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Abstract

Clinical reports of Zika Virus (ZIKV) RNA detection in breast milk have been described, but

evidence conflicts as to whether this RNA represents infectious virus. We infected post-par-

turient AG129 murine dams deficient in type I and II interferon receptors with ZIKV. ZIKV

RNA was detected in pup stomach milk clots (SMC) as early as 1 day post maternal infec-

tion (dpi) and persisted as late as 7 dpi. In mammary tissues, ZIKV replication was demon-

strated by immunohistochemistry in multiple cell types including cells morphologically

consistent with myoepithelial cells. No mastitis was seen histopathologically. In the SMC

and tissues of the nursing pups, no infectious virus was detected via focus forming assay.

However, serial passages of fresh milk supernatant yielded infectious virus, and immunohis-

tochemistry showed ZIKV replication protein associated with degraded cells in SMC. These

results suggest that breast milk may contain infectious ZIKV. However, breast milk transmis-

sion (BMT) does not occur in this mouse strain that is highly sensitive to ZIKV infection.

These results suggest a low risk for breast milk transmission of ZIKV, and provide a platform

for investigating ZIKV entry into milk and mechanisms which may prevent or permit BMT.

Author summary

Can Zika virus be transmitted from nursing mothers to their children via breast milk?

Only 4 years have passed since the Zika virus outbreak in Brazil, and much remains to be

understood about the transmission and health consequences of Zika infection. To date,

some case reports have detected Zika virus RNA in the breast milk of infected mothers,

but the presence of a virus’ RNA does not mean that intact virus is present. Milk also con-

tains many natural defense components against infection, so even intact virus carried in

breast milk may not be infectious to a child. Here we used a mouse that is genetically engi-

neered to be highly susceptible to Zika infection, and tested whether 1) we could find

intact virus in mouse breast milk and 2) infection was passed from mother to pups. We

found very low levels of intact Zika virus in mouse breast milk, and found none of the

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007080 February 11, 2019 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Regla-Nava JA, Viramontes KM,

Vozdolska T, Huynh A-T, Villani T, Gardner G, et al.

(2019) Detection of Zika virus in mouse mammary

gland and breast milk. PLoS Negl Trop Dis 13(2):

e0007080. https://doi.org/10.1371/journal.

pntd.0007080

Editor: David W.C. Beasley, University of Texas

Medical Branch, UNITED STATES

Received: June 5, 2018

Accepted: December 14, 2018

Published: February 11, 2019

Copyright: © 2019 Regla-Nava et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript. This research was

funded by NIH grants (R01 AI116813 and R21

NS100477 to S.S.) and the Chiba-UCSD Center for

Mucosal Immunology, Allergy and Vaccine

Development. And the La Jolla Institute for Allergy

and Immunology institutional support.

http://orcid.org/0000-0003-2906-8474
http://orcid.org/0000-0002-5993-4575
https://doi.org/10.1371/journal.pntd.0007080
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007080&domain=pdf&date_stamp=2019-02-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007080&domain=pdf&date_stamp=2019-02-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007080&domain=pdf&date_stamp=2019-02-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007080&domain=pdf&date_stamp=2019-02-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007080&domain=pdf&date_stamp=2019-02-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007080&domain=pdf&date_stamp=2019-02-22
https://doi.org/10.1371/journal.pntd.0007080
https://doi.org/10.1371/journal.pntd.0007080
http://creativecommons.org/licenses/by/4.0/


nursing pups to be infected. The model of Zika virus breast milk infection developed in

this study establishes a system by which we may learn whether Zika RNA in human breast

milk is truly infectious to children, and how Zika virus may enter the milk.

Introduction

Zika virus (ZIKV) is an enveloped virus with a positive-sense, single-stranded RNA genome

[1]. For over half a century, this flavivirus was regarded as an arbovirus leading to self-limiting,

febrile disease. However, confirmation of or association with new syndromes, including tera-

togenesis, adult Guillain Barre Syndrome, genital persistence, and sexual transmission, have

begun to emerge since the 2015–2016 Brazil ZIKV outbreak. Due to devastating outcomes

associated with infection of the developing brain and ZIKV’s apparent ability to cross intact

mucosae [2–4], a key question arises: can ZIKV be transmitted by breast milk?

Reports of ZIKV RNA detection in breast milk are accumulating [5–10]. Although no epi-

demiologic data regarding ZIKV in lactating women are currently available, ZIKV RNA has

been reported in breast milk from 3 [5, 9] to 33 [6] days after maternal onset of fever. Reports

conflict as to whether isolated ZIKV RNA represents infectious virus [7]. In one study, cyto-

pathic effect (CPE) could not be demonstrated in cells cultured with either of the breast milk

samples from two mothers who nursed infected infants [9]. In two separate reports, CPE was

seen upon culturing of cells with breast milk of mothers with uninfected nursing children [8,

10]. In another study, CPE was demonstrated in cells cultured with milk from a ZIKV-infected

mother, and the nursing child was infected with an isolate with ZIKV genome identity of more

than 99% between the infected mother and child [5].

