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A B S T R A C T   

The biomass equation is a critical component in genome-scale metabolic models (GEMs): it is used as the de facto 
objective function in flux balance analysis (FBA). This equation accounts for the quantities of all known biomass 
precursors that are required for cell growth based on the macromolecular and monomer compositions measured 
at certain conditions. However, it is often reported that the macromolecular composition of cells could change 
across different environmental conditions and thus the use of the same single biomass equation in FBA, under 
multiple conditions, is questionable. Herein, we first investigated the qualitative and quantitative variations of 
macromolecular compositions of three representative host organisms, Escherichia coli, Saccharomyces cerevisiae 
and Cricetulus griseus, across different environmental/genetic variations. While macromolecular building blocks 
such as RNA, protein, and lipid composition vary notably, changes in fundamental biomass monomer units such 
as nucleotides and amino acids are not appreciable. We also observed that flux predictions through FBA is quite 
sensitive to macromolecular compositions but not the monomer compositions. Based on these observations, we 
propose ensemble representations of biomass equation in FBA to account for the natural variation of cellular 
constituents. Such ensemble representations of biomass better predicted the flux through anabolic reactions as it 
allows for the flexibility in the biosynthetic demands of the cells. The current study clearly highlights that certain 
component of the biomass equation indeed vary across different conditions, and the ensemble representation of 
biomass equation in FBA by accounting for such natural variations could avoid inaccuracies that may arise from 
in silico simulations.   

1. Introduction 

Flux balance analysis (FBA) is a popular approach for analyzing 
cellular metabolic behaviors in silico [1]. Unlike dynamic modelling, 
which requires detailed kinetic parameters, FBA simply uses the infor-
mation on metabolic reaction stoichiometry and mass balances around 
the metabolites, under pseudo-steady state assumption [2,3]. Such 
simplicity of FBA and the availability of massive amounts of genome 
sequences from public databases have enabled the development of 

thousands of genome-scale metabolic models (GEMs) for a multitude of 
species across all three domains of life [4]. These GEMs have been 
successfully applied in various studies including microbial evolution, 
metabolic engineering, drug targeting, context-specific analysis of high 
throughput omics data and the investigation of metabolic interactions 
among cells and/or organisms [4,5]. 

FBA is an optimization-based approach where a particular cellular 
objective is maximized or minimized while simultaneously constraining 
the mass balance, thermodynamic and enzyme capacity of a metabolic 
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network to determine the plausible steady-state fluxes [6]. Maximiza-
tion of biomass production has been the most commonly used objective 
function in FBA with a principal hypothesis that living cells typically 
strive to grow as fast as possible, particularly under the exponential 
growth phase [7,8]. Almost all reconstructed GEMs include an artificial 
reaction, referred to as the ‘biomass equation’, that accounts for the 
stoichiometric proportions of various compounds that make up macro-
molecules of the cellular biomass, e.g., protein, DNA, RNA, carbohy-
drate, and lipid, for the use as objective function during FBA. In most 
cases, the macromolecular and monomer compositions used to derive 
this biomass equation are empirically determined under a certain 
experimental condition and assumed to remain similar across a wide 
range of growth environments. However, it is well-documented that 
cellular volume and the compositions of macromolecular components 
may vary depending on growth conditions and/or genetic makeup of 
cells [9–11]. For example, the RNA/protein ratio of Escherichia coli ex-
hibits robust correlation with their growth phase and culture conditions 
such as nutrient utilization/depletion and waste-product accumulation 
[12]. Recent studies also demonstrated variation in protein and lipid 
composition in immortalized mammalian cell lines derived from the 
same original tissue [11], and dynamic nature of macromolecular 
composition in photoautotroph, Chlorella vulgaris, in phototropic and 
autotrophic conditions [13]. Therefore, the perseverative use of a 
biomass equation formulated from a single compositional dataset is 
questionable as the FBA phenotype predictions are sensitive to any 
variations in individual biomass components [14–20]. 

