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H I G H L I G H T S  

• First experience of a deep learning-based tool for lung infection quantification in CT. 
• Rapid automatic quantification of lung abnormalities in COVID-19 patients is feasible. 
• Software-derived, quantitative CT data correlate with clinical and laboratory parameters.  
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A B S T R A C T   

Rationale and objectives: To demonstrate the first experience of a deep learning-based algorithm for automatic 
quantification of lung parenchymal abnormalities in chest CT of COVID-19 patients and to correlate quantitative 
results with clinical and laboratory parameters. 
Materials and methods: We retrospectively included 60 consecutive patients (mean age, 61 ± 12 years; 18 fe-
males) with proven COVID-19 infection undergoing chest CT between March and May 2020. Clinical and lab-
oratory data (within 24 h before/after chest CT) were recorded. Prototype software using a deep learning 
algorithm was applied for automatic segmentation and quantification of lung opacities. Percentage of opacity 
(PO, ground-glass and consolidations) and percentage of high opacity (PHO, consolidations), were defined as 100 
times the volume of segmented abnormalities divided by the volume of the lung mask. 
Results: Automatic CT analysis of the lung was feasible in all patients (n = 60). The median time to accomplish 
automatic evaluation was 120 s (IQR: 118–128 s). In four cases (7 %), manual corrections were necessary. Pa-
tients with need for mechanical ventilation had a significantly higher PO (median 44 %, IQR: 23–58 % versus 13 
%, IQR: 10–24 %; p = 0.001) and PHO (median: 11 %, IQR: 6–21 % versus 3%, IQR: 2–7 %, p = 0.002) 
compared to those without. The PO and PHO moderately correlated with c-reactive protein (r = 0.49− 0.60, both 
p < 0.001) and leucocyte count (r = 0.30− 0.40, both p = 0.05). PO had a negative correlation with SO2 
(r=− 0.50, p = 0.001). 
Conclusion: Preliminary experience indicates the feasibility of a rapid, automatic quantification tool of lung 
parenchymal abnormalities in COVID-19 patients using deep learning, with results correlating with laboratory 
and clinical parameters.   

1. Introduction 

In 2020 a novel, highly infectious coronavirus, SARS-CoV-2, rapidly 
developed to a worldwide pandemic. The clinical appearance of the 

infection ranges from mild symptoms to fulminant acute respiratory 
distress syndrome [1–3]. Due to the rapidly growing flood of patients in 
need for medical care, health care systems were quickly on the verge of 
collapse. Recent experience showed that it was difficult to respond 
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efficiently to this extreme demand even in developed Western countries 
[4]. 

Recently, efforts have been made to implement deep learning-based 
concepts into medicine to optimize and streamline workflows [5–7]. 
During the processing of a deep learning-based system a convolutional 
neural network is trained on a defined, annotated dataset [8]. Subse-
quently, the algorithm acquires the ability to perform the questioned 
analysis by itself. In radiology, automated recognition and segmentation 
of pathology may speed-up diagnosis, quantifies disease, and could help 
in decision-making processes [9–11]. 

So far, a few studies assessed the value of machine learning-based 
algorithms in chest computed tomography (CT) of patients suffering 
from corona virus infectious disease 2019 (COVID-19) [8,11,12]. Huang 
et al. [8] quantitatively evaluated disease burden changes over time in 
patients with different severity of COVID-19 infection using a deep 
learning-based software, showing differences in the quantity of lung 
opacification among groups with different disease severity. Li et al. [11] 
reported the ability of a neural network to accurately diagnose 
COVID-19 on chest CT distinguishing it from other infectious diseases. 
Shi et al. [12] developed a deep-learning based model containing five 
clinical and radiological features to predict the severity of COVID-19 
infection, yielding a significantly higher accuracy than a quantitative 
assessment of CT images alone [12]. From this preliminary experience it 
can be assumed that full exploitation of machine learning-based com-
puter aided systems might be beneficial in the setting of overwhelming 
and rapidly increasing patient loads such as that currently occurring 
during the COVID-19 pandemic. 

The purpose of our study was to demonstrate the first experience of a 
newly developed, deep learning-based algorithm for the automatic 
quantification of lung parenchymal abnormalities in chest CT of COVID- 
19 positive patients and to correlate those results with clinical and 
laboratory parameters. 

