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Abstract. Fibroblast growth factor receptors (FGFRs) 
are encoded by at least four distinct highly conserved 
genes, and alternative splicing generates multiple gene 
products. The close relationship among different 
FGFRs has greatly increased the difficulty in generat- 
ing specific immunochemical probes. As an alternative 
strategy, we constructed a fusion protein comprising 
keratinocyte growth factor (KGF) and an IgGt Fc do- 
main (HFc). The chimeric molecule was efficiently 
secreted from transfectants as a disulfide-linked dimer 
that bound KGFRs with high affinity. Moreover, the 
KGF-HFc, like native KGF, induced DNA synthesis by 
epithelial cells implying normal functional receptor 
activation. Because it retained the convenient detection 
properties of an immunoglobulin, it was possible to 
use the KGF-HFc in ligand-mediated histochemical 
analysis of KGFRs. Flow cytometry revealed KGFoHFc 
chimera detection of the KGFR, an alternative FGFR2 
product, but not FGFR1 (fig) or FGFR2 (bek). His- 

tochemical analysis of normal skin demonstrated the 
specific localization of KGFRs within the spinous 
layer, a zone of epithelial cell differentiation. KGFRs 
were also localized to epithelial cells within a specific 
region of the hair follicle, and they were not detect- 
able in cells of the sweat gland. Tissue sections of soft 
palate and tonsil, two examples of nonkeratinizing epi- 
thelium, revealed staining of stratum spinosum and 
some staining of the basal cell layer as well. Neither 
salivary gland epithelium nor lymphoid cells were 
positive. The ciliated epithelium of the trachea ex- 
hibited KGFR expression in intermediate and basal 
cell layers. In striking contrast to the normal pattern 
of staining in the adjacent epithelium, a squamous cell 
carcinoma of skin lacked detectable KGFP, s. Our pres- 
ent findings suggest that growth factor-Ig fusion pro- 
teins may be generally applicable in ligand-mediated 
histochemical detection and localization of growth fac- 
tor receptors. 

ERATINOCYTE growth factor (KGF) L is a member of 
the FGF family. Originally isolated from human em- 
bryonic fibroblast conditioned medium, KGF is ex- 

pressed by stromal fibroblasts of many epithelial tissues, and 
it is unique among FGF family members in its epithelial cell 
target specificity (Rubin et al., 1989; Finch et al., 1989). 
During wound healing, KGF mRNA expression is dramati- 
cally increased in comparison to that of the other FGFs 
(Werner et al., 1992a). Additionally, KGF appears to play 
an important role as a paracrine effector in the development 
and differentiation of a variety of epithelial tissues (Werner 
et al., 1992b; Marchese et al., 1990; Alarid et al., 1994). 
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KGF binds and activates the KGF receptor (KGFR), a 
membrane-spanning tyrosine kinase generated by alternative 
splicing of FGFR2 (one of four members of the FGF recep- 
tor [FGFR] family). The FGFR extracellular domain is 
comprised oflg-like domains. By analysis of a series of natu- 
rally occurring FGFR alternative products, Ig-like domain 
I appears dispensable for ligand binding (Miki et al., 1991). 
Additional gene products arise from the alternative splicing 
of the Ig-like domain m-encoded exons, which confer very 
different ligand binding properties (Miki et al., 1991; Givol 
and Yayon, 1992; Fantl et al., 1993). In particular, the 
FGFR2 gene product binds aFGF and bFGF, but not KGF, 
while the alternative KGFR product binds aFGF and KGF 
at high affinity, but bFGF at much lower affinity (Bottaro et 
al., 1990; Yayon et al., 1992). 

The nearly identical nature of the KGFR and FGFR2 iso- 
forms has made it difficult to develop specific immunochem- 
ical probes with which to elucidate patterns of receptor dis- 
tribution and expression. To overcome these obstacles, we 
engineered a chimeric molecule between cDNAs encoding 
KGF and the immunoglobulin G Fc domain. Our results 
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demonstrate that this strategy may be generally applicable to 
the development of highly specific probes for cell surface 
receptors and in targeting molecules to intracellular sites of 
specific cell populations. 