Efforts were recently undertaken to address the uncertainty associ-
ated with the biomass equation formulation in FBA. Lachance et al. [21] 
proposed “BOFdat”, in which genetic algorithm was used to obtain a 
particular biomass equation from a series of biomass equations which 
were stochastically generated by including/removing certain metabo-
lites to best-fit the known gene essentiality data [21]. While this 
approach utilizes data from multiple environmental conditions to draft 
the biomass equation with relevant metabolites that make up the cell, it 
still cannot address the quantitative variations within each macro-
molecular/monomer component(s). In order to address the quantitative 
variations of biomass compositions, another study proposed two ap-
proaches [22]: 1) an optimal set of trade-off weights were assigned to 
multiple biomass equations so that it can fit the maximal growth rate; 
and 2) the coefficients of metabolites in the biomass equation are esti-
mated by interpolation of known sets of macromolecular/monomer 
compositional data measured under different environmental conditions, 
assuming linearity between compositions and the environmental 
changes. The key limitation of this approach is the theoretical treatment 
of biomass variations, i.e., linear variation across environments, as 
macromolecules vary only within a certain range and not necessarily 
exhibit a linear relationship. The development of genome-scale meta-
bolism and expression models (ME-models) systematically eliminated 
the use of a biomass equation by expanding the scope through the in-
clusion of pathways that constitute the cellular transcription and 
translation, and thus able to predict compositions of proteome and 
transcriptome with the constant structural composition [23–25]. How-
ever, it is often difficult to collect all the required kinetic parameters 
such as transcription/translation rates and catalytic turnover constants 
specific to each mRNA or enzyme to establish a good quality ME-model. 

To address the uncertainties in the biomass equation and make it 
applicable across multiple environmental conditions, we first need to 
find answers to the following open questions: Do all macromolecular 
and monomer compositions in biomass vary across environmental 
conditions? If so, how significant are those variations? Do phylogenet-
ically close organisms have similar monomer compositions? How reli-
able is the estimation of biomass composition from omics datasets? How 
much does such a natural variation of biomass composition impact 
model predictions? In this study, we first examined the variations in 
biomass compositions in three representative host organisms, namely 
E. coli, Saccharomyces cerevisiae and Chinese hamster (Cricetulus griseus) 

ovary (CHO) cells to answer all the above-mentioned questions. We also 
investigated the quantitative variation between monomer compositions 
obtained from omics datasets and the experimentally measured ones. 
Based on the analysis results, we newly propose the use of an ensemble 
of biomass equations within the FBA framework, to better capture the 
natural variation in biomass compositions. 

2. Methods 

2.1. Compilation of macromolecule and monomer compositions and the 
estimation of their natural variations 

Macromolecular and monomer composition data for three repre-
sentative species, E. coli, S. cerevisiae, and CHO cells, was collected 
through a targeted literature search. Data was collected from various 
studies which reported macromolecular and monomer composition 
across various conditions including changes in environmental condi-
tions including temperature, dilution rates, oxygen concentrations, 
media compositions, and growth phases. Similar data was also collected 
from multiple mutants, strains, and cell lines of the same species. In 
addition, we also obtained the monomer composition for the species that 
are phylogenetically close to either of E. coli, S. cerevisiae, or CHO cells. 
The full list of biomass composition data and its source are available in 
Supplementary File S1. 

Natural variability of all macromolecules and monomers were 
calculated using the coefficient of variation (CV). It was calculated by 
dividing the standard deviation of collected and/or processed compo-
sition data (mass % or mole %) by the mean value of the corresponding 
biomass component. The CVs of monomers necessitated an additional 
step, where the average of multiple monomer CVs was taken to represent 
a final CV. The variability of monomers in DNA was simply determined 
based on multiple guanine-cytosine (GC)-content data crawled with a 
query of each species name of the three organisms from NCBI genome 
database. Note that the estimation of ribonucleotides composition from 
omics data was not taken into consideration when we evaluated the CVs. 

2.2. Estimation of monomer composition from omics-data 

We collected multi-omics data of E. coli, S. cerevisiae, and CHO cells 
to estimate ribonucleotide and amino acid composition. Genome data 
were obtained from NCBI RefSeq database [26], transcriptomic datasets 
were collected from the Sequence Read Archive [27] and NCBI Gene 
Expression Omnibus (GEO) [28], and proteomic data was downloaded 
from PaxDB [29]. Note that amino acid composition is not estimated 
from proteome for CHO cells due to lack of whole proteomic data for 
CHO cells in PaxDB. The source information of each omics data used in 
this study is listed in Supplementary File S2. 

