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Abstract
Sleep apnea is caused by several endophenotypic traits, namely pharyngeal collapsibility, poor muscle compensation, ventilatory instability 
(high loop gain), and arousability from sleep (low arousal threshold). Measures of these traits have shown promise for predicting outcomes 
of therapies (e.g. oral appliances, surgery, hypoglossal nerve stimulation, CPAP, and pharmaceuticals), which may become an integral part 
of precision sleep medicine. Currently, the methods Sands et al. developed for endotyping sleep apnea from polysomnography (PSG) are 
embedded in the original authors’ code, which is computationally expensive and requires technological expertise to run. We present a 
reimplementation and validation of the integrity of the original authors’ code by reproducing the endo-Phenotyping Using Polysomnography 
(PUP) method of Sands et al. The original MATLAB methods were reprogrammed in Python; efficient algorithms were developed to detect 
breaths, calculate normalized ventilation (moving time-average), and model ventilatory drive (intended ventilation). The new implementation 
(PUPpy) was validated by comparing the endotypes from PUPpy with the original PUP results. Both endotyping methods were applied to 38 
manually scored polysomnographic studies. Results of the new implementation were strongly correlated with the original (p < 10–6 for all): 
ventilation at eupnea V̇ passive (ICC = 0.97), ventilation at arousal onset V̇ active (ICC = 0.97), loop gain (ICC = 0.96), and arousal threshold (ICC = 0.90). 
We successfully implemented the original PUP method by Sands et al. providing further evidence of its integrity. Additionally, we created a 
cloud-based version for scaling up sleep apnea endotyping that can be used more easily by a wider audience of researchers and clinicians.
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Statement of Significance
It has been assumed that accurate endo-phenotyping of sleep apnea is integral to developing precision medicine in the field of sleep 
medicine. Despite this, sleep apnea endotyping has not become a part of the sleep clinicians’ toolkit due to the technical implementa-
tion challenges it entails. In this article, we present and validate a cloud-based reimplementation of the previously published method 
for endo-Phenotyping Using Polysomnography (PUP) Sands et al. The new cloud-based implementation confirms the reproducibility the 
PUP method and could be made available to researchers who are interested in endotyping but do not have the resources or expertise 
required to use the previously published method. This validation and improved access could allow scientists to further investigate the 
clinical relevance of sleep apnea endotypes.
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Introduction

Sleep apnea is a chronic disorder where breathing is period-
ically interrupted during sleep. Diagnosis of sleep apnea is 
made via polysomnography (PSG), where a variety of physio-
logical signals are measured during a night of sleep, including 
electroencephalogram, peripheral capillary oxygen saturation 
(SpO2), and ventilation. The sleep study is subsequently ana-
lyzed by a technician that labels sleep stages and events ac-
cording to a standard rubric [1]. By counting the number of 
both partially and totally obstructed breathing events and 
dividing it by total sleep time, the apnea–hypopnea index 
(AHI) is calculated. The AHI can be interpreted as the average 
number of apneas and hypopneas per hour of sleep and has 
been traditionally used as the main indicator for sleep apnea 
severity [2]. A  major limitation of current diagnostics tech-
niques is that they do not provide information regarding the 
underlying cause or impact of sleep apnea in different indi-
viduals [3].

Respiratory endotyping is a methodology for identifying the 
pathophysiological traits of sleep apnea by better utilizing the 
wealth of data collected in a PSG. The endotypes of sleep apnea 
are loop gain, upper airway collapsibility, arousal threshold, and 
upper airway dilator muscle response (compensation) [4]. These 
parameters can be estimated by examining the characteristics 
of a patient’s ventilation during obstructed breathing periods [4, 
5, 6, 7, 8, 9].

The respiratory endotypes correspond directly to the patho-
physiological mechanisms underlying sleep apnea, making it an 
attractive method for guiding treatment options [6, 9]. For in-
stance, patients with poor pharyngeal muscle responsiveness 
may respond well to hypoglossal nerve stimulation [10] and/or 
drugs that increase the upper airway dilator muscle activity [11]. 
Similarly, patients with an abnormally low arousal threshold 
may respond better to sedative drugs [12]. Other treatment op-
tions that have been shown to target specific endotypes are sup-
plemental oxygen [13], upper airway surgery [14, 15], and oral 
appliances [16]. Endotyping could further help to guide combin-
ation therapy by identifying which traits to target with drugs 
or devices, for instance, individuals with a collapsible airway 
and a high loop gain might respond to the combination of oral 
appliance and acetazolamide [17]. A  more complete review of 
endotype-driven OSA treatment options can be found in a re-
cent article by Edwards et al. [18].