Materials and Methods 

Construction of Recombinants 
The region encoding the hinge, CH2, and CH3 domains (HFc) of a eDNA 
(LaRochelle, W. J., unpublished observation) for the mAb sis I (LaRochelle 
et al., 1989) heavy chain was amplified by the PCR (Cetus Corp., Norwalk, 
CT) so as to contain an Xhol-cloning site 5' and in frame with the HFc PCR 
product, as well as BamHl sites at both termini. BamHI restriction en- 
donucleasc digestion of the HFc PCR product and ligation into the BamHI 
site of the pUCI8 plasmid cloning vector created pUCIS-HFc. The BamHI 
excision sites of pUC 18-HFc allowed insertion of the HFc cDNA into the 
BglII site of the MMTnco plasmid (LaRochclle et al., 1990) resulting in the 
MMTneo-HFc expression vector (Fig. I). A second vector, MMTnco-spHFc, 
was generated by adding the PDGF A signal peptide (sp) upstream and in 
frame with the Xhol-cloning site of MMTneo-HFc. The KGF-cncoded 
cDNA (Finch et al., 1989) minus the stop codon was amplified with Xhol- 
or SalI-compatible ends by PCR, digested with the appropriate restriction 
enzyme and cloned in frame with the HFc eDNA of MMTnco-HFc. 

Transfection and Analysis of KGF-HFc Expression 
Plasmid DNA from the KGF-HFc MMTneo construct was transfected into 
NIH 3T3 ceils by the calcium phosphate precipitation technique (Wiglet et 
al., 1977). Colony formation after selection in G418-contalning medium 
was used as an internal marker of transfection efficiency. 

KGF-HFc transfectants were washed and incubated for 30 rain in 
methionine- and cysteine-free DME containing 25 #M zinc chloride fol- 
lowed by metabolic labeling with [35S]methionine (125 ~Ci/mi) and 
[3SS]cysteine (125 #Ci/ml) for 3.5 h. After collection, conditioned medium 
was immunoprecipitated with a KGF monoclonal antibody 1G4 (Alarid et 
al., 1994) or anti-mouse Fc (Pierce-Chemical Co., Rockford, IL ) followed 
by Staphylococcus aureus protein A-Sepharose CL-4B. The immunoprecip- 
itated proteins were then resolved by SDS-PAGE and visualized after 
fluorography. 

Ligand-binding Assay 
32D cells are an IL-3-dependent hematopoietic cell line that do not nor- 
really express KGFRs. An expression vector containing the KGFR was in- 
troduced into naive 32D cells by electroporation and marker selected 
(Pierce, J. H., unpublished observation). 32D cell KGFR transfectants were 
harvested by centrifugation, washed in DME, and gently resuspended in 
binding buffer (DME, 25 mM Hepes, pH 7.4, 1 mg/rnl BSA, and 1 ~g/mi 
heparin). To this cell suspension was added increasing concentrations of un- 
labeled KGF-HF, c, enriched by protein A chromatography, as well as a 
saturating amount of 125I-KGF (2 ng) prepared by our standard iodination 
protocol (Bottaro et al., 1990; Ron et al., 1993 ) in binding buffer. After 
1 h at 16°C, the cell suspension was layered onto 300/zl of a chilled oil 
mix (n-butyl phthalate [Fischer Scientific, Pittsburgh, PA]/bis (2-ethylhexyl) 
phthalate 1.5:1 (Eastman Kodak Co., Rochester, NY). Cells were cen- 
trifuged in an Eppendorf microfuge at I0K for 10 rain at 4°C. The cell pellet 
was removed and counted in a gamma counter (model 5500; Beckman In- 
struments, Inc., Fullerton, CA). 

Mitogenic Assay 
Thymidine incorporation into BALB/MK cells was performed as described 
(Rubin et al., 1989; Ron et al., 1993). Briefly, varying concentrations of 
recombinant KGF (Ron et al., 1993 ) or KGF-HFc protein were added to 
quiescent cultures. Cells were incubated at 37°C for 16 h, followed by 
[3H]thymidine addition for 5 h. Cells were washed, harvested, and 
[3H]thymidine uptake was measured by liquid scintillation counting. In 
some cases, a KGF-neutralizing monoclonal antibody or heparin (Sigma 
Chemical Co., St. Louis, MO) was added to mitogenically equivalent 
amounts of KGF or KGF-HFc. 