For the transcriptome and proteome data, list of genes that were 
expressed were used to extract corresponding coding sequences to es-
timate the ribonucleotide and amino acid compositions. These gene lists 
were then classified into two categories: all expressed and top 10% 
highly expressed genes. In case of genome data, all known genes enco-
ded were considered. The gene sets from each category were first 
labelled according to their respective source: Genome, Transcriptome- 
all, Transcriptome-high, Proteome-all, and Proteome-high for esti-
mating amino acid composition, and Genome, Transcriptome-all and 
Transcriptome-high for ribonucleotide composition. While the coding 
sequences of genes were considered as it is for genome and tran-
scriptome data, a corresponding amino acid sequence was first obtained 
using the ExPasy translate tool. Then the frequency of monomer i (pi

M) is 
obtained from the coding sequences as follows: 
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pi
M =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θi

θAll
∀i ∈ G, if Genome, Transcriptome − all,Proteome − all

θi

θTop10%
∀i ∈ G, if Transcriptome − high, Proteome − high  

G =

{
{1, 2, 3, 4} if M = Ribonucleotide

{ 1, 2,…20 }, if M = Amino acid  

G =

{
{1, 2, 3, 4},
{1, 2, ...20}, if M = Ribonucleotide  

if M = Amino acid  

where θi stands for the occurrence of monomer i, and θAll is the total 
number of monomers. Total number of monomers in genome was based 
on coding sequences of all genes while in transcriptome and proteome 
data it was based on expressed genes only. θTop10% denotes the total 
number of monomer units encoded by top 10% expressed genes in 
transcriptome or proteome data while θAll considers all genes expressed 
(count >10). 

2.3. Sensitivity analysis of growth rates and intracellular metabolic fluxes 
upon biomass composition variations 

We used parsimonious flux balance analysis (pFBA) [30] for 
analyzing the sensitivity of growth rate and intracellular fluxes upon 
varying biomass compositions. In this method, the GEM is first con-
verted into irreversible one by converting all reversible reactions into 
two reactions in which one represent forward and the reverse direction, 
respectively. Then, the maximum possible growth rate is simulated by 
solving the following linear programming problem: 

max Z = vbiomass (P1)  

s.t Sirrev • virrev = 0  

0 ≤ virrev,j ≤ vmax,j 

where Sirrev is a stoichiometric matrix where all reactions are repre-
sented as irreversible, virrev,j is the irreversible flux through reaction j, 
vmax,j is the maximum allowable flux through reaction j, and vbiomass de-
notes the flux through biomass equation. Subsequently, the following 
linear problem is solved where the sum of all irreversible fluxes is 
minimized while simultaneously constraining the previously obtained 
flux through biomass Eq. (P1) as the lower bound 

min
∑

j
virrev,j (P2)  

s.t. vbiomass ≥ Z  

Sirrev • virrev = 0  

0 ≤ virrev,j ≤ vmax 

To investigate how flux predictions are affected by variations in 
biomass composition, we modified the coefficient of a specific compo-
nent in a reference biomass equation. The reference equation was 
established based on the average composition of biomass. We altered the 
coefficient of the target component by 25% of the average mass fraction 
(g/g dry cell weight, DCW) and normalized the equation so that the total 
sum of all components equaled 1gDCW. We maintained the original 
relative amounts of the other macromolecules in the equation. 
Furthermore, we maintained the original monomer compositions when 
varying the mass fractions of the macromolecules, and vice versa. The 
biomass equation (B) can be represented as follows: 

B(p, d, r, c, l, o) =

P(p, qamino acid)+D(d, qDNA)+R(r, qRNA)+C(c, qcarb)+L(l, qfa)+O(o, qothers)

where p, d, r, c, l, o denotes the macromolecular weight fraction of 
protein, DNA, RNA, carbohydrate, lipid, and others such as ions/co-
factors, respectively. The macromolecular synthesis equations, symbol-
ized by P, D, R, C, L, O, are functions of q vectors representing the 
composition of monomers or ions. 

By varying the biomass components iteratively, we first evaluated 
the change in in silico growth rate predictions using problem (P1). Next, 
we sought to estimate the sensitivity of metabolic flux distributions of all 
reactions to change in each biomass component. Flux vectors were ob-
tained under two conditions: the reference condition, which was based 
on the average biomass composition, and an altered biomass composi-
tion condition where we modified the biomass equations. To obtain the 
sensitivity (s), we first obtained flux vectors (v) by solving problem (P2). 
We then calculated sensitivity (s) using equation as follows: 

vref = v,when B(pmean, dmean, rmean, cmean, lmean)

