.03 − 0.40 17.38

2017SJZ 3.16–11.77 6.59 1.79 0.41 − 0.10 27.21

Protein content (%)

2016BD 9.22–16.71 11.96 1.28 0.38 0.11 10.70

2017BD 8.44–14.12 11.23 1.27 0.07 − 0.62 11.31

2016SJZ 8.85–15.75 11.75 1.29 0.34 − 0.03 11.01

2017SJZ 8.53–14.80 11.36 1.39 0.34 − 0.41 12.23

Oil content (%)

2016BD 2.13–5.69 4.25 0.62 − 0.41 0.44 14.64

2017BD 2.77–5.89 4.32 0.59 − 0.04 − 0.24 13.75

2016SJZ 2.39–6.24 4.72 0.62 0.38 0.60 13.05

2017SJZ 2.42–6.76 4.60 0.57 0.22 1.09 12.32

Starch  content (%)

2016BD 59.86–75.12 69.16 2.37 − 0.52 1.01 3.42

2017BD 58.47–74.94 69.52 2.46 − 0.49 1.32 3.54

2016SJZ 60.15–74.84 68.83 2.65 − 0.37 − 0.03 3.86

2017SJZ 61.24–74.84 69.05 2.70 − 0.17 − 0.33 3.91

Lysine content (%)

2016BD 0.21–0.34 0.26 0.02 0.32 0.91 7.14

2017BD 0.23–0.33 0.27 0.02 0.52 1.14 6.34

2016SJZ 0.17–0.33 0.24 0.02 0.52 0.63 9.58

2017SJZ 0.22–0.32 0.27 0.02 0.34 0.54 6.58

Table 2.  Analysis of variance (ANOVA) for grain quality traits. *and ** are significant correlation at P < 0.05 
and P < 0.01, respectively.

Trait

F-value

Environment Genotype Environment*Genotype h
2(%)

Moisture content (%) 594.97** 4.72** 1.22* 74.19

Protein content (%) 20.46** 5.63** 1.13 79.94

Oil content (%) 78.03** 5.17** 1.39** 78.43

Starch content (%) 3.39* 5.49** 1.08 80.37

Lysine content (%) 164.79** 3.86** 1.15 70.16
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Fig. 2). For moisture content, three SNPs were located on chromosomes 1, 3, and 9, which individually explained 
10.53%–23.16% of the phenotypic variation. For protein content, seven SNPs were located on chromosomes 1, 
2, 3, and 4, which individually explained 5.45%–32.79% of the phenotypic variation. For oil content, 21 SNPs 
were located on chromosomes 1, 3, 4, 5, 6, 7, 8, 9, and 10, which individually explained the phenotypic variation 
of 9.04–31.24%. For starch content, eight SNPs were located on chromosomes 1, 3, 4, and 6, which individually 
explained the phenotypic variation of 3.77–23.61%. For lysine content, ten SNPs were located on chromosomes 
2, 3, 4, 5, 8, and 9, which individually accounted for 5.71%–32.42% of the phenotypic variation.

Comparing the localization results, we found eight co-localized sites and the physical position between SNPs 
was not more than 200 Kb (Table 4). Notably, four co-localized sites between different traits were detected. 
1_60098266-60,098,312 was associated with oil content, starch content and protein content, which explained 
9.60%, 16.70%, 16.64% and 13.48% of the phenotypic variation, respectively. 3_1462112-1,462,147 was associated 
with starch content and protein content, which explained 3.77% and 5.45% of the phenotypic variation, respec-
tively. 3_133182128-133,206,096 was associated with oil content and starch content, which accounted for 22.52%, 
4.03% and 4.16% of the phenotypic variation, respectively. 9_97538609-97,538,609 was associated with moisture 
content and oil content, which explained up to 23.16% and 17.51% of the phenotypic variation, respectively.