2. Materials and methods 

2.1. Patient population 

This retrospective study was approved by the local Ethics Committee 
and conducted according to the principles of the Declaration of Helsinki. 
Consent was obtained from all study subjects. We included all 60 
consecutive patients (mean age, 61 ± 12 years; 18 females, 42 males) 
with proven COVID-19 infection who underwent chest CT between 
March and May 2020 in our hospital. SARS-CoV-2 was confirmed by 
reverse transcription polymerase chain reaction (RT-PCR) from nasal- 
pharyngeal swabs in all patients (n = 60). Detailed patient de-
mographics are shown in Table 1. 

Clinical data (cough, dyspnea) were recorded at admission, the 
highest values of laboratory data (c-reactive protein, CRP, leucocytes, 
interleukin 6, IL-6), temperature, and peripheral oxygen saturation 
(SO2) within 24 h before/after chest CT were noted. Need for oxygen 
supply and mechanical ventilation during hospitalization was noted. 

2.2. CT protocol 

Patients underwent either non-enhanced (n = 31, 52 %) or contrast- 
enhanced (n = 29, 48 %) chest CT on a 128-slice single-source CT 
scanner (SOMATOM Definition Edge Plus; Siemens Healthineers, For-
chheim, Germany). Scan parameters were as follows: reference tube 
voltage 100 kV with automated tube voltage selection (CARE kV); 100 
mAs reference tube current-time product with automated attenuation- 
based tube current modulation (CARE Dose4D); and gantry rotation 
time 0.28 s. The following reconstruction parameters were applied: 
sharp convolution kernel; slice increment, 1.0 mm; and slice thickness, 
1.5 mm. 

2.3. CT image data analysis 

Images were analysed with the prototype software “syngo.via Fron-
tier CT Lung Infection” (Siemens Healthineers, Forchheim, Germany). 
As a first step, the software automatically segments the lung and lung 
lobes on a 3D chest CT data set. Multi-scale deep reinforcement learning 
is used to detect relevant anatomical landmarks such as the carina 
bifurcation. These landmarks are used to identify the lung and generate 
the lung and lobe segmentation with a Deep Image-to-Image Network 
(DI2IN). The DI2IN was originally trained on a large cohort of patients 
with various diseases. To improve the robustness of segmentation in 
infected lung areas, the algorithm was fine-tuned with a patient cohort 
with ground glass opacities (GGOs), consolidations, and pleural effu-
sions. As a second step, the software automatically segments COVID-19 
related abnormalities. A DenseUNet was trained to transfer a 3D chest 
CT volume to a binary segmentation mask, with all lung voxels con-
taining GGOs or consolidations marked as positive, the rest as negative. 
901 CT scans collected between 2002 and 2020 from different in-
stitutions from Canada, Europe and the United States were used for the 
training of the abnormality segmentation. The datasets included 431 
COVID-19 pneumonia, 174 other viral pneumonia, and 296 interstitial 
lung parenchymal disease. 

The segmented lung and lung lobes as well as the segmented ab-
normalities are visualized in an intuitive way (Fig. 1). GGO and con-
solidations are summarized as lung opacities. As a quantitative output, 
the software provides both the Percentage of Opacity (PO), defined as 
100 times the volume of segmented abnormalities divided by the volume 
of the lung mask, and the Percentage of High Opacity (PHO), defined as 
100 times the volume of high opacity regions (consolidations) divided 
by the volume of the lung mask. These numbers are available for the 
entire lung and lobe-wise. High-opacity regions were identified using a 
threshold of -200 Hounsfield Units. 

According to the results of quantification, the algorithm adjudicates 
a 5-point infection score as described by Bernheim et al. [13] with 
0 indicating no involvement; 1, less than 25 % involvement (PO < 25); 
2, 25–49 % involvement (25 ≤ PO≤49); 3, 50–74 % involvement 
(50 ≤ PO≤74); and 4, 75–100 % involvement (75 ≤ PO≤100). Further 
details of the algorithms used herein can be found elsewhere [14]. 

All CT image analyses were carried out on a standard dedicated 
workstation (Intel Xeon W-2125 CPU 4.00 GHz; 32.0 GB RAM) at our 
institution. All automatic analyses were reviewed by a board-certified 
radiologist and corrected if necessary. The time from starting the auto-
matic CT analysis to the availability of results were recorded. Feasibility 

Table 1 
Patient demographics.   