s =
∑N

i

1
2

(⃒⃒vi,ref − vi,min
⃒
⃒

vi,ref
+

⃒
⃒vi,ref − vi,max

⃒
⃒

vi,ref

)

where pmean, dmean, rmean, cmean, lmean are the average fractions of protein, 
DNA, RNA, carbohydrate, and lipid, respectively. N is the number of 
reactions in a GEM. To calculate the sensitivity of protein, for instance, 
we increased or decreased its mass fraction by 25% of the average 
fraction value and normalized the fraction of the other components (d’, 
r’, c’, l’), as shown below: 

vmin = v,when B
(
(1 − 0.25) × pmean, d′, r′, c′, l′

)

vmax = v,when B((1+ 0.25)×pmean, d′, r′, c′, l′)
Finally, we divided the absolute sensitivity by the sum of absolute 

sensitivities for all macromolecules and monomers to obtain the relative 
sensitivity. 

All simulations were performed using the COBRA Toolbox v2.0 [31] 
implemented within MATLAB with Gurobi 7 as the optimization solver. 
The following GEMs were used for each organism: E. coli - iML1515 [32], 
S. cerevisiae - Yeast8.0.0 [33] and CHO cells - iCHO2291 [34]. 

2.4. Ensemble representations of biomass 

In order to represent biomass equation as ensembles and implement 
pFBA using each of the biomass equation, the first step is to establish a 
single set of ‘reference’ macromolecular/monomer compositions, which 
can be determined by calculating the mean of multiple measurements. 
The subsequent step involves randomly generating a set of ’n’ number, 
e.g., 5000, of biomass equations by altering the composition of the in-
dividual biomass components which either vary across environmental 
conditions or highly sensitive to flux predictions. Our analysis revealed 
that either all macromolecules vary significantly or are sensitive to flux 
predictions and thus need to be varied. On the other hand, we noted that 
compositions of all monomers, except fatty acids, neither vary across 
conditions nor found to be sensitive to flux predictions and need not be 
varied in biomass equations. The variation in each biomass composition 
should be carried out within a specified range indicated by the coeffi-
cient of variation (CV). Once the ‘n’ number of biomass equations is 
generated, pFBA is implemented ‘n’ times, with each iteration using a 
different biomass equation, and the resulting flux distribution is 
analyzed as range of fluxes for each reaction. 
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3. Results 

3.1. Assessing the validity of common assumptions made while drafting 
the biomass equation 

To understand the natural variations within biomass components, we 
first compiled relevant macromolecular and monomer composition data 
for three highly divergent and representative organisms, E. coli (a pro-
karyote), S. cerevisiae (a unicellular eukaryote), and CHO cells 
(immortalized cells derived from a multicellular eukaryote) from liter-
ature. In total, we obtained 352 (105, 127 and 120 for E. coli, S. cerevisiae 

and CHO cells, respectively) different cellular composition data from 
various studies which were measured across various environmental 
and/or genetic conditions: conditions which reported the cells grown in 
different substrates, different levels of oxygenation and data from mu-
tants (see Methods, Supplementary File S1). We then calculated the 
coefficient of variation (CV) of each macromolecule within unit biomass, 
i.e., 1 g of DCW, and each monomer within a particular unit macro-
molecule for each species. This analysis revealed that macromolecules 
show larger variation than monomers across the three species (CV =
6–87% compared to that of 2–50%). Within macromolecules, lipids, 
which are biomolecular compounds involved in long term energy 

Fig. 1. Inherent variations in macromolecules and monomers compositions across various species and comparison of monomer composition from experiments and 
omics data. The coefficient of variations (CVs) of five macromolecules classes (a) and 4 monomer groups (b) is provided for three species: E. coli, S. cerevisiae, and 
CHO cells. N denotes the number of each biomass composition data. The bar graphs in (c) represent relative frequency distributions (y-axis) of the Euclidean 
expression distance (x-axis, root mean squared deviation, rmsd) between monomer (amino acid and ribonucleotide) compositions obtained from experiments and 
estimated values from various combinations of omics data. 