Flow Cytometric Analysis 
NIH 3T3 cells were transfected with either the KGFR, FGFR2 (lack), or 
FGFR1 (fig) by standard calcium phosphate precipitation technique (Wigler 
et al., 1977). Similar levels of each receptor were expressed by each 
marker-selected cell population (Bonam, D. P., unpublished observation). 
B5-589 cells or NIH 3T3 cells transfected with either the KGFR, FGFR2 
(bek), or FGFR1 (fig) were removed from 10-cm culture dishes with 1% 
EDTA, PBS, pH 7.4, pelleted, and incubated for 10 rain at room tempera- 
ture in DME, 10 % fetal calf serum, 0. 5 % milk, 0.01% Twcen 20, and 0.3 M 
NaCI to block nonspecific binding. The cells were again pelleted and 
resuspended in conditioned medium from KGF-HFc or control HFc trans- 
fectants adjusted to 0.5% milk, 0.01% Twccn 20, 0.3 M NaCI, and 10 mM 

Figure 1. Engineering a KGF-HFc chimera. (A) The KGF-encoded 
eDNA minus its stop codon was recombined with the HFc portion 
of the mouse immunoglobulin IgGt heavy chain eDNA at the 
hinge region as described in Materials and Methods. (B) eDNA se- 
quence and encoded amino acid residues adjacent to the XhoI- 
cloning site of MMTneo HFc are shown. (C) The HFc portion of 
the immunoglobulin heavy chain gene was subjected to the poly- 
merase chain reaction to generate BamHI-compatible ends and 
cloned into pUC 18. The HFc PCR product also contained an XhoI- 
cloning site introduced by PCR 5' and in frame with the Fc domain, 
but downstream of the 5' BamHI site. The HFc fragment was re- 
moved from pUC18 by BamHI restriction endonuclease digestion, 
and it was cloned into the BglU site of the MMTneo vector. The 
KGF eDNA was amplified by PCR with SalI-compatible ends, 
digested with 'restriction enzyme, and ligated into the XhoI site of 
the MMTneo HFc vector in frame with the Fc domain. 
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sodium benzoate for 10 min at room temperature. Cells were washed twice 
with PBS, pH 7.4, 0.01% Tween 20. Bound primary antibody was detected 
after incubation for 10 min with FITC-conjugated goat anti-mouse IgG 
(Biosource International, Camarillo, CA) diluted 1/100 in DME, 0.5% 
milk, 0.01% Tween 20, and 10 mM sodium benzoate. Cells were washed 
twice with PBS, pH 7.4, 0.01% Tween 20, resuspended in 600 ~tl of Haema- 
line and processed using a FACSCAN TM analyzer (Becton Dickinson Im- 
munocytometry Systems, Mountain View, CA) (Ashmun et al., 1989). 

Ligand-mediated Histochemistry 

Ligand-mediated histochemistry was performed on frozen sections of hu- 
man skin fixed in 1% acetone/1.0 mM trichloroacetic acid/ethanol for 2 rain, 
then transferred to 100% ethanol, followed by 50% ethanol, and then PBS, 
pH 7.4. Slides were treated in PBS, pH 7.4, 1.5 M NaC1 for 30 rain, then 
washed in PBS, pH 7.4. The sections were blocked for 1 h at room tempera- 
ture with 5.0% Milk, 0.1% Tween 20, and PBS, pH 7.4, which was previ- 
ously cleared by centrifugation at 20,000 g for 20 rain. The slides were then 
incubated with KGF-HFc or control HFc-conditioned medium adjusted to 
5.0% milk, 0.01% Tween 20, 0.3 M NaC1, and 10 mM sodium benzoate for 
1 h at room temperature followed by three washes with PBS, pH 7.4, 0.01% 
Tween 20. The sections were then treated with rabbit anti-mouse IgG~ 
conjugated to horseradish peroxidase (Boehringer Mannheim Biochemi- 
eals, Indianapolis, IN) diluted 1/100 in DME, 5.0% milk, 0.01% Tween 20, 
and 10 mM sodium benzoate for 1 h. The slides were then washed three 
times in PBS, pH 7.4, 0.01% Tween 20 and three times in PBS, pH 7.4. The 
color reaction was performed as described (Harlow and lane, 1988) using 
diamino banzidine tetrachloride (DAB) according to the manufacturer's 
protocol (Pierce). In some experiments, the ImmunoPure DAB substrate kit 
(Pierce) was used according to the manufacturer's protocol. Similar protein 
levels of KGF-HF'c or control HFc were used in ligand-mediated histoehem- 
ical experiments. However, the control HFc showed no staining of tissue 
sections, even at a 10-fold higher concentration than KGF-HFc. 

