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Abstract

At present, global immunity to SARS-CoV-2 resides within a heterogeneous combination of

susceptible, naturally infected and vaccinated individuals. The extent to which viral shedding

and transmission occurs on re-exposure to SARS-CoV-2 is an important determinant of the

rate at which COVID-19 achieves endemic stability. We used Sialodacryoadenitis Virus

(SDAV) in rats to model the extent to which immune protection afforded by prior natural

infection via high risk (inoculation; direct contact) or low risk (fomite) exposure, or by vacci-

nation, influenced viral shedding and transmission on re-exposure. On initial infection, we

confirmed that amount, duration and consistency of viral shedding, and seroconversion

rates were correlated with exposure risk. Animals were reinfected after 3.7–5.5 months

using the same exposure paradigm. 59% of seropositive animals shed virus, although at

lower amounts. Previously exposed seropositive reinfected animals were able to transmit

virus to 25% of naive recipient rats after 24-hour exposure by direct contact. Rats vaccinated

intranasally with a related virus (Parker’s Rat Coronavirus) were able to transmit SDAV to

only 4.7% of naive animals after a 7-day direct contact exposure, despite comparable viral

shedding. Cycle threshold values associated with transmission in both groups ranged from

29–36 cycles. Observed shedding was not a prerequisite for transmission. Results indicate

that low-level shedding in both naturally infected and vaccinated seropositive animals can

propagate infection in susceptible individuals. Extrapolated to COVID-19, our results sug-

gest that continued propagation of SARS-CoV-2 by seropositive previously infected or vac-

cinated individuals is possible.

Introduction

As the COVID-19 pandemic proceeds, SARS-CoV-2 must navigate an increasingly heteroge-

neous immune landscape. Individual immunity to SARS-CoV-2 infection may be gained

through natural infection or vaccination. The former route, otherwise known as infection-
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induced herd immunity, is widely regarded as an ineffective strategy [1]. This route achieves

unpredictable immunity [2–5] and incurs substantial morbidity [6] and mortality [5, 7]. Con-

sequently, mass vaccination against SARS-CoV-2 is underway as the safest and most effective

means of controlling the COVID-19 pandemic [8]. For either route, our understanding of the

extent to which previously naturally exposed [9–11] or vaccinated [12] individuals can shed

and transmit virus on re-exposure is presently emerging. Immunologic heterogeneity follow-

ing natural infection [10, 11, 13], variable efficacy of different vaccines [8], as yet unclear dura-

tion of immunity [14–17] and emergence of new variants [18] are critical determinants of the

level of herd immunity needed to control COVID-19. Because of these variables, herd immu-

nity needed to eradicate COVID-19 is likely to be difficult to achieve [3, 8, 19].

Predicting the path of SARS-CoV-2 to endemic status can be aided by study of other

human [20–22] and animal [23] coronaviruses. Sialodacryoadenitis virus (SDAV) is a highly

infectious betacoronavirus [24, 25] that infects the upper respiratory tract [26], lacrimal and

salivary glands [27, 28] and lung [28–30] of rats. SDAV infection results in a two-week course

of asymptomatic to mild respiratory disease [29, 30]. Consequently, it is best suited to model

transmission dynamics of COVID-19 [31], rather than disease pathogenesis. Like SARS CoV-

2 [31–35], SDAV infection can be transmitted by asymptomatically infected individuals [23]

via airborne, direct contact or fomite routes [24]. Both SARS-CoV-2 and SDAV can persist on

hard surfaces for up to 28 days [34, 36] and 2 days [37] respectively. SDAV resides in the sub-

genus Embecovirus, and is most closely related to mouse hepatitis virus (MHV) and two

human upper respiratory pathogens, human coronavirus HKU1 (HCoV-HKU1) and Human

coronavirus OC43 (HCoV-OC43) [38–40]. HCoV-OC43 and HCoV-HKU1 cause annual

wintertime outbreaks of mild respiratory illness [21], and their transmission characteristics

have been used to accurately predict population spread and seasonal recurrence of SARS--

CoV-2 [22].

We used a similar approach to develop a rat model of SARS-CoV-2 transmission using

SDAV with the goal of understanding the extent to which individuals with natural or vaccine-

induced immunity can shed and transmit virus on re-exposure. The longevity of immunity

imparted by vaccination or natural infection with SARS-CoV-2 is not yet clear [17, 41, 42].

Based on the premise that coronaviruses may share common characteristics regarding immu-

nity, researchers have examined reinfection rates of seasonal coronaviruses to gain insight into

this issue [20]. Like HCoV-OC43 and HCoV-HKU1 in humans [20], immunity in rats elicited

by SDAV is temporary [43–45], thus allowing us to model this variable during reinfection.