Y.-M. Choi et al.                                                                                                                                                                                                                                



Computational and Structural Biotechnology Journal 21 (2023) 3736–3745

3740

storage and cellular membrane reconstitution, have substantially higher 
variability than other macromolecules in all three species. We also 
observed that all macromolecules showed increasing CVs in sequence of 
CHO cells, S. cerevisiae, and E. coli (Fig. 1a). Since prokaryotic cells are 
more adept in adapting to various niches through their faster exchange 
of various molecules with adjacent environments, their metabolism as 
well as cell growth can be stimulated much faster than eukaryotes, and 
thus could result in a faster turnover of cellular components, e.g., 
macromolecular composition [35]. Among monomers, while amino 
acids and nucleotides showed relatively less variability, fatty acids 
showed very large variations across different growth conditions 
(Fig. 1b). The high variability of fatty acids distributions could be 
attributed to the dynamic requirements of cellular membranes to adapt 
against perturbed environments, e.g., temperature, pH, salt, or dietary 
conditions [36–38]. In summary, the comparisons of biomass composi-
tions from multiple conditions clearly showed that while monomers 
except fatty acids are relatively stable, distribution of macromolecules 
within unit biomass vary considerably. 

It has been previously suggested that amino acid and nucleotide 
composition can be estimated from genome or transcriptome datasets 
[39,40]. Alternatively, previous studies have borrowed such data from 
phylogenetically close species: multiple yeast GEMs have used the 
nucleotide and/or monomer composition from S. cerevisiae [41–44]. We 
therefore evaluated which of these methods provide a better approxi-
mation for monomer composition. To do so, we first collected relevant 
multi-omics datasets: genome, transcriptome, and proteome for all three 
species (Supplementary File S2). We then estimated the ribonucleotide 
composition from whole transcriptome datasets and evaluated its 
“closeness” with the experimentally measured monomer composition 
across various conditions using the Euclidean distance metric – a mea-
sures of divergence between two datasets (see Methods). We also 
compared the experimentally measured and “-omics” estimated values 
with the data obtained from phylogenetically close species. The distance 
between experimentally measured ribonucleotide distributions 
(including the natural variation) and transcriptome data estimated ones 
was much lesser (indicated by a high relative frequency at low distances) 
compared to the distance calculated from phylogenetically close species 
(Fig. 1c). Next, we calculated the amino acid composition using genome, 
transcriptome, and proteome datasets and compared it with experi-
mentally measured values. It is important to note that we utilized two 
combinations of transcriptome and proteome datasets: "all" and "highly 
expressed", respectively. Based on previous suggestions, we separately 
considered the highly expressed datasets (top 10%) of mRNA transcripts 
and proteins. This approach was adopted because highly expressed 
mRNA transcripts and proteins are known to contribute significantly to 
the overall proteome outputs. While the amino acid composition esti-
mated from whole “-omics” datasets were distant from the experimen-
tally measured ones (including natural variation), the distances from 
highly expressed transcripts/proteins were significantly less than that of 
experimental measurements from close organisms, and thus high-
lighting the estimation of amino acid composition from highly expressed 
transcripts/proteins is a good choice (Fig. 1c). Overall, our analysis in-
dicates that “-omics” data, i.e., genome or transcriptome for ribonucle-
otide and highly expressed proteins or transcripts for amino acids, can 
be reliably used for deriving monomer composition within each 
macromolecule rather than borrowing it from close organisms. 

3.2. Sensitivity of macromolecular/monomer composition in phenotype 
predictions 

It has been earlier shown that FBA phenotype predictions are sen-
sitive to any variations in individual biomass components. For the first 
time, Pramanik and Keasling showed that both growth rates and intra-
cellular fluxes predicted from the metabolic model are sensitive to 
monomer compositions in E. coli [19]. Feist et al. later examined how 
growth rate predictions change in E. coli when the macromolecular 

composition is varied and observed no major influence [14]. Another 
study which performed similar sensitivity analysis in S. cerevisiae and 
reported biomass composition is indeed sensitive to flux predictions 
[15]. Such mixed observations in literature could be mainly due to lack 
of standardization in the sensitivity analyses performed; some studies 
focused only on the variations in intracellular fluxes while others 
focused on growth rate predictions, some studies analyzed the effect of 
changes in monomers while some other studies focused on macromo-
lecular variations, etc. Therefore, we next examined the sensitivity of 
predicted in silico growth rates and intracellular metabolic fluxes upon 
varying both macromolecular and monomer compositions in all three 
species across diverse environments. Particularly, the sensitivity anal-
ysis was carried out under aerobic and anaerobic conditions in E. coli, in 
three different carbon sources (glucose, xylose and ethanol) in 
S. cerevisiae and three different cell lines in CHO cells by using the 
relevant GEMs (see Methods). 