In Situ Hybridization 

In situ hybridization was performed on deparattinized tissue sections essen- 
tially as described (Wilkinson et al., 1987), using 33p-labeled probes at a 
concentration of 0.2 ng/ml per kb length of cloned fragment in hybridization 
buffer (50% deionized formamide, 0.3 M NaCI, 20 mM Tris HCI, pH 8.0, 
5 mM EDTA, 10% Dextran sulfate, 1× Denhardt's buffer, and 0.5 mg/ml 
yeast RNA). Tissue sections were hybridized at 55°C for 16-18 h and then 
washed under high stringency conditions (2× SSC and 50% formamide at 
65°C) for 30 rain. Nonhybridized probe was digested with 20 mg/ml RNase 
A for 30 rain at 37"C. After further washing under high stringency condi- 
tions, slides were dehydrated through graded alcohols containing 0.3 M am- 
monium acetate. Sections were dipped in NTB-2 emulsion (Kodak), diluted 
1:1 in water, air dried, and stored desiccated at 4*C. After appropriate ex- 
posure times, slides were developed in Kodak D-19 developer and counter- 
stained with 0.02 % toluidine blue. 

Thus, we reasoned that deletion of the variable and CH1 do- 
mains from the heavy chain would facilitate dimer secretion 
and that grafting KGF to the random structure of the hinge 
would allow maximal adaptability consistent with presenta- 
tion of growth factor biologic function. 

To engineer the HFc expression construct, we exploited 
the polymerase chain reaction to generate BamHI-com- 
patible ends on the HFc portion of the immunoglobulin 
heavy chain eDNA that was subsequently cloned into the 
BamHI site of pUC 18. The HFc eDNA insert was also en- 
gineered to contain an XhoI-cloning site in frame and 5' to 
the HFc region, but within the BamHI sites (Fig. 1). The HFc 
fragment was removed from pUC18-HFc by BamHI diges- 
tion and cloned into the BgllI site of the MMTneo vector. 
The KGF coding sequence was then amplified by PCR with 
either XhoI- or SalI-compatible ends, restriction enzyme 
digested, and subcloned into the MMTneo HFc vector in 
frame with the IgG HFc domain (Fig. 1). 

KGF-HFc Chimeric Gene Product Possesses Both KGF 
and lgGl Fc Domain Determinants 

The KGF-HFc construct was transfected into NIH 3T3 cells 
to investigate the immunochemical and biochemical proper- 
ties of the encoded product. Marker selected mass cultures 
were radiolabeled with [35S]methionine and psS]cysteine. 
Although protein A alone detected the chimeric gene prod- 
uct in culture fluids, the signal was '~15- to 20-fold greater 
when protein A was used with either KGF monoclonal anti- 
body or anti-mouse Fc (data not shown). To establish that 
KGF-HFc possessed the immunochemical determinants of 
KGF, culture fluids were collected and incubated with a KGF 

Results 

Strategy for KGF-HFc Chimera Construction 

In an effort to generate a high affinity KGFR-specific probe 
with the well-characterized detection properties of an immu- 
noglobulin, we designed a chimera in which the KGF eDNA 
was recombined with the HFc portion of the mouse immuno- 
globulin IgG~ heavy chain eDNA at the hinge region (Fig. 
1). Inherent difficulties with this approach included poor 
secretion and rapid degradation of the heavy chain in the ab- 
sence of the partner light chain, respectively (Capon et al., 
1989). However, Cogne and co-workers reported thiit struc- 
turally abnormal heavy chains, containing only CH2 and 
CH3 domains, were efficiently secreted apparently because 
of the deletion of the CH1 domain (Cogne et al., 1992). Ad- 
ditionally, the flexibility and adaptability of the hinge region 
of the heavy chain was well documented (Burton, 1985). 

Figure 2. Immunochemical analysis of KGF-HFc chimera. Meta- 
bolically labeled conditioned medium from mock (lanes 1 and 3) 
or KGF-HFc MMTneo (lanes 2 and 4) transfectants was immuno- 
precipitated with anti-KGF monoclonal antibody (lanes I and 2) or 
anti-mouse Fc antibody (lanes 3 and 4), as described in Materials 
and Methods. Immunoprecipitates were recovered with protein 
A-Sepharose, subjected to SDS-PAGE, and the immunoreactive 
species were visualized after fluorography. 
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Figure 3. Comparison of KGF-HFc and KGF biologic activity. (A) 
The biologic activity of the KGF-HFc ([3) or KGF (o) was mea- 
sured on quiescent BALB/MK ceils. Cells were first incubated with 
the indicated concentration of chimeric gene product or growth fac- 
tor. After 16 h at 37°C, [3H]thymidine was added for 5 h. Cells 
were then washed, harvested, and [3H]thymidine uptake was mea- 
sured by liquid scintillation counting. In some cases, a KGF- 
neutralizing monoclonal antibody (closed symbols) was added to 
confirm the specificity of either the KGF-HFc (m) or KGF (o). (B) 
Quiescent BALB/MK ceils were incubated with the indicated con- 
centration of heparin followed by addition of mitogenically equiva- 
lent amounts of either KGF-HFc ([]) or KGF (o), as described in 
Materials and Methods. 