Beginning with a defined SDAV inoculum, we modeled heterogeneous viral exposure in a nat-

urally infected population using a range of high (inoculation and direct contact) and low

(fomite) risk exposures. Recovered animals were then re-exposed to SDAV to determine the

role of naturally acquired immunity in subsequent viral shedding and transmission to naïve

animals. Data from naturally infected re-exposed animals were compared to that from animals

exposed to SDAV after infection with Parker’s Rat Coronavirus (RCV), a closely related coro-

navirus [46, 47]. RCV has been shown to elicit protective cross-immunity to SDAV [43], and

is used in this context as a heterologous vaccine for SDAV.

Materials and methods

Virus amplification and quantification

SDAV (strain 681) was isolated at Yale in 1976. RCV (strain 8190) was originally obtained

from the American Type Culture Collection, Rockville, MD [43]. Stocks of SDAV and RCV

were generated in L2p176 cells [48, 49]. Briefly, confluent L2.p176 cells were pretreated for 1

hour with 75ug/ml of DEAE-D in 75% DMEM 25% L15 media. Cells were incubated with
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virus diluted in 75% DMEM 25% L15 with trypsin for 1 hour and cell/media was harvested at

3 days post-infection. Viral titers were determined by plaque assay [48]. Briefly, 6 well plates of

L2p176 cells were pretreated with 75ug/ml DEAE-D in 75% DMEM/25% L15 media for 3

hours. Cells were rinsed with PBS and inoculated with 10- fold dilutions of virus in 75%

DMEM/25% L15 with 75ug/ml DEAE-D and trypsin. One hour later, inocula was removed,

cells were rinsed with PBS and were overlaid with 0.55% Seaplaque agarose/minimal media/

trypsin. Three days post-inoculation, cells were fixed with formalin, agarose was removed and

plaques were visualized with Giemsa.

Animals and housing

Seven week-old female and male SAS outbred Sprague-Dawley rats (150-250g) were purchased

from Charles River Laboratories (Wilmington, MA). Animals were housed (separated by sex)

in Tecniplast (West Chester, PA) individually ventilated cages (GR900 for rats) that provide

high microbial biocontainment. Sentinel animals were placed on each side of the rack and

tested every 3 months for antibodies to rodent pathogens, including SDAV, with consistently

seronegative results. Rooms were maintained at 72˚F on an evenly split light cycle

(7AM:7PM). Animals were housed on corncob bedding, had access to autoclaved pellets

(2018S, Envigo, Somerset, NJ) and acidified water ad lib, and were acclimated for 5–7 days

prior to infection. Animals were individually identified using ear tags. These were regularly

inspected and replaced as needed. Viral inoculation and animal handling was performed in a

Class II biosafety cabinet. All exposure groups were separated by sex. All animal work was con-

ducted under an approved Yale Animal Use and Care Committee protocol. Yale University is

accredited by the Association for Assessment and Accreditation of Laboratory Animal Care

Anesthesia, viral inoculation and euthanasia

Rats were anesthetized briefly using the open drop method (isoflurane: propylene glycol 30%

v/v). Intranasal inoculation of 2X10e4 plaque-forming units (pfu) SDAV or 1X10e3 pfu RCV

in Dulbecco’s Modified Eagle Medium (DMEM) was performed in a total volume of 50μl per

animal (25 μl per nostril). Animals were fully recovered within 2–3 minutes of inoculation. At

the end of reinfection and transmission experiments, animals were euthanized using 70% car-

bon dioxide.

Initial infection with SDAV (Fig 1A)

Four exposure groups were defined for initial SDAV infection:

a. Inoculated rats (n = 19, 47% female). Animals were inoculated intranasally with 2X10e4 pfu

SDAV in 50μl DMEM, followed by individual housing in a clean cage for 48 hours.

b. Direct contact (n = 31, 48% female): Naïve animals (1–3 animals) were placed with one

inoculated rat in a new clean cage 48 hours post inoculation. After 24 hours, exposed rats

were separated from the inoculated rat placed in a new clean cage.

c. Fomite contact animals (n = 55; 53% female). Naïve animals (2–3 animals) were placed in a

dirty cage (containing contaminated bedding, furniture, food and water nipple) that had

been inhabited by an inoculated rat for 48 days post inoculation. After 24 hours, exposed

rats were relocated to a new clean cage in small groups of 2–3 animals (fomite cohabitation

group; n = 30; 53% female) or singly (fomite single group; n = 25; 52% female).

d. Mock (n = 10): A control group (n = 10; 50% female) was inoculated with DMEM alone.