Initially, we examined the sensitivity of macromolecular and 
monomer composition on growth rate predictions. Our analysis indi-
cated that protein compositions were the most sensitive among different 
macromolecules, while DNA was found to be the least sensitive, except 
E. coli (Supplementary Fig. S2). Such a trend is expected since proteins 
and lipids have the largest fraction (by mass) in dry cell weight while the 
composition of DNA is almost negligible. Interestingly, although protein 
fraction of E. coli was three times greater than RNA, the growth rate 
prediction in E. coli was more sensitive to RNA than protein. Our analysis 
also unraveled condition specific sensitivities of macromolecular 
composition. The sensitivity of protein predicted under aerobic condi-
tion was higher than that of anaerobic conditions in E. coli. Similarly, the 
sensitivities of protein and carbohydrate were lower in reduced sub-
strate ethanol than that of glucose and xylose. Among monomers, only 
amino acid composition was observed to be relatively sensitive in 
growth rate predictions. 

Subsequently, we explored the effect of macromolecular and 
monomer compositions on flux distribution of all the intracellular re-
actions (Supplementary Fig. S3). The flux sensitivity was quantified by 
comparing the predicted fluxes in the reference state, i.e., original 
biomass equation, and those in a perturbed state, i.e., modified biomass 
equation (see Methods). Similar to the variations in growth rates, 
macromolecular compositions were sensitive to reaction flux predictions 
than the monomers (Fig. 2). Among macromolecules, intracellular fluxes 
were highly sensitive to protein composition in all three species as more 
than 40% of overall sensitivity is accounted by them. This is expected 
since protein is the most abundant component in unit biomass, and the 
number of reactions required to synthesize the 20 proteinogenic amino 
acids constitutes a large metabolic network. Similarly, we noted lipids to 
be second most sensitive component, as they are usually second most 
abundant constituent in cells next to proteins in all three species despite 
their low abundance in unit biomass. Within monomers, amino acids 
had the largest sensitivity coefficients (but still negligible compared to 
macromolecules) while fatty acids had almost dispensable sensitivities. 
This is mainly because amino acids biosynthesis pathways are made up 
of diverse reactions across the metabolic network while all fatty acids of 
different chain lengths are synthesized using the same set of reactions 
within the same pathway. Finally, we noted CHO cells to be relatively 
more sensitive to all monomers than E. coli or S. cerevisiae. 

3.3. Ensemble representation of biomass equation to account for natural 
variation in macromolecular and monomer components 

By analyzing the natural variations and the sensitivity to flux pre-
dictions, we note that both these parameters could contribute to any 
potential errors in FBA. For example, a biomass component with high 
natural variability but low sensitivity, e.g., lipids, can result in more 
significant changes in flux prediction. On the other hand, components 
with small CV and high sensitivity, e.g., protein, should also be 
considered as critical since even a small measurement error may lead to 
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large differences in flux predictions (Fig. 3). We thus propose to label 
certain biomass components as “critical”, if it falls in any of the 
following three categories: 1) high CV & high sensitivity, 2) high CV & 
low sensitivity, and 3) low CV & high sensitivity. Based on this defini-
tion, we observed all the macromolecules were critical in E. coli. In 
S. cerevisiae and CHO cells, we observed all macromolecules except DNA 
and RNA to be critical. On the other hand, fatty acid was the only critical 
component observed in the monomer category. 

To address both the natural variation in macromolecular compo-
nents and potential experimental errors in the measurement of sensitive 

biomass constituents, we propose ensemble representation of biomass 
within the FBA framework (Supplementary Fig. S4). In this approach, 
the critical biomass components that either significantly vary or are 
highly sensitive to FBA results are sampled several times within a range, 
i.e., range of natural variation, and “n” number of biomass reactions 
with various combinations were generated and normalized to make up 
1 g of cell in total (see Methods). Subsequently, FBA is implemented “n” 
times with each of the newly generated “n” biomass equation as the 
objective function. The distribution of fluxes obtained from “n” number 
of simulations are then analyzed to extract the plausible flux ranges for 
each reaction, similar to that in flux sampling approaches. Note that FBA 
with ensemble biomass is not a method with new types of constraints as 
in parsimonious FBA (pFBA) [30] or enzyme capacity constrained FBA 
(ecFBA) [34,45], rather it is an extension of FBA and can be incorporated 
into any constraint-based flux analysis method such as pFBA or ecFBA. 