Candidate genes associated with significant SNPs. Previous study have shown that the correlation 
coefficient  (r2) between SNP markers is less than 0.1, which is considered to be no  correlation18. Therefore, we 
choose  r2 = 0.1 as the LD decay distance. Candidate genes were predicted based on LD decay  (r2 = 0.1) in the 
MaizeGDB genome browser. A total of 208 candidate genes were found and detailed descriptions were sum-
marized in Table S1.

The candidate genes can be classified into 11 biological processes, 13 cellular components, and six molecular 
functions. The number of candidate genes involved in the grain quality traits of moisture, protein, oil, starch 
and lysine contents was 77, 46, 103, 136 and 49, respectively. Among them, the candidate genes in biological 
processes were mainly concentrated in the cellular process and the metabolic process; the candidate genes in cel-
lular component were mainly concentrated in organelle, cell and cell part; and the candidate genes in molecular 
function were mainly concentrated in catalytic activity and binding (Fig. 3). As for the KEGG analysis of the 
candidate genes, a total of 12 pathways were identified. These pathways included the biosynthesis of second-
ary metabolites, and that of amino acids, starch and sucrose metabolism, inositol phosphate metabolism, and 
phosphatidylinositol signaling system, which could be related to grain quality (Fig. 4). In addition, a protein 
classification analysis tool was used to classify candidate gene proteins, 46 of which matched the PANTHER 
database. A further analysis showed that these 46 proteins fell into nine categories (Fig. 5), which contained 

Figure 1.  Correlation analysis of grain quality traits at BLUP. *, ** and *** are significant correlation at P < 0.05, 
P < 0.01, P < 0.001, respectively.
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the largest number of proteins— metabolite interconversion enzyme (PC00262). Furthermore, we identified 
29 candidate genes to be associated with grain quality (Table 5). Annotation information suggested that these 
candidate genes may control multiple traits during maize growth and development.

Table 3.  Analysis of correlated SNP with grain quality traits at BLUP.

Trait SNP Chromosome Position Allele Bin P-value PVE (%)

Moisture content (%)

1_6157557 1 6,157,557 C/T 1.01 7.72E-05 10.53

3_186486719 3 186,486,719 A/T 3.06 5.62E-05 19.09

9_97538609 9 97,538,609 A/G 9.03 4.31E-05 23.16

Protein content (%)

1_60098312 1 60,098,312 A/G 1.04 8.54E-05 13.48

1_215331409 1 215,331,409 C/G 1.07 5.73E-05 9.19

2_43189825 2 43,189,825 C/T 2.04 5.71E-05 32.79

3_1462112 3 1,462,112 A/T 3.00 3.45E-05 5.45

3_1462147 3 1,462,147 A/G 3.00 3.45E-05 5.45

3_213791486 3 213,791,486 C/G 3.08 4.75E-05 29.23

4_170516460 4 170,516,460 C/G 4.06 7.63E-05 22.61

Oil content (%)

1_19252635 1 19,252,635 A/C 1.02 5.48E-05 9.08

1_60098266 1 60,098,266 C/T 1.04 1.88E-05 9.60

1_69088187 1 69,088,187 A/C 1.04 4.98E-05 13.13

1_190758142 1 190,758,142 C/T 1.06 8.46E-05 20.72

1_203725036 1 203,725,036 C/T 1.07 6.90E-05 18.61

3_133182128 3 133,182,128 C/T 3.05 6.95E-05 22.52

3_191700651 3 191,700,651 A/G 3.07 5.52E-05 27.91

4_1983562 4 1,983,562 C/T 4.01 5.66E-05 29.20

4_85966198 4 85,966,198 C/T 4.05 7.09E-05 24.09

5_140417153 5 140,417,153 C/G 5.04 1.35E-05 14.23

5_140417208 5 140,417,208 A/T 5.04 1.35E-05 14.23

5_140417226 5 140,417,226 C/G 5.04 2.14E-05 13.49

5_188466075 5 188,466,075 C/G 5.05 7.54E-05 14.36

6_3988838 6 3,988,838 G/T 6.00 2.52E-05 9.60

6_3988856 6 3,988,856 G/T 6.00 2.30E-05 9.56

7_25691920 7 25,691,920 A/G 7.02 8.28E-05 17.78

8_160425695 8 160,425,695 A/G 8.06 4.02E-05 31.24

8_160425698 8 160,425,698 A/G 8.06 4.02E-05 31.24

8_160425707 8 160,425,707 C/G 8.06 4.02E-05 31.24

9_97538609 9 97,538,609 A/G 9.03 1.44E-05 17.51

10_127895301 10 127,895,301 A/G 10.04 3.47E-05 9.04

Starch content (%)