Count 

Baseline characteristics 
No. of patients 60 
Age, years (± SD) 61 ± 12 
Female sex (%) 18 (30) 
Immunosuppression (%) 6 (10) 
Body Mass Index (kg/m2) 26.3 (25.8–28.0) 
At presentation: 
Fever (%) 37 (62) 
Cough (%) 37 (62) 
At CT (þ/¡ 1 day): 
Oxygen supply (%) 12 (20) 
Intubation/mechanical ventilation (%) 26 (43) 
Temperature [◦C] 38.2 ± 1.02 
SaO2 0.90 ± 0.05 
Laboratory findings (þ/¡ 1 day of CT) 
CRP [mg/L] 95 (46–185) 
IL-6 [ng/L] 65 (32–127) 
Leucocytes [G/L] 7.08 (5.17–10.06) 

Abbreviations: IQR, inter-quartile range; LDH, lactate dehydrogenase; SD, 
standard deviation; ◦C, degrees Celsius; SaO2, arterial oxygen saturation; CRP, C- 
reactive protein; IL-6, Interleukin 6. 
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of automatic CT segmentation was analyzed for each case, and the ne-
cessity of manual corrections was assessed. 

2.4. Statistical analysis 

Normality of continuous data was assessed using the Shapiro-Wilk 
test. Non-normally distributed continuous data were indicated as me-
dian and inter-quartile range (IQR). Normally distributed continuous 
data were shown as mean ± standard deviation. Sign test, Wilcoxon 
signed rank test, and the Friedman test were applied to analyze paired 
data as appropriate. Post-hoc Bonferroni testing was applied for the 
Friedman test. For correlations, Pearson’s correlation or Spearman’s 
rank correlation were applied were appropriate. A two-sided p-value 
below 0.05 was considered to indicate statistical significance. All ana-
lyses were performed with commercially available software (SPSS for 
Windows 25.0, Chicago, IL, USA). 

3. Results 

3.1. Patient demographics and CT analysis 

Automatic deep learning-based CT analysis of the lung was feasible 

in all patients (n = 60). The median time to finish the automatic eval-
uation was 120 s (IQR: 118− 128 s). In four cases (7 %) manual cor-
rections were necessary. Two of these cases showed atelectasis which 
were only partially automatically segmented, and in two cases ground- 
glass opacities were partially missed by the algorithm. 

Fifty-six patients (93 %) had chest CT abnormalities being compat-
ible with COVID-19 pneumonia. 4 patients (7 %) did not have lung 
opacities. 

Median lung volume was 3523 ml (IQR: 2678− 4220 ml). Median 
lung opacity and median lung consolidation were 942 ml (IQR: 
354− 1427 ml) and 207 ml (66− 464 ml), respectively. The median PO 
and PHO were 28 % (IQR: 11− 44 %) and 6 % (IQR: 2–13 %), 
respectively. 

Patients undergoing contrast-enhanced CT showed a higher PHO 
(median: 10 %, IQR: 4–7 %) compared to patients undergoing non- 
enhanced CT (4 %, IQR: 2–8 %, p = 0.016). No significant difference 
was found for the PO between patients undergoing contrast-enhanced 
CT (35 %, IQR: 22–48 %) and non-enhanced CT (22 %, IQR: 16–48 %, 
p = 0.056). 

The median infection score was 2 (IQR: 1–2), with no significant 
differences between the right (median: 2, IQR: 1–2) and left lung (me-
dian: 2, IQR: 1–2, p = 0.327, Table 2). Furthermore, there were no 

Fig. 1. Example of the result of the automatic segmentation algorithm. 
Axial (a) and coronal (b) CT images showing the segmented lung with ground-glass opacities (red line), the entire lung (green line), and the interlobes (white line). 
3D reconstruction of the lung (c) visualizes the extent and pattern of abnormal findings in the COVID-19 positive patient. 

Table 2 
Results from automatic quantification of lung parenchymal abnormalities using deep learning. Panel A shows details of the segmentation of the entire lung and of the 
left and right lung separately. Panel B indicates results for each lung lobe.  