To demonstrate the utility of ensemble biomass representations in 
FBA, we implemented pFBA with ensemble biomass (pFBAwEB) and 
compared its performance to pFBA with a singular biomass equation 
which was derived from the average values of all macromolecular and 
monomer compositions collected. We used relevant experimentally 
measured growth phenotypic data of E. coli under various environ-
mental conditions and genetic manipulations [46–49], and employed 
5000 different biomass permutations to obtain 5000 flux solutions for 
each pFBAwEB simulation (see Supplementary Note and Supplementary 
Fig. S1 for details). In general, when evaluating the accuracy of growth 
rate predictions, pFBAwEB had smaller error values compared to pFBA. 
This improvement is attributed to the fact that pFBAwEB predicts a 
range of growth rates rather than a single value (two-sample 
Kolmogorov-Smirnov statistic 0.7 compared to that of 1, Fig. 4a). 

To further evaluate the performance of pFBAwEB in estimating in-
ternal metabolic flux distributions, we compared it with other methods 
that address biomass composition uncertainty (BOFdat [21], BTW and 
HIP [22]) using the E. coli iML1515 model [32], under aerobic and 

Fig. 2. Sensitivity of metabolic fluxes predicted by GEMs upon varying individual biomass components. The flux distributions of reference condition, i.e., default 
biomass equation, and the perturbed condition, i.e., biomass equation obtained by varying each biomass component by 25%, were compared to obtain absolute (a) 
and relative (b) sensitivities of biomass components under various conditions. A relative sensitivity was calculated by normalizing an absolute sensitivity by the sum 
of the absolute sensitivities of all macromolecules and monomers for every model condition. 

Fig. 3. Natural variation and the flux sensitivity of various biomass component. 
The distribution of biomass components based on their coefficient of variation 
(CV) on the x-axis and sensitivity on the y-axis. Biomass components exhibiting 
high CV or high sensitivity are identified as critical components within 
our method. 
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anaerobic conditions. We used the same macromolecular composition as 
in pFBAwEB to derive a biomass equation for BOFdat. In the case of 
BTW, we generated different biomass equations for varying glucose and 
oxygen levels. For HIP, we obtained biomass equations for both aerobic 
and anaerobic conditions using four datasets of macromolecular 
composition, along with the corresponding glucose and oxygen uptake 
rates. The complete list of retrieved biomass equations for each method 
can be found in Supplementary File S3. We compared the resulting flux 
predictions from each method with experimentally measured flux data 
obtained through 13C isotope labeling [50]. The flux predictions across 

glycolysis and fermentative pathways were more or less similar in all 
methods, while pFBAwEB, BOFdat and BTW performed better in simu-
lating fluxes through anabolic pathways such as the Krebs cycle and 
amino acid biosynthetic reactions (Fig. 4b). The comparison of 13C-flux 
analysis with pFBAwEB and other methods highlights two main 
strengths of biomass ensemble representations. First, pFBAwEB presents 
biologically relevant flux ranges by accounting for the uncertainty in the 
anabolic demands while other methods provide just a single solution 
which may have variable accuracy across the entire metabolic network. 
Second, despite using an ensemble biomass representation, the 

Fig. 4. Comparison of flux distributions with and without ensemble biomass. (a) Growth rate predictions by pFBA (grey bar) and pFBAwEB (white bar), compared to 
experimental measurements (black bar), across different environmental conditions and mutants. All predictions used the same reference biomass composition. (b) 
Detailed comparison of experimentally estimated fluxes (13C MFA, solid magenta line with confidence interval range) with predicted fluxes by different methods: 
pFBAwEB (blue density plot), pFBA with the reference biomass composition (dashed black line), pFBA with BOFdat (dashed purple line) by Lachance et al. (2019), 
and pFBA with Biomass Trade-off Weighting (BTW) (dashed orange line) and Higher-dimensional-plane InterPolation (HIP) (dashed green line) by Schulz et al. [22]. 
The figure illustrates the central carbon metabolism, including the Pentose Phosphate Pathway (PPP, blue box), the TCA cycle (green box), and various amino acid 
metabolism pathways (yellow box), in E. coli under aerobic (left graph) and anaerobic (right graph) conditions. 
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predicted flux spans presented distinguishable patterns when comparing 
two different conditions, e.g., E. coli growing in aerobic vs. anaerobic 
conditions. 