There are two established methods of determining the 
endotypes of sleep apnea during sleep. The first involves drop-
ping CPAP pressure, creating a controlled apnea or hypopnea, 
and measuring the ventilation response when CPAP pres-
sure is reestablished [4, 5, 17, 19]. The second method requires 
measuring the respiratory drive response to obstruction using 
esophageal manometry [9] or diaphragm electromyogram [8]. 
These methods have several shortcomings: they are not scalable, 
cause discomfort to the patient, and use equipment that is not a 
part of a standard PSG. To mitigate these problems, Sands et al. [6, 
7] proposed a method for polysomnographic endotyping (imple-
mented in a tool called “Phenotyping Using Polysomnography” 
or PUP) where the endotypes can be estimated from a standard 
PSG. The PUP method relies on an uncalibrated estimate of 
minute ventilation during sleep, derived from the measured 
flow signal, and it uses inverse modeling of the respiratory con-
trol system to estimate respiratory drive.

In this article, we present a python implementation (PUPpy) 
of the PUP method. With the reimplementation, we aim to re-
produce and validate the PUP method with the goal of building a 
foundation for cloud-based software making the method access-
ible for a broader audience. The PUP method is reimplemented 
in a different programming language, building on its theoret-
ical basis, with improvements with regards to efficiency. The 
cloud-based platform was chosen for its scalability, making it 
possible to run these computationally intensive methods at 
scale. This implementation represents an important step in 
making endotyping more accessible for both research and the 
clinic and lays a solid foundation for further developments of 
polysomnographic endotyping. Moreover, reimplementing the 
method from first principles and comparing the endotype re-
sults between the two versions serves as an independent valid-
ation of the integrity of the method itself since implementation 
errors are not likely to be replicated.

Methods
The control and regulation of ventilation can be described by a 
feedback system whereby a reduction in minute ventilation (V̇E) 
raises the pCO2 in the blood and causes a corresponding change 
in “chemical drive” to breathe (V̇chem). This feedback system can 
be formulated as a first-order linear model with a transport 
delay, equation (1) [4, 17, 20] which captures the magnitude (LG0, 
steady-state loop gain), response time (τ, time constant), and 
latency (δ, delay) of the chemical drive response to a drop in 
ventilation. The characteristics of the response depend on the 
model parameters: steady-state loop gain (LG0), the respiratory 
time constant (τ), and the feedback delay (δ). Engineers (or re-
searchers using appropriate software) can analyze this model 
of the ventilatory control system by examining the governing 
equation for the feedback system, given by:

 
V̇chem(s) =

−LG0

1+ sτ
e−sδ V̇E(s).

 (1)

For example, with known parameters, equation (1) is used to cal-
culate the “loop gain” (magnitude of chemical drive response for 
any ventilatory disturbance) that has been used to predict re-
sponses to therapies [14, 15, 17]. Polysomnographic endotyping 
employs equation (1) to generate a continuous chemical drive 
V̇chem signal (output of the ventilatory control system) based on 
the measured ventilatory fluctuations (V̇E). Parameters are ad-
justed through least squares regression (below). Once ventilatory 
drive is estimated, the remaining endotypes can be quantified: 
upper airway collapsibility, upper airway compensation, and the 
arousal threshold.