A Entire lung Left lung Right lung 

Affected 56 (93) 53 (88) 56 (93) 

Infection Score 

0 4 (7) 7 (12) 4 (7) 
1 25 (42) 22 (37) 22 (37) 
2 21 (35) 17 (28) 23 (38) 
3 8 (13) 12 (20) 7 (12) 
4 2 (3) 2 (3) 4 (7) 

Lung volume (ml) 3523 (2678− 4220) 1580 (1180–1949) 1918 (1481–2332) 
Opacity (ml) 942 (354–1427) 337 (128–632) 512 (205–847) 
Opacity (%) 28 (11− 44) 27 (8–45) 27 (12–44) 
Consolidation (ml) 207 (66− 464) 78 (18–216) 102 (47–266) 
Consolidation (%) 6 (2− 12) 5 (1–14) 6 (3–14) 
Mean HU total − 627 ± 125 − 625 ± 129 − 624 ± 132 
Mean HU of opacity − 405 ± 124 − 410 ± 140 − 403 ± 136  

B LUL LLL RUL ML RLL 

Lung volume (ml) 893 (703− 1108) 659 (452–907) 752 (610–939) 364 (281–466) 729 (538–978) 
Opacity (ml) 151 (14− 318) 180 (90–403) 158 (33–324) 36 (7–93) 271 (140–465) 
Opacity (%) 17 (2–37) +* 46 (11–70) 19 (5–43) * 10 (2–22) +*§ 44 (21–78) 
Consolidation (ml) 17 (3–69) 62 (13–114) 33 (6–56) 5 (1–17) 56 (28–194) 
Consolidation (%) 2 (0.3–7) +* 9 (2− 24) 4 (1–9) 2 (0.4–4) +*§ 12 (3–30) 

Abbreviations: LLL, left lower lobe; LUL, left upper lobe; ML, middle lobe; RLL, right lower lobe; RUL, right upper lobe. 
+Significant differences compared to the LLL (p < 0.05). 
*Significant differences compared to the RLL (p < 0.05). 
§Significant differences compared to the RUL (p < 0.05). 
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differences in the proportion of PO and PHO between the left and right 
lung (both, p > 0.05). 

The left lower lobe (LLL; median: 46 %, IQR: 11–70 %) and the right 
lower lobe (RLL; median: 44 %, IQR: 21–78 %) showed the highest PO 
with significant differences compared to the middle lobe (ML) and the 
left upper lobe (LUL; p < 0.001 for all, see Table 2) and between the RLL 
and the right upper lobe (p = 0.047). 

The LLL (median: 9 %, IQR: 2− 24%) and the RLL (median: 12 %, 
IQR: 3–30 %) showed the highest PHO with significant differences 
compared to the ML and the LUL (p < 0.001 for all; see Table 2). 

3.2. Correlation of quantitative CT with clinical parameters 

Patients with need for mechanical ventilation had a significantly 
higher PO (median 44 %, IQR: 23–58 % versus 13 %, IQR: 10–24 %; 
p = 0.001; Fig. 2a) and PHO (median: 11 %, IQR: 6–21 % versus 3%, 
IQR: 2–7 %, p = 0.002, Fig. 2b) compared to patients without. 

PO showed a significant correlation with CRP (r = 0.60, p < 0.001, 
Fig. 3a), leucocyte count (r = 0.40, p = 0.002) and a negative correla-
tion with SO2 (r = -0.50, p < 0.001). The PHO showed a moderate 
correlation with CRP (r = 0.49, p < 0.001, Fig. 3b) and the leucocyte 
count (r = 0.30, p = 0.024). 

The infection score significantly correlated with CRP (r = 0.51, 
p < 0.001), IL-6 (r = 0.41, p = 0.015), and leucocyte count (r = 0.34, 
p = 0.009), and showed a negative correlation with SO2 (r = -0.57, 
p < 0.001). 

4. Discussion 

Our preliminary experience indicates the feasibility of an automatic 
tool for quantification of lung parenchymal abnormalities in COVID-19 
patients using deep learning. In our cohort with 93 % patients presenting 
with characteristic COVID-19 chest CT findings, the algorithm provided 
rapid results (median time for automatic evaluation 120 s) with only 7% 
of cases needing manual correction. To our knowledge this is the first 

study evaluating the correlation between quantitative chest CT findings 
with laboratory and clinical parameters, showing moderate correlations 
between PO and PHO with laboratory parameters (CRP, leucocyte 
count) as well as with SO2. Patients admitted to the ICU and in need for 
mechanical ventilation presented significantly higher proportions of PO 
and PHO compared to those without. 