1_60098266 1 60,098,266 C/T 1.04 1.26E-05 16.70

1_60098312 1 60,098,312 A/G 1.04 1.02E-05 16.64

3_1462112 3 1,462,112 A/T 3.00 7.94E-06 3.77

3_1462147 3 1,462,147 A/G 3.00 7.94E-06 3.77

3_133206087 3 133,206,087 A/G 3.05 4.79E-05 4.03

3_133206096 3 133,206,096 C/G 3.05 5.43E-05 4.16

4_155610021 4 155,610,021 G/T 4.06 3.70E-05 23.61

6_105156642 6 105,156,642 C/T 6.04 9.22E-05 18.69

Lysine content (%)

2_169733611 2 169,733,611 A/G 2.06 9.07E-05 5.71

2_187885582 2 187,885,582 C/T 2.07 9.82E-05 25.57

2_187885602 2 187,885,602 A/C 2.07 1.68E-05 32.42

2_197453621 2 197,453,621 A/T 2.07 5.84E-05 14.33

2_218460194 2 218,460,194 C/G 2.08 9.90E-05 7.67

3_206605349 3 206,605,349 C/T 3.08 5.39E-05 15.78

4_20547939 4 20,547,939 C/T 4.03 4.72E-05 16.47

5_215054319 5 215,054,319 A/T 5.08 7.60E-05 29.81

8_4512414 8 4,512,414 C/T 8.01 8.06E-05 18.91

9_153526598 9 153,526,598 A/G 9.07 8.07E-05 16.91
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Discussion
Genetic basis of grain quality traits. Maize grain quality traits are complex quantitative traits, controlled 
by main effect genes and lots of micro effect genes. In this study, there was a wide variety of grain quality traits 
in the natural population, which were normally distributed. To reduce the influence of the environment on 
the genotype, phenotypic BLUP values across four environments were used for association studies. Phenotypic 
correlations were observed among the five grain quality traits. For instance, oil content had significant positive 
correlation with protein content and significant negative correlation with starch content, which is consistent 
with previous  results4,19. Meanwhile, starch content had significant positive correlation with protein content 
and lysine content, which is consistent with previous  studies20,21. Moreover, all of the five grain quality traits had 
higher broad-sense heritability. Among them, the heritability for protein content, oil content, starch content and 
lysine content was higher than that in previous  studies21. The above results indicated a stable genetic association 
among these grain quality traits of maize.

It is well known that there are hard choices between yield and quality. Previous studies showed negative 
correlation between quality traits and  yield22. Therefore, how to carry out quality breeding while continuing to 
improve the yield of maize will be a new subject for maize breeders in the twenty-first century. At present, maize 

Figure 2.  Manhattan plots of GWAS results for (a) moisture content, (b) protein content, (c) oil content, (d) 
starch content and (e) lysine content. Black solid lines correspond to the threshold (−  log10 (p) = 4).
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Table 4.  Co-localized SNPs of grain quality traits in natural population.