Figure 1 shows a simulation of the chemical drive response 
(V̇chem) to a loss of ventilation (V̇E) when a spontaneous hypopnea 
(blue area) interrupts normal (eupneic) breathing. Before the 
obstruction, the measured ventilation and chemical drive are 
identical. During the hypopnea, the loss of ventilation yields a 
gradual compensatory rise in chemical drive. When this drive 
reaches the arousal threshold, an arousal occurs (red area) and 
the obstruction is terminated. The open airway reveals the 
underlying elevation in chemical drive and yields a period of 
hyperventilation, which eventually converges back to the base-
line quiet breathing. During arousal (red area), a nonchemical 
drive to breath (wakefulness drive, parameter ϒ) also raises the 
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overall ventilatory drive independently of the chemical drive. 
Chemical drive plus wakefulness drive is referred to as the ven-
tilatory drive. The arousal threshold is defined as the chemical 
drive at arousal onset, expressed as a percentage of eupnea.

Minute ventilation

The model in equation (1) can be interpreted as an input–output 
system where the input (V̇E) is the minute ventilation and the 
output (V̇chem) is the chemical drive which is thought of as the 
intended minute ventilation and has the same units as V̇E. The 
minute ventilation is calculated from the measured flow signal 
on a breath-by-breath basis. The breath detection is carried out 
by integrating the flow trace, correcting for drift, and detecting 
the troughs and peaks of the resulting signal. When breaths 
have been identified, minute ventilation (V̇E) is calculated by 
integrating the inspired flow for each individual breath, yielding 
a volume estimate, and dividing by the breath duration.

The PSG data used for the validation of PUPpy include a 
flow signal recorded with a pneumotachograph equipped with 
a sealed oronasal mask. The pneumotachograph was cali-
brated at the start of the sleep study and the signal amplifi-
cation set to provide a signal with a large amplitude without 
clipping. Although the pneumotachograph is calibrated at the 
beginning of the night, the eupneic ventilation can drift over 
the span of a sleep study (i.e. the data is nonstationary). To 
account for drift in signal amplitude, the continuous minute 
ventilation trace is normalized using a moving average 
window of 7  min. It is assumed that the amount of hyper- 
and hypoventilation even out over long periods and therefore 
the average is close to eupnea. This means that ventilation 
at 100% eupnea can be sustained indefinitely; values below 
100% eupnea are interpreted as hypoventilation and above 
100% eupnea as hyperventilation. All ventilation and drive 
estimates are expressed in the same way, as a percentage 
of eupnea. An additional upside of normalizing the minute 
ventilation signal is that semiquantitative, uncalibrated flow 
measurements can also be used.

In a clinical PSG study, changes in ventilation are typic-
ally measured using either a nasal cannula or two RIP belts 
measuring thoracoabdominal breathing movements. Both 
sensors have associated complications; the nasal cannula is 
prone to dislocations and confounded by oral ventilation while 
the RIP needs to be calibrated and is sensitive to movement arti-
facts. Previous research has proposed scaling the nasal cannula 
by an exponent; this transformation improves the correlation 
between endotypes derived from a sealed oronasal mask and 
nasal cannula [6, 7]. To the best of our knowledge, no research 
has yet been done on endotyping with RIP using different cali-
bration techniques.

Inverse modeling

The model in equation (1) is algorithmically tuned such that it 
reflects the ventilatory patterns of the minute ventilation data 
for each subject. The implementation details of the model fitting 
process are detailed in the supplementary materials. The model 
is fit for an interval of 7 min at a time yielding both the model 
endotypes as well as the chemical drive estimate. The final 
product of the model fitting procedure for a single window of 
PSG data can be seen in Figure 2. Figure 2, A shows the measured 
flow for a period of repeated apneas (blue areas) and recovery 
breaths during cortical arousal (red areas). Figure  2, B shows 
the corresponding blood oxygen saturation. Figure  2, C shows 
the normalized minute ventilation and the estimated chemical 
drive, expressed as a percentage of eupnea.

Due to the physiological changes that occur during REM, it is 
reasonable to assume that endotypes are different between REM 
and NREM sleep. Loop gain has been shown to decrease during 
REM [21]. Similarly, upper airway muscle compensation is di-
minished during REM due to reduced muscle tone. Furthermore, 
unlike NREM sleep, during REM sleep the ventilation is not 
under the sole regulation of the chemical control system so it 
is not clear how well the model in equation (1) applies. To min-
imize the confounding effects of REM sleep, epochs scored as 
REM are traditionally omitted from the endotype analysis. More 
research is needed to explore the difference between REM and 
NREM sleep apnea endotypes.