PLOS ONE An animal model of SARS-CoV-2 propagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0260038 November 23, 2021 3 / 16

https://doi.org/10.1371/journal.pone.0260038


Oral swabs were taken on day 2, 3, 4, 7 and 10 days post-exposure (dpe: defined as inocula-

tion or exposure via a contact mode) on all animals (thus inoculated rats began this process 96

hours before other exposure groups). Each animal was weighed on its day of viral exposure

(Day 0) and on every day on which oral swabs were taken. Gloves and equipment were steril-

ized with 200ppm MB-10 between each animal. Health checks were performed daily for 10

days post-exposure.

Reinfection with SDAV (Fig 1B)

A total of 106 animals were used in the reinfection study, of which 40 were seronegative and

66 were seropositive (Table 2). Rats that had originally received intranasal infection with

SDAV (inoculated rats) were re-infected intranasally again with the same viral dose (n = 18).

Naïve seronegative rats (mock inoculated rats from the prior experiment or naïve purchased

rats) received intranasal inoculations to provide a source of infection for remaining animals

(n = 18). Remaining animals (22 seronegative rats and 48 seropositive rats) were randomly

assigned direct contact, fomite contact-cohabitation, and fomite contact-singly housed groups

for their second exposure. Exposure and testing paradigms were identical to those described

for initial reinfection. Time between initial and second exposure ranged from 113–165 days.

Animals were evenly split by sex and aged 6–7 months at sacrifice.

Fig 1. SDAV infection and re-infection paradigm. A. Initial infection with SDAV. Naïve animals were inoculated intranasally with

2X10e4 pfu SDAV. After 48 hours, inoculated animals or their dirty cages were used to expose naïve animals to the virus. For direct

contact exposure, one inoculated animal was placed in a clean cage with naïve animals for 24 hours. For fomite exposure, naïve animals

were placed in a dirty cage that had been inhabited by an inoculated rat for 24 hours. After 24 hours, all rats were relocated to new clean

cages to constitute four groups: inoculated rats, direct exposure rats, and two fomite exposure groups–a fomite cohabitation group

constituting 2–3 animals, and a fomite single group with only one animal. Oral swabs were taken on Day 2, 3, 4, 7 and 10 days post-

exposure (dpe) on all animals, and serology performed 5–6 weeks later. A control group (not shown) was inoculated with DMEM alone,

and similarly swabbed and bled. After initial exposure, animals assumed either seronegative or seropositive status. All groups were

evenly split by sex. B. Reinfection with SDAV. Naïve seronegative rats were inoculated intranasally with 2X10e4 pfu SDAV to provide a

source of infection. Rats that had originally received intranasal infection with SDAV were re-infected intranasally again with the same

viral dose. Seropositive and seronegative animals from the initial infection experiment were randomly assigned direct contact, fomite

contact-cohabitation, and fomite contact-singly housed contact groups for their second exposure. Time between initial and second

exposure ranged from 113–165 days. Oral swabs were taken on Day 2, 3, 4, 7 and 10 dpe on all animals. Animals were sacrificed at 10

dpe and assessed for seroconversion. All groups were evenly split by sex.

https://doi.org/10.1371/journal.pone.0260038.g001
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Assessing transmission of SDAV to naïve rats by previously SDAV infected

rats (Fig 2A)

Inoculated rats that had received an initial dose of 2X10e4 pfu SDAV, and had subsequently

shed virus and seroconverted, received a second similar intranasal inoculation 113–165 days

later (n = 13). These animals were placed in a clean cage with susceptible recipient rats 48

hours post inoculation (direct contact paradigm). Recipient rats were age and sex-matched

seronegative rats from the initial SDAV infection experiment that had never tested SDAV pos-

itive on oral swabs following fomite exposure (n = 13). After 24 hours, exposed recipient rats

were separated from the inoculated rat and placed in a new clean cage. Body weights and oral

swabs were taken on both groups of animals at 2, 3, 4, 7 and 10 dpe, followed by serologic test-

ing of naïve animals. Animals were evenly split by sex and aged 6–7 months at sacrifice.

Fig 2. Transmission of SDAV to naïve rats by SDAV-exposed or RCV-vaccinated rats. A. Transmission of SDAV to naïve rats by previously SDAV infected

rats. Inoculated rats that had received an initial dose of 2X10e4 pfu SDAV, and had subsequently shed virus and seroconverted, received a second similar intranasal

inoculation 112–140 days later (n = 13). After 48 hours, these animals were placed in a clean cage with susceptible recipient rats (n = 13; direct contact paradigm).