Number Interval Traits SNP Chr position Allele bin P-value PVE (%)
D-value 
(Kb)

1 1_60098266-60,098,312

oil 1_60098266 1 60,098,266 C/T 1.04 1.88E-05 9.60 0.046

starch 1_60098266 1 60,098,266 C/T 1.04 1.26E-05 16.70

starch 1_60098312 1 60,098,312 A/G 1.04 1.02E-05 16.64

protein 1_60098312 1 60,098,312 A/G 1.04 8.54E-05 13.48

2 2_187885582-187,885,602
lys 2_187885582 2 187,885,582 C/T 2.07 9.82E-05 25.57 0.020

lys 2_187885602 2 187,885,602 A/C 2.07 1.68E-05 32.42

3 3_1462112-1,462,147

protein 3_1462112 3 1,462,112 A/T 3.00 3.45E-05 5.45 0.035

starch 3_1462112 3 1,462,112 A/T 3.00 7.94E-06 3.77

starch 3_1462147 3 1,462,147 A/G 3.00 7.94E-06 3.77

protein 3_1462147 3 1,462,147 A/G 3.00 3.45E-05 5.45

4 3_133182128-133,206,096

oil 3_133182128 3 133,182,128 C/T 3.05 6.95E-05 22.52 23.968

starch 3_133206087 3 133,206,087 A/G 3.05 4.79E-05 4.03

starch 3_133206096 3 133,206,096 C/G 3.05 5.43E-05 4.16

5 5_140417153-140,417,226

oil 5_140417153 5 140,417,153 C/G 5.04 1.35E-05 14.23 0.073

oil 5_140417208 5 140,417,208 A/T 5.04 1.35E-05 14.23

oil 5_140417226 5 140,417,226 C/G 5.04 2.14E-05 13.49

6 6_3988838-3,988,856
oil 6_3988838 6 3,988,838 G/T 6.00 2.52E-05 9.60 0.018

oil 6_3988856 6 3,988,856 G/T 6.00 2.30E-05 9.56

7 8_160425695-160,425,707

oil 8_160425695 8 160,425,695 A/G 8.06 4.02E-05 31.24 0.012

oil 8_160425698 8 160,425,698 A/G 8.06 4.02E-05 31.24

oil 8_160425707 8 160,425,707 C/G 8.06 4.02E-05 31.24

8 9_97538609-97,538,609
moisture 9_97538609 9 97,538,609 A/G 9.03 4.31E-05 23.16 0.000

oil 9_97538609 9 97,538,609 A/G 9.03 1.44E-05 17.51

Figure 3.  GO-second class of candidate genes.
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quality breeding is mainly to increase protein content and improve the composition of base acids, especially to 
increase the content of essential amino acids such as lysine and  tryptophan23. In this study, a total of 83,057 SNP 
markers were used to scan the whole genome, combined with moisture, protein, starch, oil, lysine content and 
other phenotypic traits and genotypes for association analysis. The purpose of this study was to find the main 
genes to control the quality traits of maize, and then to introduce the genes into the parents of maize high-yield 

Figure 4.  Analysis of KEGG pathway based on candidate genes. (The figure was created by R version 3.6.1 
based on KEGG pathway database www. kegg. jp/ kegg/ kegg1. html).

Figure 5.  Protein classification of candidate genes.

http://www.kegg.jp/kegg/kegg1.html


8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9797  | https://doi.org/10.1038/s41598-021-89276-3

www.nature.com/scientificreports/

hybrids from molecular level, and then to obtain high-yield and high-quality hybrids and to provide a theoretical 
basis for genetic improvement of the quality traits of maize.

Significant SNPs for grain quality traits. Nowadays many researchers at home and abroad apply link-
age analysis to locating the QTL of regulating grain quality traits, but few GWAS studies are on grain quality 
traits. In addition, the QTL detected by linkage analysis and association analysis have consistency in  position24. 
The GWAS analysis is performed with a Bonferroni correction, however this was found to be too strict for 
less significant trait associations. In order to better detect micro-effect polygenes and identify genetic sites, we 
reduced the significance threshold to -log10(P) = 4 for all  traits25. In this study, a total of 49 SNPs significantly 
associated with grain quality were detected, and the phenotypic variation explained (PVE) value by a single SNP 
ranged from 3.77% (3_1462112 and 3_1462147 of starch content) to 32.79% (2_43189825 of protein content). In 
addition, four co-localized SNPs were detected by multiple traits and single phenotypic variation explained value 
over 3.77%, indicating that starch content, protein content, oil content, and moisture content are interrelated in 
the components of corn kernels.