(a)

(b)

Figure 1. A simulated hypopnea for illustrating key concepts of the model 

underlying the endo- PUP method. (A) The blue trace shows the simulated flow 

during a hypopnea event and the black trace shows a simulation of the flow that 

the chemical drive would result in if there were no obstruction (intended flow). 

The hypopnea starts at around 40 s where the airflow is reduced. As the flow de-

creases the chemical drive increases, attempting to compensate for the reduced 

ventilation. The hypopnea terminates at the 75-s mark in an arousal, opening 

the airway. The buildup of intended flow results in large recovery breaths be-

fore stabilizing at eupnea. (B) The ventilation during the simulated hypopnea in 

(A). The hypopnea event, labeled by the blue square, terminates in an arousal, 

labeled by the red square. The blue trace shows the change in ventilation, cal-

culated from the simulated flow signal in (A). The black and green traces show 

the chemical and ventilatory drives, respectively. Due to the blood circulatory 

delay, the drive only starts increasing 12 s after the ventilation is reduced and 

similarly continues to build up 12 s into the recovery period. The chemical drive 

is the V̇chem from equation (1) and the ventilatory drive is V̇chem plus an added 

drive contribution during the arousal (wakefulness drive, ϒ), simulated here as 

20% eupnea. The arousal threshold can be read directly from the chemical drive 

estimate as the drive at arousal onset.
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Although the goal was to replicate PUP, some architec-
tural decisions were made to make the code fast, testable, 
and maintainable. In addition, changes were made to the data 
processing and parameter fitting procedure. Firstly, a sliding 
window was used for eupnea normalization to account for 
slow changes in signal amplitude (gradual changes in average 
ventilation). Secondly, in the original article, a modified least-
squares regression algorithm fit a third-order polynomial to 
the error and subtracted this prior to the mean squared error 
being calculated. This effectively high-pass filters the error, 
accounting for drift and nonzero-mean noise. To improve 

performance and avoid edge effects (outlier extremes at the 
start and end of the window), we opted to subtract a double-
exponential moving average from the error instead of the 
polynomial, see implementation details in supplementary 
materials.

Deriving endotypes from model simulated drive

From the model fitting step, we directly get the loop gain 
endotype from the best-fit parameters, equation (1). The 

Figure 3. Drive-ventilation graph with derived endotypes. The black solid line shows the median ventilation as a function of a chemical drive for a single sleep study. 

The grey areas indicate the interquartile range of ventilation as a function of drive. V̇passive is the ventilation at eupnea drive and V̇active is the ventilation at the arousal 

threshold. This representation of drive and ventilation helps illustrate negative effort dependence (NED) as well as the endotype of upper airway compensation 

V̇comp, = V̇active − V ̇
passive, labeled by an arrow to the right of the figure. (A) The figure shows a patient with effort dependent reduction of airflow with low collapsibility (V̇passive 

is close to eupnea) and low compensation (V̇active < V̇passive). (B) The figure shows a patient with a similar collapsibility as the patient in (A) (V̇passive) but better compensation 

(since V ̇
active > V̇passive). This is a sign of a good functional response of airway muscles since the airway remains open as drive increases.

(a)

(b)

(c)

Figure 2. Example of the model fitting on PSG data during an episode of obstructed breathing. (A) The measured flow signal (blue trace) with scored obstructive apneas 

(blue areas) and arousals (red areas). Flow has been normalized to the [−1, 1] range where inspiration takes a positive value. (B) The oxygen saturation corresponding to 

the flow. (C) The normalized minute ventilation (V̇E, blue trace) is derived from the measured flow. Chemical drive (V̇chem, black trace) was estimated using the identified 

feedback model in equation (1). The chemical drive increases during the obstructed periods resulting in large recovery breaths when the obstruction is terminated.
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remaining endotypes are all based on chemical drive which can 
be estimated using the identified model. To derive the ventila-
tory endotypes of compensation and collapsibility, a ventila-
tory versus ventilatory drive (“endogram”) plot is generated (see 
Figure 3, A and B). Chemical drive is binned into quantile bins 
and the median ventilation is plotted for each bin, black line, and 
the interquartile range, gray area indicating the variance of the 
prediction. Figure 3, A and B shows the results from two subjects 
with different compensation endotype. From the figures, we can 
read the collapsibility (V̇passive) as the ventilation at 100% eupnic 
drive and V̇active as the ventilation at the arousal threshold which 
is defined as the chemical drive at arousal onset as shown in 
Figure 1 [8]. The upper airway compensation V̇comp is calculated 
using the following equation [6]:

