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Abstract
Background: The epigenetics of ovarian carcinogenesis remains poorly described. We have in the
present study investigated the promoter methylation status of 13 genes in primary ovarian
carcinomas (n = 52) and their in vitro models (n = 4; ES-2, OV-90, OVCAR-3, and SKOV-3) by
methylation-specific polymerase chain reaction (MSP). Direct bisulphite sequencing analysis was
used to confirm the methylation status of individual genes. The MSP results were compared with
clinico- pathological features.

Results: Eight out of the 13 genes were hypermethylated among the ovarian carcinomas, and
altogether 40 of 52 tumours were methylated in one or more genes. Promoter hypermethylation
of HOXA9, RASSF1A, APC, CDH13, HOXB5, SCGB3A1 (HIN-1), CRABP1, and MLH1 was found in 51%
(26/51), 49% (23/47), 24% (12/51), 20% (10/51), 12% (6/52), 10% (5/52), 4% (2/48), and 2% (1/51)
of the carcinomas, respectively, whereas ADAMTS1, MGMT, NR3C1, p14ARF, and p16INK4a were
unmethylated in all samples. The methylation frequencies of HOXA9 and SCGB3A1 were higher
among relatively early-stage carcinomas (FIGO I-II) than among carcinomas of later stages (FIGO
III-IV; P = 0.002, P = 0.020, respectively). The majority of the early-stage carcinomas were of the
endometrioid histotype. Additionally, HOXA9 hypermethylation was more common in tumours
from patients older than 60 years of age (15/21) than among those of younger age (11/30; P =
0.023). Finally, there was a significant difference in HOXA9 methylation frequency among the
histological types (P = 0.007).

Conclusion: DNA hypermethylation of tumour suppressor genes seems to play an important role
in ovarian carcinogenesis and HOXA9, HOXB5, SCGB3A1, and CRABP1 are identified as novel
hypermethylated target genes in this tumour type.
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Background
Ovarian cancer is often not detected until it has reached
an advanced stage and is therefore among the most lethal
gynaecological cancer diseases. Tumour stage at diagnosis,
residual disease following cytoreductive surgery, and per-
formance status which is evaluated by Karnofsky Index [1]
are the three major prognostic factors [2]. Epithelial ovar-
ian carcinoma accounts for over 90% of all cases and
includes the following major histological subtypes:
serous-, mucinous-, endometrioid-, and clear cell- carci-
nomas. In Norway, more than 90% of patients with ovar-
ian carcinoma are older than 40 years, with a peak
incidence at the age of 75–79 [3].

A number of genetic changes have been shown to accu-
mulate during carcinogenesis, including DNA copy
number changes and various types of gene mutations.
Simultaneously, several epigenetic changes have been
shown to be present and possibly participate in the car-
cinogenesis [4,5]. DNA methylation is a well-studied epi-
genetic mechanism, defined as a heritable and enzyme-
induced chemical modification of DNA, not altering the
DNA sequence [6]. In higher order eukaryotes, cytosines
located 5' to guanosines in so-called CpG sites are the tar-
gets for methylation and a high density of such sites
within a limited stretch of DNA constitutes a CpG island
[7]. Approximately half of the human genes contain such
CpG islands in their 5' regulatory sequence, and DNA
hypermethylation of this region is associated with lost or
reduced gene expression, representing an important alter-
native mechanism for the inactivation of tumour suppres-
sor- and DNA repair- genes. Among ovarian carcinomas,
only a handful such genes have been shown to exhibit
DNA promoter hypermethylation, including the Insulin-
like growth factor binding protein-3 (IGFBP-3) [8], the
Deleted in Lung and Esophageal Cancer 1 (DLEC1) [9],
and the breast cancer gene BRCA1 [10].

Some genes, like the cell cycle inhibitor p16INK4a

(CDKN2A) and estrogen receptor (ER), are frequently
hypermethylated across several cancer types, whereas oth-
ers are more common in specific cancer types, such as
hypermethylated DAPK in lung cancer and lymphoma,
and GSTP1 in prostate-, breast-, kidney-, and liver cancer
[11]. Hence, hypermethylation of target genes seems to be
tumour-type specific and can potentially be used in the
clinic to detect neoplasms, predict tumour response, and
develop therapies that target hypermethylated tumour
suppressor genes [12,13]. Here, we present the DNA
methylation profile of 13 genes in a series of ovarian car-
cinomas and cancer cell lines. The investigated gene pro-
moters were chosen from loci previously reported to be
methylated in ovarian cancer (n = 7; APC, CDH13,
MGMT, MLH1, p14ARF, p16INK4a, RASSF1A) and from loci

methylated in other tumour types (n = 6; ADAMTS1,
CRABP1, HOXA9, HOXB5, NR3C1, SCGB3A1).