After 24 hours, recipient rats were separated from the inoculated rat and placed in a new clean cage. Body weights and oral swabs were taken on both groups of

animals at 2, 3, 4, 7 and 10 dpi. Animals were sacrificed at 10 dpe and assessed for seroconversion. All groups were evenly split by sex. B. Transmission of SDAV to

naïve rats by RCV vaccinated rats. Eight-week-old naïve rats (n = 24) were inoculated intranasally with 1X10e3 pfu RCV and assessed for seroconversion 4 weeks

later. All animals seroconverted, and were divided into a single vaccine group (n = 12) and a double vaccine group (n = 12). This latter group received an additional

RCV inoculation at the same dose. Six weeks after their last RCV exposure, seropositive animals were inoculated with 2X10e4 pfu SDAV. After 48 hours, these

animals were co-housed in a clean cage with a susceptible rat (n = 12 for single vaccine group; n = 9 for double vaccine group) for 7 days. Body weights and oral

swabs were taken on both groups of animals at 2, 3, 4, 7 and 10 dpe. Animals were sacrificed at 10 dpe and assessed for seroconversion. All groups were evenly split

by sex.

https://doi.org/10.1371/journal.pone.0260038.g002
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Modeling vaccination using RCV (Fig 2B)

Parker’s rat coronavirus (RCV) is a spontaneously occurring rat virus that is closely antigeni-

cally related to SDAV [46]. Heterologous vaccination with RCV confers significant but not

absolute cross-protection against subsequent challenge with SDAV [43]. First, we performed a

dose-finding study to assess the dose of RCV that would impart protection to subsequent chal-

lenge with SDAV. Three groups of male rats (n = 3/group) were inoculated with 10e3, 10e4 or

10e5 pfu RCV in 50 μl of DMEM. Seroconversion was confirmed in all 2 weeks after inocula-

tion. Two weeks later, all animals were challenged with intranasal 2X10e4 pfu SDAV (50 μl).

Low viral shedding (Cq 30.5–30.7 cycles for one day only over a 10-day period) was noted in

only two animals at the higher RCV inoculation groups (10e4 or 10e5 pfu RCV). Based on

these data, a dose of 10e3 RCV pfu RCV in 50 μl of DMEM was selected for the vaccination

study. Eight-week-old naïve purchased male and female SD rats were inoculated intranasally

either once (n = 12) or twice with a month interval between inoculations (n = 12). Seroconver-

sion was confirmed one month after the first inoculation. Rats vaccinated with one or two

doses of RCV were challenged by intranasal inoculation with 2X10e4 pfu SDAV in 50 μl of

DMEM six weeks after their last RCV exposure. After 48 hours, one SDAV-inoculated rat was

co-housed with one naïve rat for 7 days (n = 12 for single vaccine group; n = 9 for double vac-

cine group). Body weights and oral swabs were taken on both groups of animals at 2, 3, 4, 7

and 10 dpe, followed by serologic testing of naïve animals at 10 dpe. Animals were evenly allo-

cated by sex and aged 4–4.5 months at sacrifice.

Assessing oral shedding of SDAV by semi-quantitative RT-PCR

Rats were swabbed orally using sterile flocked swabs (Hydraflock, Puritan Medical Products,

Guilford, ME) to confirm viral shedding by quantitative RT-PCR. 600 ul of RLT buffer (Qiagen)

was added to each swab and the sample was vortexed. 350 ul of 70% ethanol was added to 350

ul of lysed sample in RLT and the mixture was transferred to the RNeasy mini column. RNA

was extracted following the manufacturer’s instructions and RNA was eluted from the column

with 50 ul of RNase-free water. 2.5 ul of RNA was amplified using the iTaq Universal SYBR

Green One Step kit (Biorad) and the following primers (SD29629:AGAAAACGCCGGTAGCA
GAA and SD30197:CCTTCCCGAGCCTTCAACAT) using a Biorad CFX Connect Real-time Sys-

tem. Primers were designed in house. Numbers correspond to the nucleotide positions in the

SDAV genome (JF92616.1). The reaction conditions were 10 min at 50C; 5 min at 95C; and 40

cycles of 10 sec at 95C, 20 sec at 59.1C and 36 sec at 72C. All assays contained negative and posi-

tive controls. PCR positivity was defined as a rat having a Cq of< 40 for at least 1 observation

Serology: 10 days to six weeks after exposure to SDAV or RCV, animals were bled to assess

seroconversion. Sera was tested for coronaviral antibodies using an indirect immunofluores-

cence assay [50]. Briefly 20 ul of sera diluted tenfold in PBS was placed on a glass slide contain-

ing fixed L2p176 cells infected with mouse hepatitis virus strain S. Bound rat antibodies were

detected with FITC-conjugated goat anti-rat IgG (Jackson ImmunoResearch).

Data analysis and statistics

Descriptive statistics were conducted using t-tests, non-parametric tests of medians, and

chi-squares tests for proportions where appropriate with data analyzed using regression

models. Continuous outcomes (e.g Cq or body weight) used standard linear models with

an autoregressive covariance parameter to control for the repeated measurements within ani-

mal while count outcomes used Poisson regression with a log-link. Raw data are included as

S1–S6 Figs.
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Results

Initial infection with SDAV

Body weight. Compared to mock-inoculated animals, SDAV-inoculated rats experienced

declines in weight gain at days 2–4 post infection (S1 Fig), with no differences by sex. Only

inoculated rats gained significantly less quickly than mock inoculated control animals (p<

.001). Apart from transient porphyrin staining of eyes lasting less than 24 hours in 5 rats, no

other clinical signs were noted.