The SNPs detected in this study were compared with previous studies, and some SNPs were found to be 
located in the localized QTL confidence interval. Among them, five SNPs were located in the QTL interval with 
Zhang et al.26, where 1_190758142 for oil content was located on chromosomes 1 (bnlg2086-umc1122 inter-
val), 4_85966198 for oil content was located on chromosomes 4 (phi096-bnlg1755 interval), co-localized site 
1_60098266-60,098,312 for protein content and starch content was located on chromosomes 1 (phi001-umc1988 
interval). Two SNPs were located in the QTL interval with Wang et al.27, where 1_19252635 for oil content was 
located on chromosome 1 (umc1685-umc1044 interval), and 1_190758142 for oil content was located on chromo-
some 1 (umc1395-umc2237 interval). In addition, 2_169733611 for lysine content was located on chromosome 
2 (bnlg1138-umc1065 interval) of study by Zhang et al.2. Moreover, three SNPs were located in the QTL interval 
with Yang et al.28, where 1_190758142 for oil content was located on chromosome 1 (umc1590-bnlg1556 interval), 
3_213791486 for protein content were located on chromosome 3 (umc2275-umc1594 interval), 10_127895301 
for oil content was located on chromosome 10 (umc1272-bnlg1839 interval).

However, some SNPs were not found in previous studies. There are several reasons for these differences. First, 
the population in our investigation mightnot be different enough for grain quality. Second, different estimating 
methods also caused the variations. Third, these SNPs were newly discovered and needed testing further. All in 
all, the results of this study can serve as a reference for other studies.

Putative genes and pathways involved in grain quality. In this study, a total of 208 candidate genes 
were searched, of which 17 possible candidate genes for grain quality traits were predicted.

For moisture content, three candidate genes were detected. GRMZM2G069024 encoded Beta-glucosidase 11, 
an important component of the cellulase  system29. Previous studies reported that dehydration rapidly induced 
polymerization of AtBG1, a beta-glucosidase30. GRMZM2G032852 encoded putative calcium-dependent protein 
kinase family protein and GRMZM2G321041 encoded putative RING zinc finger domain superfamily protein. 

Table 5.  Putative candidate gene of grain quality traits.

Trait SNP Candidate gene Gene ID
RefGen_v2 Annotated Gene 
description

Moisture content  (%)

3_186486719 GRMZM2G069024 100,216,811 Beta-glucosidase 11

1_6157557
GRMZM2G032852 100,383,301 Putative calcium-dependent protein 

kinase family protein

GRMZM2G321041 100,192,077 Putative RING zinc finger Domain 
superfamily protein

Protein content (%)

3_213791486 GRMZM2G047129 100,285,541 Alpha-L-fucosidase 2

2_43189825
GRMZM2G466833 100,272,900 Malate dehydrogenase3

GRMZM2G071714 100,279,807 Lipoyl synthase, Mitochondrial

Oil  content (%)

4_1983562 GRMZM2G033544 103,652,693 Cyclopropane-fatty-acyl-pHospho-
lipid synthase

8_160425695, 8_160425698, 
8_160425707

GRMZM2G433942 100,191,906 Palmitoyltransferase ZDHHC9

GRMZM2G134308 100,384,778 Putative Beta-14-xylosyltransferase 
IRX10L

Starch content (%)

3_1462112, 3_1462147 GRMZM2G175218 100,192,000 Beta amylase4

1_60098312, 1_60098266
GRMZM2G082034 100,284,904 Beta-amylase

GRMZM2G347708 103,644650 Inactive beta-amylase 9

4_155610021 GRMZM2G000520 103,653910 Ethylene-responsive Transcription 
factor ERF027

6_105156642 GRMZM2G404453 103,631308 Ethylene-responsive Transcription 
factor ERF036

Lysine content (%)