Results
Gene promoter methylation in ovarian carcinomas
Eight out of the 13 genes analyzed by methylation-specific
polymerase chain reaction (MSP) showed promoter
hypermethylation in one or more of the primary ovarian
carcinomas (n = 52), and altogether 77% (40/52) of these
tumours harboured promoter hypermethylation in at
least one of these eight genes. The results are summarized
in Table 1 and Figure 1, and representative MSP gel bands
are presented in Figure 2. HOXA9 and RASSF1A were
hypermethylated in high frequencies (26/51 51% and 23/
47 49%, respectively), APC and CDH13 at intermediate
frequencies (12/51 24% and 10/51 20%, respectively),
whereas HOXB5, SCGB3A1, CRABP1 and MLH1 were less
frequently methylated (6/52 12%, 5/52 10%, 2/48 4%,
and 1/51 2%, respectively). No methylation was detected
in ADAMTS1, MGMT, NR3C1, p14ARF, or p16INK4a. Fur-
thermore, benign (n = 2) and borderline (n = 2) ovarian
tumours were unmethylated for all analyzed genes.

Gene promoter methylation in ovarian cancer cell lines
The detailed methylation status for each cell line is shown
in Table 2. APC, CDH13, CRABP1, HOXA9, HOXB5,
RASSF1A, and SCGB3A1 were found to be hypermethyl-
ated both in the primary tumours and in ovarian cancer
cell lines, whereas ADAMTS1 and MGMT were hyper-
methylated only among cell lines. Finally, MLH1, NR3C1,
p14ARF, and p16INK4a were unmethylated in all cell lines.

Verification of DNA promoter methylation by bisulphite 
sequencing
CDH13, CRABP1, HOXA9, and SCGB3A1 were subjected
to direct bisulphite sequencing in the four ovarian carci-
noma cell lines. In general, there was a good concordance
between MSP status and bisulphite sequences, limiting
the potential detection of false positives by the first
method. The results are summarized in Figure 3 and rep-
resentative electropherograms are displayed in Figure 4.

Methylation profile compared with clinical characteristics
Patients over and under 60 years of age (mean across all
patients = 58 years) displayed a similar distribution
regarding FIGO stage, histology, and promoter methyla-
tion frequencies, with the exception of hypermethylated
HOXA9, which was significantly more frequent in
tumours from older patients (P = 0.023; Table 1).

By comparing the distribution of histological type and
clinical stage, we found that 14 out of 17 carcinomas of
the endometrioid type were of FIGO stages I to II and 18
out of 19 carcinomas of the serous histotype were of FIGO
stages III to IV. With the exception of HOXB5, higher pro-
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Representative methylation-specific polymerase chain reaction (MSP) results from primary ovarian carcinomasFigure 2
Representative methylation-specific polymerase chain 
reaction (MSP) results from primary ovarian carcinomas. 
PCR products in lane U indicate the presence of unmethylated 
alleles whereas PCR products in lanes M indicate the presence of 
methylated alleles. Panel A illustrates HOXA9 (the upper bands 
represent MSP products, whereas the lower bands are excess 
primers). Panel B illustrates SCGB3A1. Abbreviation: Pos, positive 
control (DNA from normal blood is used as control for unmethyl-
ated samples, and in vitro methylated DNA is used as control for 
methylated samples); Neg, negative control (template replaced by 
water); Lane 1–6, individual ovarian carcinomas; 100 bp DNA 
marker from Promega Corp, Madison, WI, USA. The illustration 
has been processed from a photo including more samples. Hence, 
the controls have been moved from their original position and 
pasted adjacent to the selected samples shown here.