Viral shedding. All SDAV-inoculated rats and those exposed via direct contact tested

PCR positive on oral swabs (Table 1), with declining proportions of PCR-positivity in fomite–

exposed animals that were co-housed (73.3%) or singly housed (24%), suggesting that subse-

quent rat-rat transmission occurred in co-housed animals. Route of exposure significantly

influenced amount of viral shedding (p<0.0001; S2 Fig). Compared to shedding in inoculated

and direct contact groups, viral shedding following fomite exposure was significantly lower

(p< .0001)

Route of exposure significantly influenced duration of viral shedding (defined as the num-

ber of observations, in days, where shedding was present; p<0.0001; S3 Fig). Inoculated and

direct exposure groups shed virus for approximately twice as long as fomite exposed animals

(significant at p<0.0001 for fomite-cohabitation group only). Fomite exposed animals shed

intermittently; however, shedding more commonly persisted to 10 dpe (S4 Fig). Consistency

of shedding was significantly affected by exposure mode (p < .0001), with inoculated and

direct exposure groups shedding with significantly greater consistency than fomite-cohabita-

tion (p< .0001) and fomite single groups (p< .0001).

Seroconversion. All SDAV-inoculated and direct contact rats seroconverted. Seroconver-

sion declined in cohabiting and singly housed fomite-exposed animals (50% and 8% respec-

tively). These two exposure groups also experienced discordant results between PCR testing

and seroconversion (Table 1). These data indicate that viral shedding detectable by PCR does

not invariably result in seroconversion. Conversely, because viral shedding is intermittent, a

negative PCR test does not rule out the potential of infection sufficient to induce an immune

response. However, seroconversion was significantly associated with greater amounts

(p<0.0001) and duration (p<0.0001) of viral shedding. (S5 Fig). Sex did not significantly affect

viral shedding amount, duration or seroconversion.

Table 1. Viral shedding and seroconversion following initial infection with SDAV.

Exposure type Duration of
exposure

PCR positive Cq (mean,

range)
Shedding time points (mean,

range)
Sero+ Sero- PCR Neg,

Sero+
PCR Pos,
Sero-

SDAV 2X10e4 pfu

(n = 19)�
Inoculation 19/19

(100%)

31.5; 25.2–37.4 3.1; 2–4 19

(100%)

0 0 0

Direct contact (n = 31) 24 hours 31/31

(100%)

31.3; 25.5–36.0 2.9; 1–3 31

(100%)

0 0 0

Fomite-cohab (n = 30) 24 hours 22/30

(73.3%)

32.9; 27.4–36.7 1.5; 1–3 15 (50%) 15 (50%) 9 (30%) 9 (30%)

Fomite-single (n = 25) 24 hours 6/25 (24%) 33.2; 28.6–36.2 1.5;1–4 2 (8%) 22

(88%)��
1 (5%) 4 (16%)

Media inoculation

(n = 10)

Inoculation 0/10 (0%) Neg, all >40 0 0 10 (100%) 0 0

Cq = quantification cycle. Only animals with viral shedding (Cq<40 cycles) are included in Cq and shedding time calculations. Observation time points comprised post-

exposure days 2, 3, 4, 7, 10.

�One rat in the inoculation group died of unrelated causes after blood was taken for serology.

�� One rat in the fomite single group died of unrelated causes before blood was taken for serology.

https://doi.org/10.1371/journal.pone.0260038.t001
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Re-infection with SDAV. Rats were aged for 113–165 days before reinfection with SDAV

by inoculation, direct contact or fomite exposure. Amount of viral shedding (expressed as low-

est observed Cq) was significantly influenced by both exposure mode (p< .01) and serologic

status (p< .001; S6 Fig). Similarly, duration of shedding was significantly influenced by both

exposure mode (p< .05) and serologic status (p< .001; S6 Fig). A lower proportion of previ-

ously SDAV-exposed seropositive rats (38.9% compared to 100%) shed less virus (p< .001)

for a shorter period (p< .001) compared to previously mock-inoculated seronegative rats

when re-inoculated with the same dose of SDAV. This clearly demonstrates protective immu-

nity (that did not however eliminate viral shedding) on reinfection with the same virus and

same dose.

To investigate the differential role of exposure mode on amount of viral shedding, rats were

stratified by serological status (Table 2). Among seronegative rats, as with initial infection,

exposure mode significantly affected amount (p< .001) and duration (p< .0001) of viral

shedding. Compared to seronegative SDAV-inoculated rats, direct contact rats shed less virus

(p = .06) for a shorter period of time (p<0.001). Fomite cohabitation animals shed less virus (p

< .01) for a shorter period of time (p<0.001).