 
V̇comp = V̇active − V̇passive. (2)

Loop gain

Loop gain is the magnitude component of the system in equation 
(1) and indicates the strength of the response to ventilatory dis-
turbance (i.e. how high and fast the ventilatory drive increases 
following obstruction). The loop gain derived in the CPAP-drop 
method is the steady-state loop gain (LG0), For reasons detailed 
in the supplementary materials, LG0 cannot be accurately de-
rived from naturally occurring apneas. Therefore, LG1 or the loop 
gain at 1 cycle per min is used as a surrogate.

While elevated LG1 (elevated chemoreflex sensitivity) will 
yield higher levels of drive for any reduction in ventilation, the 
chemoreflex delay also determines whether spontaneous peri-
odic breathing (central sleep apnea) might occur. From the per-
spective of control theory, LGn or the loop gain at the natural 
frequency of the system (incorporates delay) is the parameter 
that determines ventilatory instability. Thus, we also examined 
LGn in the current analysis.

Deployment

The original PUP implementation was written in MATLAB as 
prototype software and has been made available online by the 
original authors [7]. The implementation documented in this 

article was written entirely in Python 3.7. Python was selected 
as a programming language due to its mature data science 
stack and strong cross-platform support. The system was de-
ployed to a fully managed cloud architecture for high scalability 
and fault-tolerance with minimal operation burden and will be 
made available to researchers and clinicians as a closed source 
cloud service. The goal of the cloud implementation is to make 
the PUP method accessible to a larger audience of scientists to 
facilitate the clinical validation and acceptance of the method.

Cohort

The comparison between methods is done using retrospective 
data collected by Brigham and Women’s Hospital. The dataset 
contained 38 measurements, 23 males and 15 females (Table 1). 
A total of 16 of these had simultaneous measurements of nasal 
pressure and oronasal mask with a pneumotachograph. The 
data collection including polysomnographic setup and scoring 
criteria has been described elsewhere [6].

Statistics

The agreement between the PUP and PUPpy methods was ana-
lyzed using intraclass correlation (ICC), Pearson correlation 
coefficient (PCC), and Bland–Altman (BA) mean error and agree-
ment. All statistical analysis was carried out using Python 3.7, 
using the SciPy 1.2.3 and NumPy 1.17.5 libraries. ICC was calcu-
lated based on two-way mixed effects, single rater, and absolute 
agreement (ICC(2.1)) [22]. Confidence intervals for ICC and PCC 
were calculated via bootstrapping where studies were randomly 
sampled with replacement over 10,000 iterations and the ICC 
and PCC coefficients calculated.

Results
We identify the endotypes in a dataset of 38 patients using both 
the MATLAB (PUP) and the new Python (PUPpy) implementation. 
This validates the entire pipeline, from data processing, breath 
detection, and minute ventilation calculations to model fitting 
and finally parameter derivation.

The validation was threefold: (1) Comparing the two im-
plementations using oronasal pneumotachograph NREM sleep 
only. Using a gold standard measurement of ventilation and 
omitting REM, sleep minimizes the confounding effects of 
sensor noise and model uncertainty. (2) The two implementa-
tions compared include all sleep stages; the clinical relevance of 
lumping together REM and NREM endotypes is not clear but is 
done here in order to verify that the reimplementation is valid 
for all sleep stages. (3) To test the feasibility for usage in a clin-
ical setting, endotypes derived from nasal cannula using PUPpy 

Table 1. Summary statistics of the patient cohort

Age (years) BMI (kg/m2) AHI (events/h)

Mean 55.18 33.74 31.08
Std 11.26 7.66 28.34
Min 22.25 21.83 5.28
Max 70.05 53.51 117.82

Table 2. Summary of results using NREM sleep only and an oronasal mask for flow

ICC PCC Mean error 95% agr. interv.