Table 1: Methylation correlated with clinical features in ovarian carcinomas

APC CDH13 CRABP1 HOXA9 HOXB5 MLH1 RASSF1A SCGB3A1

Age group
<60 years 6/29 6/30 0/29 11/30 2/30 1/30 15/26 1/30
> = 60 years 6/22 4/21 2/19 15/21 4/22 0/21 8/21 4/22
P value NS NS NS 0.023 NS NS NS NS
FIGO stage
IA-IIC 9/25 7/24 2/24 18/24 2/25 1/24 14/23 5/25
III-IV 3/26 3/27 0/24 8/27 4/27 0/27 9/24 0/27
P value 0.052 NS NS 0.002 NS NS NS 0.020
Histological Type
Serous 3/19 1/19 0/19 4/19 2/19 0/19 8/19 0/19
Mucous 3/5 1/4 0/4 3/4 0/5 0/4 2/5 3/5
Clear cell 3/5 3/5 2/3 4/5 1/5 0/5 4/5 2/5
Endometrioid 3/17 3/17 0/16 12/17 2/17 1/17 7/14 0/17
P value NS 0.041 <0.001 0.007 NS NS NS <0.001
Grade of differentiation
Poorly 5/23 4/23 2/21 11/23 3/23 0/23 8/22 2/23
Moderate 3/14 4/15 0/14 9/15 3/15 1/15 10/13 0/15
Well 4/12 1/11 0/11 5/11 0/12 0/11 4/10 3/12
P value NS NS NS NS NS NS 0.055 0.095

Abbreviations: NS, no significance; P values are two-sided and considered statistically significant when P <= 0.05. The table is based on 52 primary 
carcinomas from 50 patients.

Methylation profile of primary ovarian carcinomasFigure 1
Methylation profile of primary ovarian carcinomas. Thir-
teen genes were analyzed by methylation-specific polymerase 
chain reaction (MSP) in 52 ovarian carcinomas. ADAMTS1, MGMT, 
NR3C1, p14ARF, and p16INK4a were unmethylated in all tumours 
samples analyzed and are excluded from the figure. Axis Y repre-
sents the promoter methylation percentage of individual genes.
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moter methylation frequencies were found among
tumours from patients with relatively early FIGO stages (I-
II) than late stages, but reached statistical significance
only for HOXA9 and SCGB3A1 (P = 0.002, P = 0.020,
respectively). The same trend could also be seen for APC
(P = 0.052).

Across all genes analyzed, the serous subtype displayed
the lowest frequencies of hypermethylation, whereas the
clear cell tumours displayed the highest (P = 0.078,
Kruskal-Wallis test). At the single gene level, this was sig-
nificant for CDH13, CRABP1, and HOXA9 (P = 0.041, P <
0.001, P = 0.007, respectively). Further, the promoter of
the SCGB3A1 gene was only hypermethylated among
mucous and clear cell tumours (P < 0.001).

No association could be seen between methylation fre-
quency and grade of tumour differentiation.

Finally, four ovarian carcinomas showed simultaneous
methylation of four or more out of the 13 genes analyzed.
Three of these tumours were of the clear cell histotype,
whereas the last tumour was endometrioid. The remain-
ing carcinomas displayed in average 1.4 methylated genes.

Methylation profiles compared with microsatellite 
instability (MSI)
In this study, microsatellite instability (MSI) status was
analyzed in 54 samples including 50 carcinomas, 2 bor-
derline, and 2 benign tumours. MSI was seen in a single
carcinoma of mixed histotype. Further, seven ovarian car-
cinomas were MSI-low, significantly associated with the
clear cell and endometrioid histotype (P = 0.013). The
remaining samples (n = 46) were microsatellite stable
(MSS). MSI status was not associated with any additional
clinical parameters, such as FIGO stage, differentiation
grade or age, although MSI-low carcinomas had a higher

methylation frequency of HOXB5 than did the MSS
tumours (P = 0.006).

Among the four ovarian cancer cell lines, SKOV-3 was MSI
whereas the other cell lines displayed a MSS phenotype.

Discussion
Our data support the view that promoter hypermethyla-
tion is a common mechanism involved in ovarian car-
cinogenesis and four target genes, HOXA9, HOXB5,
SCGB3A1, and CRABP1, novel to this cancer type are iden-
tified.