In seropositive animals, immunity obtained from prior SDAV exposure via a variety of

routes altered this pattern. Direct contact and fomite cohabitating rats experienced higher, but

not significant (p = .09) levels of shedding than the SDAV-inoculated seropositive rats previ-

ously exposed to SDAV via the same route. In contrast, exposure mode was significantly (p<

.01) associated with duration of shedding. SDAV-inoculated rats generally shed for fewer

Table 2. Viral shedding after SDAV reinfection in seropositive and seronegative groups.

A. Seropositive (n = 66)

Re-exposure type Duration between
infections

Duration of
exposure

PCR pos Cq (mean,

range)
Shedding time points
(mean, range)

Sero+ Sero- PCR Neg,
Sero+

PCR Pos,
Sero-

SDAV 2X10e4 pfu

intranasal (n = 18)�
113–144 days Inoculation 7/18

(38.9%)

32.7; 28.9–

36.4

1.7;1–4 - - - -

Direct contact (n = 19) 143–165 days 24 hours 15/19

(78.9%)

34.1; 29.1–

36.6

2; 1–4 - - - -

Fomite-cohab (n = 17) 114–143 days 24 hours 13/17

(76.5%)

34.4; 30.7–

37.9

1.7; 1–2 - - - -

Fomite-single (n = 12) 114–165 days 24 hours 4/12

(33.3%)

34.5; 33.0–

36.2

1.7; 1 - - - -

A. Seronegative (n = 40)

SDAV 2X10e4 pfu

intranasal (n = 18)��
82–163 days Inoculation 18/18

(100%)

30.6; 23.5–

35.3

3; 2–4 18

(100%)

0 0 0

Direct contact (n = 9) 143–165 days 24 hours 8/9

(88.8%)

31.9; 27.3–

33.4

1.4; 1–3 8

(88.8%)

1

(11.1%)

1 (11.1%) 1 (11.1%)

Fomite-cohab (n = 9) 165 days 24 hours 6/9

(66.6%)

31.3; 27.2–

34.5

1.6;1–4 9 (100%) 0 0 0

Fomite-single (n = 4) 165 days 24 hours 1/4 (25%) 33.9; 33.9–

34.0

2; 2 1 (25%) 3 (75%) 1 (25%) 3 (75%)

�Seropositive group: Animals given SDAV 2X10e4 pfu on initial infection were reinfected via the same route. All other animals were randomized between initial and

subsequent routes of infection and were exposed to naïve animals given SDAV 2X10e4 pfu via direct contact or fomite exposure.

��Seronegative group: Animals given SDAV 2X10e4 pfu reinfection were previously mock infected controls or naïve purchased animals. All other animals were exposed

to naïve animals inoculated with SDAV 2X10e4 pfu via direct contact or fomite exposure.

- Seropositive animals were not re-tested for seroconversion after reinfection

Cq = quantification cycle. Only animals with viral shedding (Cq<40 cycles) are included in Cq and shedding time calculations. Observation time points comprised post-

exposure days 2, 3, 4, 7, 10.

https://doi.org/10.1371/journal.pone.0260038.t002
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observations, and significantly fewer observations than the direct contact group (p< .05).

These data indicate that immunity obtained via direct contact or fomite exposure was largely

protective regardless of how it was obtained, but that some heterogeneity in protection against

duration of shedding was imparted by route of initial and subsequent exposure.

Viral transmission by SDAV reinfected or RCV vaccinated rats (Table 3). Transmis-

sion was defined in two ways 1) if the target rats exhibited shedding on any observation and 2)

if the target rat seroconverted. Following SDAV inoculation, no significant differences in

number of animals shedding virus, amount of virus shed or duration of shedding were noted

across vaccine groups, indicating that one or two doses provided equivalent protection. Trans-

mission rates from the SDAV reinfected (n = 13) and RCV vaccinated rats (n = 21, collapsing

1 and 2 doses) were compared to each other and to a reference group consisting of the previ-

ously described rats in direct contact with SDAV naïve rats (n = 31) using chi-square tests.

Regardless if shedding or seroconversion was treated as the metric of transmission, propor-

tions in the both SDAV reinfected source group (3/13, shedding and seroconversion) and

RCV vaccinated group (3/21, shedding; 1/21, seroconversion) were significantly lower than

the SDAV naïve direct contact reference group (31/31, shedding and seroconversion;p < .001)

in both cases. However, the proportions did not differ significantly between SDAV reinfected

and RCV vaccinated rats (shedding p = .65; seroconversion, p = .27).