LG1 0.96 (0.92, 0.98) 0.96 (0.93, 0.98) 0.01 (−0.01, 0.03) ±0.10 (0.08, 0.12)
LGn 0.95 (0.86, 0.97) 0.95 (0.86, 0.98) 0.01 (−0.01, 0.02) ±0.07 (0.06, 0.08)
Delay 0.91 (0.83, 0.95) 0.91 (0.84, 0.96) −0.08 (−0.37, 0.19) ±1.73 (1.31, 2.06)
Ar. Thresh. 0.90 (0.82, 0.95) 0.92 (0.90, 0.96) 4.76 (1.91, 8.05) ±19.23 (12.25, 25.74)
Vpassive 0.97 (0.92, 0.99) 0.98 (0.94 0.99) 1.73 (0.35, 3.13) ±8.59 (4.49, 11.77)
Vactive 0.97 (0.92, 0.99) 0.97 (0.93, 0.99) −0.17 (−2.92, 2.77) ±17.49 (11.65, 23.20)

PCC, ICC, BA mean error, and agreement intervals (±1.96 SD). 95% confidence intervals in parenthesis. Confidence intervals are calculated using a bootstrap method.
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were compared to endotypes derived from oronasal pneumo-
tachograph using PUPpy.

NREM sleep using oronasal mask

A list of summary metrics for the comparison of each endotype 
can be found in Table 2. All parameters derived using the PUPpy 

method correlate strongly with the PUP method (p < 10–6 for all) 
with ICC ≥ 0.90 (Pearson’s r > 0.90) and are unbiased compared 
to the original PUP method for each endotype. Scatterplots are 
shown in Figure 4 and the corresponding BA plots in Figure 5. 
In each subfigure of Figure 4, the PCC of the respective param-
eter is shown. Figure 4 shows the range in the endotype values 
as calculated by the PUP and PUPpy methods. The figures show 

Figure 4. Scatter plots of the relevant endotype parameters identified using the two endo-PUP implementations. (A) loop gain at 1 cycle/min, (B) loop gain at the 

system’s natural frequency n cycle/min, (C) V̇active, (D) V̇passive, (E) circulatory delay (δ), (F) arousal threshold.
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that the endotype values cover broad ranges and the high cor-
relations are not caused by single or few outliers or leverage 
points. Furthermore, the figures show that the endotype values 
sit around the 1:1 line plotted in a red dash line. Figure 5 shows 
the BA plots for the endotypes. The figures illustrate the bias and 
agreement intervals. A summary of the endotype results for the 
cohort for each implementation is presented in Tables 3 and 4.

All sleep stages, oronasal mask

To validate the integrity of the reimplementation for all sleep stages 
(including REM sleep), we calculated the endotype values using the 
PUP and PUPpy methods for all sleep periods. Scatter plots and 

BA plots comparing the endotype values from the PUP and PUPpy 
methods can be found in the Supplementary Figures S2 and S3. 
Table 5 shows the summary statistics comparing the two methods. 
The table shows that the correlation is still very high for all the de-
rived parameters, ICC > 0.90 (Pearson’s r > 0.90). The table shows 
that including REM sleep does not change the agreement between 
the two implementations meaningfully compared with NREM only.

NREM sleep nasal cannula

In clinical PSGs, nasal cannulas are used rather than oronasal 
mask and pneumotach. Here we compare the endotypes derived 

Figure 5. BA plots of the relevant endotype parameters identified using the two endo-PUP implementations. The dotted centerline is the mean of the difference (PUPpy 

− PUP) and the red dotted lines signify the ±1.96 SD agreement interval. (A) loop gain at 1 cycle/min, (B) loop gain at the system’s natural frequency n cycle/min, (C) V̇active, 

(D) V̇passive, (E) circulatory delay (δ), (F) arousal threshold.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa168#supplementary-data
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from the flow signals measured by the oronasal pneumotach and 
nasal cannula using the PUPpy method. In the dataset, 16 sleep 
studies included a simultaneous measurement of breathing using 
the oronasal pneumotach and nasal cannula. The nasal cannula 
signal was transformed using a scaling exponent of 0.67 as sug-
gested by Sands et  al. [6] and Mann et  al. [23] The comparison 
was made in the same fashion as reported previously and the 
results are reported in Table 6 in a manner that is directly com-
parable to the same comparison done by Sands et al. [6]. The re-
sults show that the Pearson correlation between the pneumotach 
and cannula endotypes using the PUPpy method is high, r > 0.9. 
Furthermore, the mean error (i.e. bias) and mean absolute error 
are small or comparable to what was reported by Sands et al. [6].