Homeodomain-containing (HOX) genes encode tran-
scriptional factors functioning during embryonic develop-
ment to control patterning, differentiation, and
proliferation (see review [14]). In mouse development,
HOXB5 shows tissue specific methylation in the adult, but
is unmethylated in the fetal tissues [15]. High methyla-
tion percentage of HOXA9 has been reported in early
stages of primary squamous cell carcinomas of the lung
[16]. In the present study, the promoter of HOXA9 was
frequently hypermethylated and associated with early-
stage (FIGO stage I-II) ovarian carcinomas. Interestingly,
the majority of these tumours were of the endometrioid
histotype. HOXA9 hypermethylation was also present in
the other histological subtypes, including the serous type,
which across all analyzed genes displayed the lowest fre-
quency of promoter methylation. No normal ovarian
samples were included in the present study. The proper
normal control would be the epithelial lining of the ova-
ries, which consists of a single cell layer. However, the lack
of methylation in benign and borderline tumours as well
as in blood indicates that the HOXA9 promoter is
unmethylated in the normal situation. Hence, aberrant
gene expression of HOXA9 may be involved in the molec-
ular pathway of ovarian carcinogenesis. A previous study
has suggested that the development of various histotypes
of ovarian cancer in mice is partly dependent on the
ectopic expression levels of HOXA9 [17], however, addi-
tional studies are needed before this can be concluded. In
the present study, HOXA9 promoter methylation was
more frequent in tumours from older patients than in
tumours from younger patients. Aging is one the most
important risk factors for development of neoplasia and
methylation has previously been shown to increase with
age [18,19]. The peak incidence of ovarian cancer is over
60 years, and aging can therefore not be excluded as a con-
tributor to HOXA9 hypermethylation in this disease.

SCGB3A1, also named HIN1 (high in normal-1), encodes
a small secreted protein, secretoglobin 3A1, and belongs
to the secretoglobin family [20]. It is reported to be a
potent inhibitor of anchorage-dependent and anchorage-
independent cell growth, cell migration, and invasion

Table 2: Methylation status in ovarian cancer cell lines

ES-2 OV-90 OVCAR-3 SKOV-3

ADAMTS1 U U/M U U
APC U U/M U U
CDH13 U U U U/M
CRABP1 M U U U/M
HOXA9 M M U/M M
HOXB5 U/M U/M U U
MGMT U/M U U U
MLH1 U U U U
NR3C1 U U U U
p14ARF U U U U
p16INK4a U U U U
RASSF1A U M M M
SCGB3A1 U U U/M U/M

Abbreviation: U, unmethylated; M: methylated.
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[21]. Hypermethylation-induced down-regulation of this
gene has been found in several cancer types, such as
breast-, non-small cell lung-, small cell lung-, colorectal-,
and testicular- cancer, suggesting a potential tumour sup-
pressor function [22,23]. We demonstrate here that
SCGB3A1 promoter hypermethylation also occurs in
ovarian carcinomas, suggesting that this event plays a role
in the development of a subgroup of these tumours.

Recently, we showed that promoter hypermethylation of
ADAMTS1, CRABP1, and NR3C1 was frequent among
colorectal carcinomas and cell lines and to a certain extent
in colorectal adenomas [24]. Since ovarian cancer also
belongs to the hereditary non-polyposis colorectal cancer
(HNPCC) tumour spectrum and the fact that sporadic
tumours of the same type often exhibit the same molecu-
lar aberrations, these three genes were included in the

Direct bisulphite sequencing verified methylation status as assessed by methylation-specific polymerase chain reaction (MSP)Figure 3
Direct bisulphite sequencing verified methylation status as assessed by methylation-specific polymerase chain 
reaction (MSP). Methylation status of individual CpG sites in HOXA9 (a), SCGB3A1 (b), and CRABP1 (c). The upper panel of 
each gene shows the CpG sites (vertical bars) amplified by the bisulphite sequencing primers. Bent arrows indicate the location 
of the MSP primers, whereas straight arrows indicate the transcription start site of individual genes. Black filled circles repre-
sent methylated CpGs; Open circles represent unmethylated CpGs; Gray circles represent partial methylation, defined as 21–
80% methylation. The column at the right side of each panel (U, M, and U/M) shows the methylation status as assessed by MSP 
analysis.
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Bisulphite sequence electropherogramsFigure 4
Bisulphite sequence electropherograms. Panel a) illustrates CpG sites 9–14 from the HOXA9 bisulphite sequencing frag-
ment in the methylated ES-2 cell line (top) and unmethylated control (bottom). Panel b) illustrates CpG sites 15–19 from the 
CRABP1 bisulphite sequencing fragment also from the methylated ES-2 cell line and unmethylated control. CpG sites are indi-
cated by arrows, whereas originally Cs converted to Ts by bisulphite sequencing are underlined. For both genes, bisulphite 
treated normal blood was used as unmethylated control.
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present study. CRABP1, which is a member of a family of
small cytosolic lipid binding proteins and encodes a cellu-
lar retinoic acid binding protein [25], was the only gene in
which hypermethylation was found and then only in two
clear cell tumours. ADAMTS1, a metalloproteinase of the
ADAM family [26], was found methylated in a single OV-
90 cell line but not in ovarian carcinomas. The CpG island
in the promoter of NR3C1 remained unmethylated in all
the samples. These findings, and the fact that neither pros-
tate-, kidney-, nor testicular- cancer showed methylation
of these genes [24], support the hypothesis that
ADAMTS1, CRABP1, and NR3C1 are targeted by hyper-
methylation preferentially in colorectal tumours.