Discussion

It appears increasingly likely that SARS-CoV-2 will persist as an endemic virus shaped by

immune dynamics that regulate reinfection [51, 52]. The extent to which humans with natural

or vaccine-induced immunity, who are re-exposed to SARS-CoV-2, can shed and transmit

virus is only just emerging [12, 53]. Absent these data, researchers have utilized established

patterns of seasonal coronavirus transmission to model patterns of SARS-CoV-2 persistence

during the post-pandemic period [20–22]. We have employed the same approach by using

Table 3. Transmission of SDAV by previously SDAV infected or RCV vaccinated animals.

A. Transmission after SDAV reinfection

Source animals (n = 13) Susceptible recipient animals (n = 13)

Initial infection Re-infection Duration
between infection

PCR pos Cq; shed time
points (mean;
range)

Duration of
exposure

PCR pos Cq; time points
shedding

Sero+ PCR Neg,
Sero+

PCR Pos,
Sero-

SDAV 2X10e4

pfu

SDAV

2X10e4 pfu

113–140 days 2/13

(15.4%)

32.2 (29.2–34.4) 24 hours 3/13 34.0 (32.7–

36.5)

3

(23.1%)

1 (7.7%) 1 (7.7%)

(23.1%)

1.5 (1–2) 2.3(1–4)

B. Transmission after RCV single vaccination

Source animals (n = 12) Susceptible recipient animals (n = 12)

RCV SDAV

2X10e4 pfu

48 days 4/12

(33.3%)

32.5(30.1–34.5) 7 days 1/12

(8.3%)

31.8(28.5–25.5) 1 (8.3%) 0 0

10e3 pfu 3(0)1.8(1–3)

C. Transmission after RCV double vaccination

Source animals (n = 12) Susceptible recipient animals (n = 9)

RCV SDAV

2X10e4 pfu

42 days 7 (58.3%) 34.7(29.5–37.6) 7 days 2

(22.2%)

32.5(32.3–32.9) 0 (0%) 0 0

10e3 pfu twice,

30 days apart

1.5(1–2)1.6(1–3)

Viral shedding and seroconversion in naïve (susceptible recipient) animals exposed to SDAV inoculated animals.

Cq = quantification cycle. Only animals with viral shedding (Cq<40 cycles) are included in Cq and shedding time calculations. Observation time points comprised post-

exposure days 2, 3, 4, 7, 10.

https://doi.org/10.1371/journal.pone.0260038.t003
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SDAV, a rat respiratory rat coronavirus phylogenetically and biologically closely related to

HCoV-OC43 and HCoV-HKU1, to model coronaviral transmission in animals. Of particular

interest to us was the extent to which immune protection afforded by prior high (inoculation

and direct contact) to low (fomite) risk exposure or vaccination influenced the amount of

virus shed on re-exposure. To study this, we employed a natural exposure setting to track

transmission dynamics initiated by known starting inoculum, thus providing controlled in
vivo data suitable for use in future SEIRS (susceptible, exposed, infected, recovered, suscepti-

ble) modeling [54]. A key issue confronting control of the COVID-19 pandemic is whether

low amounts of shed virus detectable by common screening tests such as PCR can achieve

transmission [55]. Therefore, we also assessed whether low amounts of shed virus in re-

exposed animals could infect susceptible animals. We used the two most widely used measures

of SARS-CoV-2 (and other viral) surveillance, reverse-transcriptase polymerase chain reaction

(RT-PCR) testing [56] and serology [57] to examine the relationships between exposure routes,

seroconversion and viral shedding. Shedding in rats was assessed using oral swabs. Salivary

gland infection has been demonstrated for SARS-CoV-2 [58], with saliva-based testing gaining

traction as a gold-standard diagnostic sample [59].

Amount and duration of viral shedding was significantly influenced by route of exposure,

and was highest in inoculated and direct contact groups, and lowest in fomite groups. Fomite

transmission was amplified by subsequent cohabitation of rats, suggesting that transmission

risk of this route can be amplified by close contact such as dense co-housing conditions. As in

the human population, the viral dose that resulted in infection of an individual cannot be

directly measured in natural exposure settings. However, data from SARS-CoV-2 studies indi-

cate that higher infectious doses of virus are implicated in higher risk of transmission [60].

Infectious dose is assumed to be much higher in direct contact compared to fomite settings,

corresponding to respective high and low transmission risk of these exposure types [61, 62].

Similarly, higher viral loads in COVID-19 patients are associated with more reliable serocon-

version [63]. Our results are consistent with these data and imply that higher viral exposure

results in a greater amount and duration of viral shedding, followed by more consistent sero-

conversion. Conversely, low viral load accompanying fomite exposure may result in a positive

viral PCR test but fail to elicit an antibody response.