monoclonal antibody followed by immunoprecipitation with 
protein A-Sepharose. As shown in Fig. 2, three distinct p94- 
98 immunoreactive species were observed. When the condi- 
tioned medium was incubated instead with anti-mouse IgG 
Fc, the same p94-98 species were observed (Fig. 2). In con- 
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Figure 4. Flow cytometric analysis of KGF-HFc binding to mem- 
bers of the FGFR superfamily. KGF-HFc was incubated with B5- 
589 cells (. • .) or NIH 3T3 cells transfected with the KGFR ( ...... ), 
bek (- - -), or fig ( .. . . .  ), and it was subjected to flow cytometric 
analysis, as described in Materials and Methods. As an additional 
control, untransfected NIH 3T3 cells showed background staining 
comparable to bek and fig. Furthermore, the control HFc domain 
of the parental IgG did not recognize B5-589 or NIH 3T3 KGFR 
transfectants (data not shown). Bound KGF-HFc was detected with 
FITC-conjugated rabbit anti-mouse IgG. Cells were processed as 
described (LaRochelle et al., 1993) using a FACSCAN TM analyzer. 

trast, these species were not found in immunoprecipitates of 
conditioned medium from control MMTneo transfectants. 

Since KGF-HFc possessed the IgGt heavy chain hinge re- 
gion known to cause IgG dimer formation, we sought to de- 
termine whether KGF-HFc was a disulfide-linked dimer. Ad- 
dition of 100 mM DTT before SDS-PAGE was associated 
with increased mobility of  an apparent 48-kD species after 
immunoprecipitation with either the KGF mAb or anti- 
mouse HFc (Fig. 2). Thus, this efficiently secreted molecule 
possessed structural determinants of  both KGF and the im- 
munoglobulin Fc domain. 

Functional Properties of  the KGF-HFc Chimeric 
Gene Product 

To determine whether the KGF-HFc exhibited KGF biologic 
properties, we investigated its ability to induce [3H]thymi- 
dine uptake in KGF responsive BALB/MK cells. As shown 
in Fig. 3 A, the KGF-HFc readily stimulated [3H]thymidine 
uptake. In comparison with recombinant bacterially ex- 
pressed KGF, which induced half-maximal stimulation at 
'~10 pM, the mammalian expressed KGF-HFc half-max- 
imally stimulated DNA synthesis at ~,,45 pM. Thus KGF- 
HFc was comparable to KGF purified from mammalian cells 
which is also fivefold lower in mitogenic activity than the 
bacterial recombinant ligand (Ron et al., 1993). DNA syn- 
thesis induced by the chimera was inhibited by >75 % by a 
KGF-neutraiizing monoclonai antibody, demonstrating the 
KGF specificity of  the mitogenic activity. As additional con- 
trols, neither the secreted HFc portion of  IgG, nor control 
IgGt monoclonal antibody induced detectable [3H]thymi- 
dine uptake (data not shown). 

Functional properties of  KGF include its ability to interact 
with heparin, which dramatically inhibited KGF induced 
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Figure 5. Ligand-mediated histochemical analysis of KGFR expression in human epidermis. KGFR expression was probed with KGF-HFc 
(A-C) or control HFc (D) on tissue sections from normal human skin. KGF-HFc was detected with rabbit anti-mouse IgGt conjugated 
to horseradish peroxidase, as described in Materials and Methods. KGFR was localized to the stratum spinosurn of normal epidermis (A) 
and the bulb region of the hair follicle (B). The stratum basale also stained to a lesser extent. No staining was observed in the upper 
portion of hair follicles (B) or in sweat glands (C). Control HFc showed no staining of the epidermis (D). Bar, 10 #rn. 

proliferation (Bottaro et al., 1990; Ron et al., 1993). As 
shown in Fig. 3 B, heparin in the range of 1-5 #g,/rrd inhibited 
both KGF-HFc and recombinant KGF to equivalent extents 
of >80%. In other studies, heparin Sepharose, but not 
Sepharose, precipitated both KGF-HFc and KGF, but had 
no effect on the secreted HFc portion of IgG~ (data not 
shown). These findings confirmed that heparin interacted 
specifically with the KGF portion of the chimeric molecule. 