Additionally, we analyzed seven genes which have previ-
ously been reported to be hypermethylated in ovarian
cancer, including APC, CDH13, MGMT, MLH1, p14ARF,
p16INK4a, and RASSF1A. For RASSF1A [27,28], APC
[29,30], and CDH13 [31], we found comparable methyl-
ation frequencies to previous reports, which have also
shown that promoter hypermethylation of these genes are
associated with loss of gene expression in various tumour
types [31-33]. The methylation of p16INK4a has been
shown to be important in tumour development in several
tissue types, such as the colon, lung, head and neck, pan-
creas, cervix, large bowel, leukemia and lymphoma but is
seemingly not important in ovarian cancer [34-36]. Here
we find that both p14ARF and p16INK4a were unmethylated
in all samples analyzed, which is in agreement with most
other reports [35,37]. However, McCluskey et al. [38]
identified a high frequency of p16INK4a methylation in
ovarian tumours of low malignant potential, compared
with malignant carcinomas.

Approximately, seventy percent of the microsatellite
unstable sporadic colorectal carcinomas results from loss
of MLH1 caused by DNA promoter hypermethylation
[39]. In ovarian carcinomas, methylation of MLH1 is less
common and has been reported only among clear cell and
endometrioid subtypes [40]. In the present study, only
one ovarian carcinoma, belonging to the endometrioid
subtype, harboured promoter hypermethylation of
MLH1. The methylation did not lead to loss of MLH1
expression since no sign of a MSI phenotype was shown
in this tumour, indicating that at least one allele is likely
to stay unaffected. Similarly, MGMT, a second repair
enzyme encoding gene, was methylated in a single cell
line ES-2, established from a human primary clear cell car-
cinoma, but not in any clinical samples. Although meth-
ylation of MLH1 and MGMT was uncommon in the
present study, we cannot rule out that epigenetic inactiva-
tion of DNA repair genes may be a mechanism associated
with specific subtypes of ovarian cancer.

In colorectal tumours, a CpG island methylator pheno-
type (CIMP) has been suggested, characterized by fre-
quent promoter hypermethylation [41] and associated
with the MSI phenotype [42]. The concept of CIMP has
also been demonstrated in other cancer types, such as gas-
tric cancer [43]. From the present findings, CIMP does not
seem to be common among ovarian carcinomas, as only
few tumours showed simultaneous hypermethylation of
several genes. However, CIMP is not merely defined by the
methylation frequency of randomly selected genes, but
rather by assessing the methylation status of a specific
gene panel [44]. Hence, further studies including more
MSI positive samples are required to shed light on CIMP
in ovarian carcinomas. The frequently methylated ovarian
carcinomas identified here belonged to the clear cell- and
endometrioid histotype, suggesting that wide-spread
methylation may be associated with distinct subgroups of
ovarian tumours.

The five-year survival rate for patients with early stage
ovarian cancer (FIGO stage I-II) and advanced stage can-
cer (FIGO stage III-IV) is 72% and 27%, respectively [45].
Unfortunately, most women receive their diagnosis at a
late stage when the chance of cure is low [46], which
might in part be explained by the non-specific nature of
the symptoms [47]. Identification of biomarkers for early
detection of disease could therefore significantly improve
the survival rate among these patients. Methylated DNA
can be detected in various body fluids from patients with
neoplasia and the methylation status of individual as well
as panels of genes can potentially be used for risk assess-
ment [48]. DNA methylation has previously been identi-
fied in both serum and peritoneal fluid from ovarian
cancer patients [49,50]. In the present study, we find high
methylation frequencies of HOXA9 and RASSF1A in
tumours from this patient group. If the promoter methyl-
ation can be detected also in body fluids from these
patients, the genes represent epigenetic markers that
might be included in a non-invasive diagnostic test. Even
though APC and SCGB3A1 promoter methylation is less
frequent, it is nevertheless associated with early stage
ovarian tumours and might also have a diagnostic poten-
tial. An association between high promoter methylation
frequencies and early stage ovarian carcinomas has
recently also been shown by Tam et al. [51].