3_206605349 GRMZM2G050570 100,283397 Threonine synthase

2_218460194
GRMZM2G129209 100,281245 Omega-3 fatty acid Desaturase

GRMZM2G076307 100,194354 Glycosyltransferases
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The two proteins emerged as key proteins in response to drought stresses in  plants31. The three enzymes are 
closely related to moisture content, therefore, three candidate genes may affect moisture content by influencing 
enzymes activities and genes expression levels.For protein content, three candidate genes were detected. One of 
the candidate genes (GRMZM2G047129) encoded alpha-L-fucosidase 2. Alpha-L-fucosidase has been reported 
in only a few plants, such as Arabidopsis,32 and  pea33. It was reported that alpha-L-fucosidase can hydrolyze 
fucose residues from  glycoproteins34, thus this candidate gene may affect protein content. Another candidate 
gene (GRMZM2G466833) encoded malate dehydrogenase 3 (MDH), that is, one of the key enzymes to synthesize 
malic acid. MDH played a key role in many physiological metabolic pathways, such as C4 pathway, crassulacean 
acid metabolism, gluconeogenesis, tricarboxylic acid cycle and photosynthesis, linking the metabolism of sug-
ars, proteins and lipids in the  body35. Therefore, this candidate gene may affect protein content by influencing 
the metabolism of proteins. Finally, GRMZM2G071714 encoded lipoyl synthase (LS) that analyzes the final 
step of lipoyl cofactor  biosynthesis36. Protein lipoylation was denovo lipoylation pathway in plastids, and two 
octanoyltransferases and one LS provided protein lipoylation autonomy to plastids of Arabidopsis37. Therefore, 
this candidate gene may affect protein content by influencing the protein lipoylation.

For oil content, three candidate genes were identified. GRMZM2G433942 encoded palmitoyltransferase 
ZDHHC9. Serine palmitoyltransferase (SPT) is the key enzyme of sphingolipids biosynthesis, and sphingolip-
ids are essential components of plant  cells38. As can be seen, it has a certain effect on the oil content of maize. 
GRMZM2G134308 encoded putative beta-14-xylosyltransferase IRX10L. Xylose is a kind of glycosyl compo-
nent widely found in plants. Plant glycosyltransferases are enzymes that are closely related to the metabolism 
of glycolipids, polysaccharides, glycoproteins, nucleic acids, plant secondary products, and so  on39. Therefore, 
this candidate gene may affect oil content by influencing beta-14-xylosyltransferase activities and genes expres-
sion levels. GRMZM2G033544 encoded cyclopropane-fatty-acyl-phospholipid synthase that is synonymous 
with cyclopropane fatty acid (CFA) synthase. CFA is an important membrane fatty acid in the stress-resistant 
mechanism and the presence of CFA can enhance membrane  rigidity40. CFA synthase is a key enzyme regulating 
synthetic CFA. Therefore, this candidate gene may affect oil content by influencing CFA synthase activities and 
genes expression levels.For starch content, five candidate genes were identified. Three of the candidate genes 
(GRMZM2G175218, GRMZM2G082034 and GRMZM2G347708) encoded beta-amylase, which was directly 
involved in the synthesis of starch and metabolic process of  polysaccharides41. Two of the candidate genes 
(GRMZM2G000520 and GRMZM2G404453) encoded ethylene-responsive transcription factor (ERF), a mem-
ber of a transcription factor family involved in plant growth and environmental stress  responses42. In addition, 
ethylene has been shown to affect starch biosynthesis by influencing enzymes activities and genes expression 
levels involved in starch synthesis in  maize43.

For lysine content, three candidate genes were detected. GRMZM2G050570 encoded threonine synthase 
which catalyzed the terminal reaction in the biosynthetic pathway of  threonine44. From a nutritional point of 
view, lysine and threonine were essential amino acids in maize, and GRMZM2G050570 may indirectly affect 
lysine content by influencing threonine synthase activities and genes expression levels.. GRMZM2G129209 
encoded omega-3 fatty acid desaturase which was a key enzyme for α-linolenic acid (ALA)  biosynthesis45. Moreo-
ver, previous studies demonstrated that ALA was a crucial component in storing lipids in  plants46. Therefore, 
the gene may regulate grain lysine content indirectly by regulating lipid synthesis. Finally, GRMZM2G076307 
encoded glycosyltransferases (GTs), which belong to a multi-member genes family. According to previous stud-
ies, GTs played a very important role in the growth and development of plants, such as regulating plant hormone 
levels, participating in the synthesis, modification and transportation of secondary metabolites in plants, and 
participating in plant defense  reactions47,48. Therefore, the gene may regulate grain lysine content indirectly by 
regulating plant hormone and secondary metabolites synthesis.