The predominant chest CT findings in early stages of COVID-19 
infection are peripheral and subpleural ground glass opacities [2,3, 
15]. With evolving disease, lung consolidations become the predomi-
nant pattern approximately 10 days after onset of symptoms [2,16,17]. 
Lately, a few reports described initial experiences with automated 
deep-learning approaches [8,11,12] or semi-automated non-deep 
learning approaches [18,19] to correctly diagnose COVID-19 or to 
derive quantitative chest CT results. Huang et al. [8] used a commer-
cially available deep learning algorithm trained on an annotated dataset 
of COVID-19 patients, providing quantitative results for PO in baseline 
CT, however, the algorithm did not differentiate between GGO and 
consolidations. Authors did not manually adjust the automatic seg-
mentation, and 9 % of cases were excluded due to poor segmentation. In 
56 out of 212 scans the segmentation indicated a perfect fit with lung 
opacities, while in the other cases minor imperfections were noted [8]. 

Shi et al. [12] used a convolutional neural network to quantify the 
volume of lung infection as well as the percentage of lung infection in 
COVID-19 positive patients. After training the software with an anno-
tated set of images, the model learned to automatically detect the lung, 
opacities, and consolidations in chest CT. Differentiation between 
ground-glass opacities (-750 to -300 HU) and consolidations (− 300 to 50 
HU) was based on lung attenuation. Neither Shi et al. nor Huang et al. 
reported the time needed for automatic evaluation [8,12]. Li et al. [11] 

Fig. 2. Proportion of the lung with lung opacity (A) and consolidation (B) in 
COVID-19 patients stratified according to the need for oxygen supply or me-
chanical ventilation. Ground-glass opacities and consolidations are summarized 
as lung opacities. 
* Significant difference compared to patients without the need for oxygen 
supply or intubation (p < 0.05). 

Fig. 3. Correlation of c-reactive protein (CRP) with the proportion of the lung 
with lung opacity (A) and lung consolidation (B) in COVID-19 patients. Ground- 
glass opacities and consolidations are summarized as lung opacities. 
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reported an average processing time of 5 s for their deep learning al-
gorithm, however, this algorithm was used for disease detection and did 
not provide quantitative results. 

Another approach was applied by Colombi et al. [18] and Lanza et al. 
[19] determining the value of quantifying the extent of well-aerated 
lung at baseline chest CT in COVID-19 patients. Both groups used an 
open-source (not deep learning-based) 3D slicer software to quantify the 
percentage and absolute volume of well aerated lung in SARS-CoV-2 
positive patients at baseline CT. The software used density references 
to identify normal lung parenchyma. Segmentation was accomplished 
after a median time of 270 s, and manual correction was necessary in 61 
% of cases. Authors observed that software-determined well aerated 
lung parenchyma of less than 71 % was associated with ICU admission or 
death. 

In our study, a prototype deep-learning based software was applied. 
Comparing our results to that from Colombi et al. [18], the deep learning 
algorithm provided a faster (120 s vs. 270 s) and more accurate seg-
mentation with post-hoc corrections only necessary in 7% of cases (vs. 
61 %). Lanza et al. [19] reported a median time for segmentation of 
11 min. The automatic chest CT analysis in our study was carried out on 
a standard PACS workstation of our institution. Using faster hardware 
equipment may speed-up automatic lung evaluation to a significant 
degree [14]. 

Similar to previous studies, our study showed that the extent of lung 
opacities and consolidations increase with laboratory and clinical 
severity of disease [1,8,12,20], adding objective, quantitative aspects to 
the analysis of chest CT. Especially in follow-up chest CT, reliable and 
rapid automatic quantification of abnormalities may support radiolo-
gists in determining disease progression or regression. However, we 
must admit that the number of cases in our study was overall too small, 
and only a minority of these patients obtained follow-up CT. Thus, 
evaluating the usefulness of this tool for follow-up CT examinations was 
not possible. 

The following limitations of our study merit consideration. First, the 
study suffers from inherent shortcomings of a retrospective, single- 
center approach. Second, CT was acquired during various clinical 
stages of disease, potentially including bias into the analysis of the 
correlation between quantitative CT parameters and clinical and labo-
ratory findings. Third, we did not assess whether the deep learning al-
gorithm is able to differentiate patterns of different pulmonary infection. 
Fourth, we did no compare the accuracy of segmentation of lung 
parenchymal abnormalities of this algorithm with other automatic tools. 
Finally, our study lacks mid- and long-term follow-up outcome data to 
determine the value of such algorithms for patient care. 

In conclusion, our preliminary experience indicates the feasibility of 
a rapid, automatic quantification tool for lung parenchymal abnormal-
ities in COVID-19 patients using deep learning. The algorithm has the 
potential to speed up chest CT evaluation of COVID-19 positive patients 
providing quantitative parameters. Future studies should assess whether 
such parameters may add prognostic value beyond laboratory and 
clinical results alone. 
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