Conclusion
CpG island promoter hypermethylation of tumour sup-
pressor genes is a common event in primary ovarian carci-
nomas and cell lines, and HOXA9, HOXB5, SCGB3A1,
and CRABP1, represent novel hypermethylated target
genes in this disease.
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Methods
Tissue samples
Fifty-six fresh frozen ovarian tissue samples, surgically
removed between 1993 and 2005, were collected from a
tissue bank at Department of Pathology, Rikshospitalet-
Radiumhospitalet Medical Center, University of Oslo.
Fifty-two were carcinomas, including nineteen tumours of
the serous histotype, five of mucous, five of clear cell, sev-
enteen of endometrioid, and six of mixed histotype. In
addition, two benign and two borderline ovarian tumours
were included in the present study (Table 1). The study
has been approved by The Regional Committee for Medi-
cal Research Ethics South of Norway (S-06277a), The
Social and Health Directorate (06/3280), and The Data
Inspectorate (06/5345).

Ovarian carcinoma cell lines
Four ovarian carcinoma cell lines, ES-2, OV-90, OVCAR-3,
and SKOV-3 (American Type Culture Collection, Manas-
sas, USA) were included in the present study. The ES-2 cell
line has originally been derived from a poorly differenti-
ated ovarian clear cell carcinoma with fibroblast morphol-
ogy. The remaining cell lines have been cultured from
malignant ascites from patients with adenocarcinoma. All
cell lines were cultured in RPMI medium with 10% fetal
bovine serum, 2 mM L-Glutamine, 100 units/ml penicil-
lin, and 100 ug/ml streptomycin. All reagents are from
Cambrex Bio Science Verviers in Belgium.

DNA extraction
Genomic DNA from fresh frozen ovarian cancer speci-
mens and ovarian carcinoma cell lines was extracted using
the 340A Nucleic Acid Extractor (Applied Biosystems, Fos-
ter City, CA, USA), applying standard phenol/chloroform
extraction followed by ethanol precipitation.

Bisulphite modification of DNA and methylation-specific 
polymerase chain reaction (MSP)
DNA from all samples was treated with sodium bisul-
phite, which converts all unmethylated cytosines to
uracils, whereas methylated cytosines remain unchanged
[52]. Briefly, 1.3 μg of DNA was denatured by incubation
with 0.3 M NaOH for 15 min at 37°C. Hydroquinone
(Sigma Chemical Co., St. Louis, MO, USA) and sodium
bisulphite (Sigma Chemical Co, USA) at pH 5.0 were
added to the samples to a final concentration of one mM
and 3.7 M, respectively, prior to incubation at 50°C for 16
h. Bisulphite treated DNA was purified using the Wizard
DNA clean-up kit (Promega Corp, Madison, WI, USA)
and eluted in 100 μL MQ water. In order to complete the
conversion of unmethylated cytosines, NaOH was added
to a final concentration of 0.3 M and the samples were
incubated for 15 minutes at 37°C. Modified DNA was
precipitated with 100% ethanol, 10 μg glycogen, and 0.3
M AcNH4 at minus 80°C overnight, then re-suspended in

30 μl MQ water, and stored at 4°C. Thirteen genes were
subjected to MSP [53], more specifically ADAMTS1, APC,
CDH13, CRABP1, HOXA9, HOXB5, MGMT, MLH1,
NR3C1, p14ARF, p16INK4a, RASSF1A, and SCGB3A1. Since
bisulphite modification leads to sequence differences, two
pairs of primers were used to amplify each gene (see Addi-
tional file 1), one specific for unmethylated template and
the other specific for methylated template [53]. The 25 μl
PCR mixture contained 1 × PCR buffer, 1.0–1.5 mM
MgCl2, 20 pmol of each primer, 200 μM dNTP, and
0.625–1.0 U HotStarTaq DNA Polymerase (Qiagen,
Valencia, CA). All MSP reactions were run twice, and a
third independent MSP round was performed when the
results were not concordant. Human placental DNA
(Sigma Chemical Co, St. Louis, MO, USA) treated in vitro
with SssI methyltransferase (New England Biolabs Inc.,
Beverly, MA, USA) was used as a positive control for the
methylated MSP reaction, whereas DNA from normal
lymphocytes was used as a positive control for unmethyl-
ated alleles. Water was used as a negative PCR control in
both reactions.