Following initial infection with SDAV, 59% of seropositive animals shed virus on re-expo-

sure after 3.7–5.5 months, although at lower levels than in initial infection. Shedding rates on

reinfection in our model are much higher than those reported for human SARS-CoV-2 [9].

This may reflect a true biological difference between SDAV and SARS-CoV-2. However, our

entire population was re-exposed followed by timed repeated PCR testing, thus maximizing

the likelihood of detecting shedding. Re-exposure events in a human population are rarely

known, thus precluding coordination of testing with the exposure event. Therefore, the actual

shedding on re-exposure in human populations may be higher than reported.

It remains unclear to what extent detection of viral genetic material by PCR in mucosal

swabs translates directly to transmissibility [64–66]. With SARS-CoV-2, live viral culture positivity

declines with increasing cycle threshold values [66], and consequently, live viral shedding can be

inferred from Cq values on PCR testing [67]. Cycle threshold values of 33–34 cycles reflect low

enough live viral shedding to render patients non-contagious [32, 65, 66]. Lower levels of viral

shedding and even lower levels of live virus detection in animals challenged with SARS-CoV-2

after vaccination have been noted in minks [68], hamsters [64] and macaques [64]. The extent of

this reduction, particularly regarding nasal shedding, is determined by dose and route of vaccine

administration in animals [64, 69]. In humans, viral shedding after vaccination at relatively high

levels (Cq values<25 cycles) is associated with the SARS-CoV-2 Delta variant [53].
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To further understand the relationship between PCR-detectable viral shedding and poten-

tial for transmission, we assessed the risk of transmission by animals shedding low amounts of

virus following SDAV re-exposure or following heterologous vaccination. Consistent with

prior rat studies [44, 45], rats reinfected with SDAV via the same route (intranasal inoculation

given 113–140 days apart) were able to induce viral shedding and/or seroconversion in 25% of

susceptible contact rats after 24-hour exposure by direct contact. Observed cycle threshold

(Cq) values in reinfected source rats ranged from 29–34 cycles with short shedding durations

(1–2 days). It should be noted that in all three instances where susceptible recipient rats sero-

converted, viral shedding by SDAV re-infected rats was not detected, implying that shedding

sufficient for transmission can occur for short periods that may escape detection. While both

SARS-CoV-2 [58] and SDAV infect salivary glands and can be detected in the oral cavity, we

recognize that oral swabs in our rats may not have detected shedding via other routes e.g. nasal

shedding.

Next, we assessed transmission by animals exposed to SDAV shortly after heterologous vac-

cination with Parker’s Rat Coronavirus (RCV), a betacoronavirus that is closely related to

SDAV [46]. In prior studies, infection with RCV results in cross-protective seroconversion,

and disease protection following subsequent SDAV infection [43]. While a significant propor-

tion of vaccinated animals (11/24) shed SDAV at low amounts (range 29.5–36 cycles), they

achieved transmission in only one recipient after 7 days of direct contact exposure. These

results indicate that protection against transmission after reinfection in the immediate post

vaccination period is superior to that several months after natural infection. We did not test

whether this protection would decline over months at the same rate as that afforded by SDAV

inoculation, however some decline is expected from previous studies [43]. Data from both

groups taken together imply that Cq values above 29 are associated with transmission.

Conclusion

As the COVID-19 pandemic proceeds, the virus must navigate an increasingly heterogeneous

immune landscape of naïve, naturally infected and vaccinated individuals. Predicting its path

to endemic status can be aided by study of other endemic human coronaviruses such as HCo-

V-OC43 and HCoV-HKU1. A common element allowing useful comparisons across coronavi-

ruses is their tendency to cross the species barrier and follow a pandemic-to-endemic

trajectory characterized by temporary immunity and declining disease severity [20, 40, 70–72].

To generate controlled transmission data in an animal model, we utilized SDAV, a rat Embe-

covirus which is closely related to HCoV-OC43 and displays this typical epizootic to enzootic

transmission pattern [23, 44].

Shedding and seroconversion following initial natural SDAV infection was heterogeneous

and influenced by route of exposure. Viral shedding on re-exposure was much lower than on

initial exposure, but was nevertheless able to result in transmission to susceptible individuals.

Vaccination imparted greater protection against transmission after SDAV challenge, however

this protection would be expected to decline over a time period similar to that imparted by

infection with SDAV. If these data are extrapolated to SARS-CoV-2 transmission, it appears

that viral shedding and transmission by previously infected or vaccinated individuals [53]

could prolong transition to stable endemic status. This transition could be impacted by many

variables, including emergence of more transmissible or immune evasive variants [18, 53].

Viral transmission data derived from animal studies modeling natural exposure settings can

provide a controlled experimental basis for SEIRS modeling during which the impact of vari-

ables such increased viral infectivity, immune avoidance and altered mixing ratios can be

examined.
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