4. Discussion 

Understanding the degree of natural variation in macromolecules 
and monomers is fundamental for mitigating the uncertainties in 
biomass equations and their influence in intracellular flux predictions 
using FBA. The current study investigated the natural variations in 
biomass of three representative organisms and gives a comprehensive 
overview on how cellular composition varies across organisms under 
different conditions. While most macromolecules varied significantly, 
the composition of monomers, except fatty acids, remained relatively 
stable across conditions. CV values of carbohydrate, DNA, and RNA were 
much greater than that of their corresponding monomers while protein 
and lipid showed less variability in most cases. Considering that the 
mean value and the CV are in an inverse relation, relatively small CV 
values of protein compared to other macromolecules are reasonable 
because protein accounts for the largest amount of cell weight (approx. 
50% mass fraction). Unlike macromolecules, composition of monomers 
did not vary appreciably across different conditions, except fatty acids. 
Although perturbations in fatty acid composition brought almost 
negligible differences in growth rate predictions, its influence on inter-
nal fluxes was evident in CHO cells. These observations together clearly 
indicate the necessity of accurate measurements of various biomass 
components, particularly the macromolecular composition. To this end, 
Beck et al. (2018) reviewed multiple analytical techniques and sug-
gested guidelines for accurate quantitative measurement of five major 
macromolecules [9]. 

In this study, we also examined how reliable it is to estimate biomass 
components from omics datasets and noted that it is better to use such 
estimates than borrowing this data from phylogenetically close organ-
isms. Interestingly, even though omics data sets provide good estimate 
for monomer compositions, still, there exists difference between 
experimental and estimated values (Fig. 1c), particularly genome data 
estimates had poor concordance. This may stem from two main reasons. 
Firstly, not all the encoded genes get transcribed; only around 5% of the 
genome is transcribed into RNA at any given time [51]. Second, nucle-
otide, ribonucleotide and amino acid compositions are known to vary 
locally in individual members of a population. Nucleotide composition 
varies locally in different areas of a given genome [52], and conse-
quently could result in mRNA transcripts with varying ribonucleotide 
composition. Similarly, amino acid composition differs across protein 
functional categories, probably related to consideration of translation 
rate [53]. Fortunately, even though monomer composition estimated 
from omics-data varies marginally from experimental values, it does not 
impact intracellular flux distribution significantly as the sensitivity of 
compositions of ribonucleotide and amino acids is negligible. 

Not surprisingly, all biomass uncertainty methods rely on variation 
in macromolecular and monomer composition as fundamental input 
data. However, the key distinction among all the methods lies in their 
data requirements and prediction capabilities. BOFdat requires a single 
macromolecular composition as input and optionally incorporates gene 
essentiality data specific to the desired environmental condition in the 
final step to determine the suitable biomass equation. BTW, on the other 
hand, necessitates multiple biomass compositions obtained from mea-
surements conducted under diverse environmental conditions. When we 
applied the BTW method using four distinct biomass equations derived 
from different macromolecular compositions with specific glucose and 
oxygen uptake rates, we observed that flux only flowed through one of 
the equations, deviating from the intended distribution across multiple 
biomass equations. HIP method relies on biomass composition data 
along with corresponding uptake rates of different substrates. For 
example, to simulate E. coli growth under aerobic and anaerobic con-
ditions, multiple biomass composition datasets with corresponding 

glucose and oxygen uptake rates are required. Uniquely, pFBAwEB does 
not require any additional phenotypic data to simulate across the 
environmental conditions. Moreover, pFBAwEB provides flux spans 
representing the range of possible flux values for each reaction rather 
than single value, which allows us to better handle the inherent vari-
ability and uncertainty in cellular systems. 

5. Conclusion 

Overall, we conclude that among various components of biomass, all 
macromolecules except DNA, and fatty acids among monomers, vary 
considerably under different environments. Thus, these need to be 
accounted for its natural variation carefully while drafting the biomass 
equation. We also found that the omics data-estimated composition of 
monomers, is within the observed natural variation and could be reli-
ably used. Based on such observations, we propose to use ensemble 
representations of biomass instead of a solitary equation in FBA, to ac-
count for both the natural variations and the intracellular flux sensi-
tivities to cellular composition. While such ensemble biomass 
representations can be easily obtained for an organism with multiple 
cellular compositional measurements available, we suggest using the 
range of CVs reported in this study for each biomass component to 
derive an ensemble biomass equation when appropriate data is not 
available. 
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