We next compared the ability of KGF-HFc and KGF to 
bind 32D cell transfectants expressing the KGFR by Scatch- 
ard analysis (data not shown). KGF-HFc bound to 32D 
KGFR transfectants with a / G  of ,~1.4 nM, while recom- 
binant KGF possessed a dissociation constant of 0.13 nM. 
Under these conditions, neither molecule detectably bound 

parental 32D cells nor control HFc failed to compete with 
iodinated growth factor binding (data not shown). All of the 
above results indicated that the KGF-HFc possessed the 
KGFR-binding properties and mitogenic signaling functions 
of native KGE 

KGFR-specific Detection by KGF-HFc 
To demonstrate the specificity of KGF-HFc in KGFR im- 
munodetection assays, we used flow cytometry. The chi- 
meric molecule was incubated with NIH 3"1"3 cell transfec- 
tants expressing the KGFR, FGFR2 (bek), or FGFR1 (fig), 
as well as B5-589 human breast epithelial cells. As shown 
in Fig. 4, flow cytometry revealed that the KGF-HFc readily 
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Figure 6. Localization of KGFR 
mRNA in human epidermis by in 
situ hybridization. (,4) Bright- 
field micrograph of a toluidine 
blue-stained tissue section of 
normal human epidermis. (B) 
Corresponding dark-field micro- 
graph demonstrating hybridiza- 
tion signal for KGFR mRNA in 
the stratum spinosum and basale 
of the epidermis. Bar, 10 ttm. 

recognized the NIH 3T3 KGFR transfectants as indicated by 
the 5- to 10-fold increase in fluorescent intensity compared 
to untransfected NIH 3T3 cells. In contrast, NIH 3T3 trans- 
fectants expressing similar receptor numbers of the alterna- 
tively spliced FGFR2 or FGFR1 showed no increase in stain- 
ing over that of untransfected NIH 3T3 cells. The chimera 
also readily detected B5-589 cells that express ,05 x 104 
KGFRs (Bottaro et al., 1990 ). Under the same conditions, 
the control HFc failed to recognize either B5-589 or the NIH 
3T3 KGFR transfectants (data not shown). All of these 
findings demonstrated the exquisite specificity of KGF-HFc 
in the recognition of the KGFR. 

Ligand-mediated Histochemical Localization of  
KGFRs in Human Epithelium 
The highly specific nature of KGFR recognition by the KGF- 

HFc chimera led us to investigate its application in the local- 
ization of KGFRs in human epithelial tissues. Thus, cryo- 
preserved sections of human epithelium were incubated with 
the KGF-HFc or control HFc followed by detection with 
anti-mouse Fc conjugated to horseradish peroxidase. As 
shown in Fig. 5 A, specific staining with KGF-HFc was ob- 
served within the stratum spinosum of the epithelium and to 
a lesser extent, the stratum basale. Staining was uniform 
around the spinous cell surface with no evidence of polarity. 
The stratum corneum and granulosum all lacked detectable 
reactivity under the same conditions. Fig. 5 B demonstrates 
that the bulb region of the hair follicle (Fig. 5 B, left side) 
stained intensely with the KGF-HFc, while the upper portion 
of a hair follicle (Fig. 5 B, right side) did not stain. A typical 
sweat gland, as shown in Fig. 5 C, showed little or no stain- 
ing under these conditions. As a specificity control, HFc 
alone showed no staining (Fig. 5 D). 
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Figure 7. Ligand-mediated histochemical analysis of KGFR expression in normal human tissues of the oral cavity. KGFR expression was 
probed with KGF-HFc on tissue sections from normal human soft palate (A and B), tonsil (C), or trachea (D), as described in Materials 
and Methods. (B) KGF-HFc staining of KGFRs of soft palate was detected with DAB-enhanced metal staining. No KGFR staining was 
observed in salivary glands (A), lymphoid tissue (C), or mesenchyme. In each case, control HFc at similar protein concentrations showed 
no staining of tissue sections (data not shown). Bar, 10 tim. 

To provide further evidence for the specificity of the stain- 
ing pattern obtained with the KGF-HFc chimera, we exam- 
ined the spatial expression of the KGFR transcript in 
paraffin-embedded sections of normal human skin using in 
situ hybridization. As shown in Fig. 6, KGFR mRNA was 
expressed in both the stratum spinosum and basale of the 
epidermis, but not in the stratum corneum or granulosum. 
Additionally, KGFR mRNA was also detected in hair folli- 
cles (data not shown), in agreement with the pattern of stain- 
ing seen with the KGF-HFc chimera. Control sections hy- 
bridized with the corresponding sense strand transcript 
showed no signal (data not shown). These experiments fur- 
ther demonstrate the specificity of KGF-HFc staining in tis- 
sues that express the KGFR transcript. 