Discussion
Sleep apnea endotyping is a promising method of guiding OSA 
treatment but its exploration is still in the early stages. Making 
sleep apnea endotyping widely available to a broader range of 
researchers is the next major step for determining the clinical 
importance of the endotypes. Currently, due to the lack of large 
general population studies, there are no definitions of what con-
stitutes clinically high or low endotype values, how the endotypes 
interact, and how to tailor treatment for a patient presenting with 
a combination of endotypic traits to alleviate the cause of their 
sleep apnea. Intra-subject endotype variability should also be ex-
plored, both for a single night and multiple nights.

It should be noted that even with excellent aggregate results 
between the PUP and PUPpy implementations (r > 0.9), there are 
individuals who deviate from the 1:1 line. This may be due to an 

individual demonstrating variability in endotype over a single 
night study, which would result in the endotype estimate being 
sensitive to slight algorithmic changes. Being able to provide a cer-
tainty estimate (i.e. a confidence interval) for each endotype may 
help in such cases. Confidence interval calculations could help de-
tect misclassified endotypes due to sensor faults, such as oronasal 
mask leak, poor signal quality (including filter distortions, clip-
ping, and sensor dislocation), incorrect RIP belt placement, or oral 
ventilation when flow is measured by a nasal cannula. It is, how-
ever, not clear how best to calculate these confidence intervals 
(simple measures of dispersion/variance versus state/position 
dependence) making it an interesting avenue for future research.

Since the model fitting relies on manual respiratory event 
scoring to mask out periods of ventilatory disturbance, it can be 
assumed that accurate scoring of apneas and hypopneas is im-
portant. The same is true for arousals and sleep stages as these 
annotations are also used as inputs to the fitting routine. This 

Table 3. Summary of the endotype results for the cohort using the original PUP implementation, NREM sleep only, and an oronasal mask for 
flow

LG1 LGn Delay (s) Ar. Thresh. (% eupnea) Vpassive (% eupnea) Vactive (% eupnea)

Mean 0.65 0.42 10.05 119.86 83.58 86.86
Std 0.19 0.12 2.12 21.96 21.14 34.01
Median 0.61 0.39 10.32 116.50 92.49 94.76
Min 0.36 0.25 5.07 89.85 0.00 0.00
Max 1.13 0.86 13.52 201.33 100.68 173.55

Table 4. Summary of the endotype results for the cohort using the reimplemented PUPpy, NREM sleep only, and an oronasal mask for flow

LG1 LGn Delay (s) Ar. Thresh. (% eupnea) Vpassive (% eupnea) Vactive (% eupnea)

Mean 0.66 0.42 9.97 124.62 85.31 86.69
Std 0.18 0.11 2.12 20.65 20.65 34.71
Median 0.65 0.40 9.77 117.64 93.54 94.60
Min 0.40 0.29 5.36 99.60 1.65 1.73
Max 1.16 0.84 13.89 201.24 101.76 169.47

Table 5. Summary of results using all sleep stages and an oronasal mask for flow

ICC PCC Mean error 95% agr. interv.

LG1 0.96 (0.93, 0.98) 0.96 (0.93, 0.98) 0.00 (−0.01, 0.02) ±0.10 (0.08, 0.11)
LGn 0.96 (0.93, 0.98) 0.94 (0.85, 0.98) 0.00 (−0.01, 0.02) ±0.07 (0.06, 0.08)
Delay 0.93 (0.85, 0.97) 0.93 (0.86 0.97) −0.08 (−0.35, 0.19) ±1.65 (1.20, 2.04)
Ar. Thresh. 0.92 (0.86, 0.96) 0.94 (0.91, 0.97) 3.87 (1.26, 6.87) ±17.35 (11.09, 23.14)
Vpassive 0.98 (0.91, 0.99) 0.98 (0.93, 0.99) 1.60 (0.19, 2.98) ±8.52 (4.88 11.53)
Vactive 0.96 (0.91, 0.98) 0.95 (0.91, 0.98) 0.83 (−2.47, 4.17) ±20.39 (13.70, 26.04)

PCC, ICC, BA mean error, and agreement intervals (±1.96 SD). 95% confidence intervals in parenthesis. Confidence intervals are calculated using a bootstrap method.