All in all, these candidate genes are closely related to grain quality and future work will include functional 
validation of these genes and illustrate the molecular mechanisms for controlling grain quality in maize plants.

Materials and methods
Association mapping panel and genotyping. The association panel consisted of 248 diverse lines, 
including some excellent backbone inbred lines in China and some high-quality inbred lines introduced from 
abroad. Details on 248 of these lines could be found in previous  studies20. The DNA of all the maize inbred lines 
were extracted using CTAB  method49 and genotyped using Genotyping-By-sequencing (GBS)  method50. The 
methods of SNP filtering and calculating linkage disequilibrium (LD) decay were described in previous  studies51. 
A total of 83,057 SNPs were used and the LD decay was 120 kb  (r2 = 0.1) in this study.

Field experiments and phenotyping investigation. All 248 maize inbred lines of the association 
panel were planted in four environments, that is, Baoding in Hebei Province in 2016 and 2017, and Shijiazhuang 
in Hebei Province in 2016 and 2017. In each environment, all the maize inbred lines were planted in a single row 
plot using a randomized block design with two replications. Each experimental plot consisted of a row length 
of 3 m and 0.6 m between adjacent rows. After maturity, all corns except the head and tail of each row were 
harvested. Perten DA7200 Near Infrared Grain Analyzer was applied to determinate the moisture, protein, oil, 
starch and lysine contents of maize. Each material was repeatedly measured two times.

Phenotype statistical analysis. The IBM SPSS 21.0 software was used to make the descriptive statistical 
analysis and the analysis of variance (ANOVA). The broad-sense heritability ( h2 ) for each trait was estimated as 
h2 = σ 2

g /

(

σ 2
g + σ 2

gy/r + σ 2
e /yr

)

52, where σ 2
g  , σ 2

gy and σ 2
e  are genetic variance, genotype-by-environment interac-

tion variance and error variance, respectively, y is the number of environments, and r is the number of replica-
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tions. The “PerformanceAnalytics” package in the R software was used to perform correlations analysis. For each 
trait, BLUP value was evaluated by using the following mixed linear model in the “lme4” package of the R 
 software53: Y = (1|rep%in%env) + (1|env) + (1|lines) + (1|env:lines), where Y stands for trait data, the parentheses 
indicate random effects, “1|” means groups, “:” means interactions, “lines” means all materials and “env” means 
the environment.

Genome‑wide association study of grain quality traits. The BLUP value and 83,057 SNPs were used 
to conduct the GWAS by using FarmCPU  model54 implemented in the GAPIT package in the R  software55, with 
both K and Q matrix taken into account.

Prediction of candidate genes. Candidate genes were predicted based on the significant SNPs and their 
extension regions from 120 kb upstream to 120 kb downstream (LD decay) in the MaizeGDB (https:// www. 
maize gdb. org/) genome browser B73 reference genome version v2. The MaizeGDB, NCBI (https:// www. ncbi. 
nlm. nih. gov/) and Uniprot (https:// www. unipr ot. org/) were used to obtain annotation of candidate genes. Then 
these candidate genes were performed GO analysis on the GENE ONTOLOGY website (http:// www. geneo ntolo 
gy. org/). The KOBAS 3.0 website (http:// kobas. cbi. pku. edu. cn/ kobas 3/?t=1) was used to performe Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway enrichment  analysis56.

Statement. Experimental research and field studies complies with relevant institutional, national, and 
international guidelines and legislation.
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