We next investigated the presence of the KGFR in the soft 

palate, an example of nonkeratinizing stratified epithelial tis- 
sue. As shown in Fig. 7 A, the stratum spinosum stained 
most intensely for the KGFR. Of note, KGF-HFc staining of 
salivary glands was not detectable in the same sections. 
A metal-enhanced DAB reaction showed intense staining 
throughout the stratum spinosum with weaker staining adja- 
cent to the stratum granulosum and in the basal cell layer 
(Fig. 7 B). Another nonkeratinizing epithelial tissue, the 
tonsil (Fig. 7 C) demonstrated KGF-HFc staining of both 
stratum spinosum and basale with little or no KGFR-specific 
staining of the lymphoid cells. KGFR expression was also 
studied in the trachea, an example of ciliated cylindrical epi- 
thelial tissue. KGF-HFc was immunoreactive with both the 
intermediate and more basale layers (Fig. 7 D). The salivary 
glands and mesenchymal cells of the trachea showed no 
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Figure 8. Ligand-mediated histoehemical analysis of KGFR expres- 
sion in a human squamous cell carcinoma of the oral cavity. KGFR 
expression was probed with KGF-HFc on tissue from a squamous 
cell carcinoma, as described in Materials and Methods. Note the 
striking absence of tumor cell KGFR staining, while the adjacent 
epithelium exhibited the normal pattern of KGFR expression. Con- 
trol HFc did not stain (data not shown). Bar, 10 tLm. 

KGF-HFc staining. The control HFc did not stain any of 
these epithelial tissues under identical conditions (data not 
shown). 

Finally, we investigated KGFR expression in a squamous 
cell carcinoma of the oral cavity. The carcinoma cells were 
entirely devoid of KGFRs, while the normal pattern of KGFR 
expression was observed in the adjacent epithelium (Fig. 8). 
Whether the lack of detectable KGFRs represents a general 
pattern for squamous cell carcinoma or provides a marker 
for a particular tumor phenotype remains to be determined. 
In any case, all of the above findings demonstrate the highly 
specific patterns of KGFR expression observed in the differ- 
ent epithelial tissues examined. 

Discussion 

Our present studies describe the application of a growth fac- 
tor Ig fusion protein to the specific immunodetection of cell 
surface receptors. This approach confers particular advan- 
tages where highly related receptors make their discrimina- 
tion very difficult. To our knowledge, there are as yet no 
polyclonal or monoclonal antibodies that can even dis- 

criminate between the external domains of different mem- 
bers of the FGFR gene family. We demonstrated that the 
KGF-HFc chimera readily detected its cell surface receptor, 
the KGFR, an alternative product of FGFR2, yet did not de- 
tect the FGFR2 despite the fact that these receptors differ 
only within a small stretch of their respective external do- 
mains (Miki et al., 1991; Givol and Yayon, 1992; Fantl et al., 
1993). The ability to generate such specific immunochemi- 
cal probes in a systematic manner also obviates the time- 
consuming process of generating and screening monoclonal 
antibodies. We demonstrated further that KGF-HFc ex- 
hibited high receptor affinity and the ability to induce DNA 
synthesis in target cells that express KGFRs. The ability to 
transduce a mitogenic signal contrasts with many monoclo- 
hal antibodies directed against receptors such as those to the 
a-PDGFR or CSF-1R, which bind avidly but do not activate 
receptors (Ashmun et al., 1989; LaRochelle et al., 1993). 

The secretory properties of the KGF-HFc chimera were 
such that with the metallothionein expression construct 
used, it was possible to generate quantities only a few fold 
less than that produced from cultured hybridoma cell lines. 
Efficient secretion in part was related to the choice of pro- 
moter in the construct. However, it was likely also caused 
by the deletion of the CH1 domain from the heavy chain. 
There is evidence that the normal heavy chain is poorly 
secreted in the absence of light chain (Capon et al., 1989; 
LaRochelle, W. J., unpublished observations), and there are 
reports that individual heavy chains efficiently secreted dur- 
ing immunoproliferative disorders lack the CH1 domain 
(Cogne et al., 1992). Functional heavy chain molecules that 
lack the CH1 domain have also been found to be secreted 
in at least one nonhuman mammalian species (Harners- 
Casterman et al., 1993). Thus, deletion of the CH1 domain 
may circumvent the need for the light chain partner in heavy 
chain secretion (Capon et al., 1989). KGF-HFc secretion 
was sufficiently robust that it was possible to use culture 
fluids harvested in the absence of further purification for 
KGFR immunodetection. 