Bisulphite sequencing
With the use of bisulphite sequencing, original 5-methyl
cytosines can be detected as cytosines in the sequence,
whereas unmethylated cytosines will be converted to
uracils and amplified as thymines [54]. CDH13, CRABP1,
HOXA9, and SCGB3A1 (primers are given in Additional
file 1) were subjected to direct bisulphite sequencing in
the four ovarian carcinoma cell lines. The fragments were
amplified with HotStarTaq DNA Polymerase, and excess
primer and nucleotides were removed by ExoSAP-IT treat-
ment following the manufacturer's protocol (GE Health-
care, USB Corporation, Ohio, USA). The purified products
were subsequently sequenced using the dGTP BigDye Ter-
minator Cycle Sequencing Ready Reaction kit (Applied
Biosystems, Foster City, CA, USA) in an ABI Prism 3730
Sequencer (Applied Biosystems). The approximate ratio
of methyl cytosine present in each CpG site was calculated
by dividing the peak height of the cytosine signal with the
sum of the cytosine and thymine peak height signals, as
previously described [55]. CpG sites with ratios from 0–
0.2 were classified as unmethylated, ratios from 0.21 –
0.80 were classified as partially methylated, and ratios
from 0.81 – 1.0 were classified as methylated.

Microsatellite instability (MSI)
MSI status was determined in all samples using the con-
sensus panel of five microsatellite markers (BAT25,
BAT26, D2S123, D5S346, and D17S250) [56] (see Addi-
tional file 1). A tumour was considered to be MSI-high if
two or more of the five markers exhibited novel alleles
compared to normal DNA, MSI-low if only one marker
deviated from the normal pattern, and microsatellite sta-
ble (MSS) if none of the tumour genotypes showed an
Page 8 of 10
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aberrant pattern. Control DNA corresponding to the indi-
vidual tumours was not available from this patient series
and thus single allele changes, i.e. the presence of two alle-
les, can reflect the heterozygote constitutional genotype or
a homozygote with a novel tumour specific allele. Thus,
dinucleotide markers were not scored when such a pattern
appeared in the tumours.

Thirty-seven ng DNA template was amplified in penta-
plex, in a ten μl reaction volume consisting of 1 × Multi-
plex PCR Mastermix (containing buffer, 1.5 mM MgCl2,
nucleotides, and enzyme; QIAGEN GmbH, Hilden, Ger-
many), 1.2 pmol BAT25 primers (sense primer labeled
with NED in the 5' end), 1.6 pmol BAT26 primers (sense
primer labeled with 6-FAM in the 5' end), 1.6 pmol
D2S123 primers (sense primer labeled with NED in the 5'
end), 1.2 pmol D5S346 primers (sense primer labeled
with VIC in the 5' end), 3 pmol D17S250 primers (sense
primer labeled with 6-FAM in the 5' end; Applied Biosys-
tems, Foster City, CA, USA). The PCR annealing tempera-
ture was 55°C and the program included 27 cycles.

From these PCR products, 0.5 μl was mixed with 0.5 μl
GeneScan™ 500 LIZ® Size Standard (Applied Biosystems)
and 9 μl deionized formamide (Kodak Eastman Chemical
Company, New Haven, CT, USA). The samples were sub-
sequently denatured and separated by capillary electro-
phoresis on a 48-capillary 3730 DNA Analyzer (Applied
Biosystems, Foster City, CA, USA). Allelic sizes were deter-
mined using GeneMapper 3.7 software (Applied Biosys-
tems) and the results were independently scored by two
investigators. A second round of analyses confirmed the
results.

Statistical Analysis
All 2 × 2 contingency tables were analyzed using Fisher's
exact test. 3 × 2 and 4 × 2 tables were analyzed using Chi
square analysis. The potential association between meth-
ylation frequencies across all genes analyzed and tumour
histology was analyzed by Kruskal-Wallis test (SPSS, ver-
sion 11.5). P values were derived from two-tailed statisti-
cal tests and P <= 0.05 were considered to be statistically
significant.
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