Table 6. Summary of results when comparing the oronasal mask 
endotypes to the nasal cannula using the PUPpy implementation

Mean error (±SD) 
(% eupnea)

Mean absolute  
error (% eupnea) PCC (95% CI)

Vpassive −0.81 ± 4.98 3.72 0.93 (0.7, 0.98)
Vactive −0.24 ± 11.07 7.51 0.92 (0.73, 0.98)
Vcomp 0.58 ± 10.65 8.59 0.94 (0.42, 0.99)

Error is calculated for each of the three ventilatory endotypes as the endotype 

value using nasal cannula minus the endotype value when using oronasal 

pneumotachograph. PCC is reported with 95% confidence interval, calculated 

using a bootstrap method.
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observation merits further investigation and scoring guidelines 
for endotyping should be subsequently created. Some new evi-
dence indicates that scoring based on airflow that relies less on 
desaturation may be preferable [24].

When implementing complicated algorithms, there is al-
ways a risk of systematic biases and errors. This can be espe-
cially difficult to handle in medical signal analysis software, 
since biological signals have inherent variations that may ei-
ther be interpreted as a physiological characteristic or a calcu-
lation error. In the case of complex algorithms, such as the one 
described in this article, these errors can be very subtle and 
hard to detect. An effective method to reveal such biases and 
errors is to reimplement the algorithm from a conceptual level 
and replicate previous experimental results. This is especially 
true when the reimplementation is done using a different pro-
gramming language and software libraries, since the odds of 
repeating the errors or biases in the same way are low.

The reimplementation of the PUP method was done as 
a cloud-enabled service rather than as locally run software. 
Cloud-enabled services have many benefits, especially for com-
putationally demanding algorithms where the processing time 
of a local computer quickly becomes a limiting factor. The scal-
ability of a cloud computing makes it possible to quickly batch-
process larger datasets than would be practical running in the 
local computer environment. In addition, this approach simpli-
fies issues of algorithm version control and deployment to other 
researchers. We hope that the PUPpy implementation can serve 
as a platform for scientists who want to further investigate the 
clinical importance of the endotypes without having the ex-
pertise required to use the PUP implementation.

Conclusions
Respiratory endotyping is a promising method for differentiating 
physiological etiologies of sleep apnea and potential treatment 
guidance.

In this article, we have successfully reimplemented the 
endo-PUP method by Sands et al. [1] in a different software en-
vironment, validating the integrity of the original method. The 
outcome of the new implementation, PUPpy, was compared 
with the outcome of the original PUP and showed no system-
atic biases or errors. The primary validation was performed using 
flow measured by oronasal pneumotachography. Although this is 
not the standard method of measuring flow during a sleep study, 
the oronasal pneumotachography allowed us to validate the 
performance of the reimplementation without the influence of 
external factors caused by less reliable sensors. A thorough val-
idation of the PUP and PUPpy implementations using breathing 
sensors such as nasal cannulas and RIP belts deserves its own 
publication is beyond the scope of the current work. Further 
investigation is needed to investigate how best to apply these 
methods on data from a standard sleep study with the presence 
of oral and nasal breathing, sensor movement, and other sources 
of signal disturbances found in routine sleep studies.

PUPpy was implemented in Python which allows for the de-
ployment of respiratory endotyping in a scalable cloud envir-
onment. The reimplementation and its validation serve as a 
first step in developing a cloud service to provide access to the 
PUP method. As a result, sleep apnea endotyping can be offered 
to researchers who may not have the resources or expertise 

required to run the previously published MATLAB PUP method. 
This improved access will allow scientists to further investigate 
the clinical relevance of the endotypes.
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