Ligand-mediated histochemical staining of skin with the 
KGF-HFc provided the first observations of KGFR expres- 
sion and distribution in an intact tissue. We observed KGFRs 
most intensely in the spinous cell layer directly adjacent to 
the basal cell layer. Most importantly, correlation of the 
histochemical localization of KGFRs in normal human skin 
by KGF-HFc with the spatial pattern of KGFR mRNA ex- 
pression detected by in situ hybridization demonstrates 
mechanistically that the cellular sites of KGFR transcription 
correspond to the sites of its gene product expression. 

It has been reported that keratinocyte proliferation is 
confined to and defines the basal cell layer (Fuchs, 1990). 
The spinous cells ultimately differentiate into the granu- 
lar cell layer and finally into the stratum corneum. Thus, 
KGFR staining appears to coincide with cells undergoing 
differentiation in addition to proliferation. We showed that 
KGF-HFc, like KGF itself (Bottaro et al., 1990; Ron et al., 
1993) directly interacts with heparin. However, several lines 
of evidence suggest that heparan sulfate-like proteoglycans 
were not bound under the conditions that were used. First, 
KGF-HFc immunodetection performed in the presence of 
0.5 M NaCI eliminated a broad and weakly diffuse stain- 
ing pattern presumably attributable to the extracellular ma- 
trix heparan sulfate-like proteoglycans. Furthermore, the 
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low concentration of KGF-HFc that is required to achieve 
maximum saturable staining implies the presence of high 
affinity rather than low affinity binding sites. Finally, the pat- 
tern of staining makes it unlikely that extraceUular matrix 
components were recognized, since regions of epidermis 
known to contain these components, as well as control NIH 
3T3 cell transfectants that secrete heparan sulfate-like pro- 
teoglycans, were not stained. 

Recent reports have demonstrated the functionality of chi- 
meric receptor proteins fused to immunoglobulins. The use 
of bifunctional molecules engineered as IgG heavy chain 
chimeras was first reported for the CD4 immunoadherin 
(Capon et al., 1989). Since then, receptor-IgG chimeras 
have been used for structural and functional studies of the 
Ig-like superfamily of receptors (Williams and Barclay, 
1988), including the T cell antigen receptor (Eilat et al., 
1992), flt3/flk-2 (Lyman et al., 1993), c-kit (Liu et al., 
1993), the 3 PDGFR (Heidaran et al., 1995), and the KGFR 
(Cheon et al., 1994). In the case of the KGFR, this approach 
provided a framework for dissection of its ligand-binding do- 
mains and made it possible to demonstrate that high affinity 
binding sites for two high affinity ligands, aFGF and KGE 
reside within different receptor Ig-like domains (Cheon et 
al., 1994). The ligand binding properties of other non- 
Ig-like receptors, including the natriuretic peptide recep- 
tors (Bennett et al., 1991), tumor necrosis factor receptor 
(Howard et al., 1993), and hepatocyte growth factor recep- 
::or (Mark et al., 1992) have also been analyzed by means 
of immunoglobulin fusion proteins. 

Growth factor immunoglobulin chimeras have been much 
less actively investigated. In one report, IGF-1 was grafted 
to the carboxyl terminus of the IgG heavy chain (Shin and 
Morrison, 1990). This resulted in a poorly secreted mole- 
cule with markedly impaired receptor-binding properties. In 
another study, IL-2 fused to the immunoglobulin CH1 do- 
main demonstrated high affinity receptor binding and mito- 
genic activity, but it was not tested in ligand-mediated 
histochemical assays (Landolfi, 1991). Our present results 
suggest that growth factor-Ig fusion proteins generated as 
described here can be used to define the expression and dis- 
tribution of specific receptors in histologic specimens. It is 
known that certain growth factor receptors can be abnor- 
mally upregulated in tumor cells (Aaronson, 1991). Thus, 
such probes may prove useful in diagnosis and prognosis of 
malignancies and other pathologic states. This approach has 
the potential of identifying novel target cells and novel recep- 
tors for known growth factors. Finally, the ability of growth 
factor Ig fusion proteins to cause functional receptor activa- 
tion suggests normal receptor processing associated with 
downregulation and internalization. If so, such chimeric 
ligands may provide ideal vehicles for delivering toxins and 
other therapeutic modalities to intracellular sites in specific 
target cell populations. 
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