Historically, the epidemiology and mechanisms of flavivirus breast milk transmission

(BMT) have posed somewhat of a scientific enigma. Hepatitis C virus or Japanese encephalitis

virus BMT has not been documented, whereas West Nile virus [11] and yellow fever vaccine

strain [12] BMT have been reported. Dengue virus (DENV) infects approximately 390 million

people annually and DENV RNA has been detected in breast milk [13], but reports of BMT

are rare. Furthermore, in the 1970s, two studies also demonstrated that DENV and Japanese

encephalitis virus were neutralized by the lipid fraction of breast milk [14, 15].

In this study, we explored a mouse model for BMT of ZIKV using AG129 mice that are

deficient in both type I and II interferon (IFN) receptors, and represent a highly sensitive ani-

mal model of ZIKV challenge [16]. Following infection of AG129 dams with ZIKV on the date

of parturition, viral RNA was detected in pup stomach milk clots (SMC) as early as 1 day post

maternal infection (dpi) and as late as 7 dpi. In contrast, ZIKV NS2B immunofluorescent

immunohistochemistry (IHC) and examination for CPE of inoculated Vero cells and focus

forming assay did not demonstrate infectious virus in fresh milk or in nursing pups. Enzyme

IHC provided evidence of intracellular viral replication (i.e. ZIKV NS2B expression) in cells

morphologically consistent with epithelial cells, myoepithelial cells, and macrophages within

the mammary gland. ZIKV NS2B expression was observed also in the SMC, and infectious

particles were observed in fresh milk samples after 3 serial passages in Vero cells. The detection

of potentially infectious ZIKV in the milk of this mouse model suggest that infectious virus

may be present in human breast milk. However, BMT did not occur in this highly stringent

ZIKV challenge system. These results suggest a low risk for human BMT of ZIKV, and set the

stage for investigating ZIKV entry into milk and mechanisms by which BMT are prevented or

permitted.

ZIKV virus in mouse mammary gland and breast milk
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Methods

Mice and ethics statement

129/Sv mice deficient in type I and type II IFN receptors (AG129) were bred and maintained

at the La Jolla Institute for Allergy & Immunology (LJI) under standard pathogen free condi-

tions. LJI has established an animal care and use program in compliance with The Public

Health Service Policy on the Humane Care and Use of Laboratory Animals and maintains an

animal welfare assurance with the Office of Laboratory Animal Welfare (OLAW). The animal

care and use program is guided by the US Government Principles for the Utilization and Care

of Vertebrate Animals Used in Testing, Research and Training and by the 8th edition of the

Guide for the Care and Use of Laboratory Animals. As such, all research involving animals is

reviewed and approved by the IACUC in accordance with The PHS policy on the Humane

Care and Use of Animals and the 8th edition of The Guide. In addition, LJI’s animal care and

use program is accredited by AAALAC International. All experiments involving these mice

were approved by the Institutional Animal Care and Use Committee under protocol no.

AP028-SS1-0615. Samples sizes: Fig 1 (1A to 1D: 3 pups per group from 3 separate mothers,

1E: 3 pups per group from 3 other separate mothers), Fig 2 (3 mothers per group), Fig 3 (3

mothers per group), Fig 4 (4A and 4B: 6 pups per group from 3 separate mothers, 4C and 4D:

3 pups per group from 3 separate mothers, 4E to 4F: other 3 pups per group from 3 separate

mothers). Fig 5 (5A to 5C: images representative from 3 independent experiments, 5D: 3

mothers per group, 5E: 10 pups per group from 3 separate mothers). Animal experiments were

not randomized or blinded.

Viral strain, mouse infection, and cells

ZIKV strain FSS13025 (Cambodia, 2010) was obtained from the World Reference Center for

Emerging Viruses and Arboviruses (WRCEVA). This strain was isolated from a pediatric case

[17]. ZIKV was cultured using C6/36 Aedes albopictus mosquito cells as described previously

[18]. Viral titers were determined by using baby hamster kidney (BHK)-21 cell-based focus

forming assay (FFA) [19]. Eight-week-old female mice were infected retro-orbitally (r.o.) with

1 x 102 focus forming units (FFU) of ZIKV FSS13025 in 200 μl 10% FBS/PBS. African green

monkey kidney-derived Vero E6 cells were purchased from ATCC. Vero cells were grown in

Dulbecco’s modified Eagle’s medium (DMEM, GIBCO) supplemented with 1% HEPES, 1%

penicillin/streptomycin (GIBCO) and 10% fetal bovine serum (FBS, Gemini’s BenchMark) at

37˚C, 5% CO2.

Milk samples

Stomach milk clots (SMC). AG129 dams were either infected retro-orbitally with 1 x 102

FFU of ZIKV FSS13025 within 24 hours of parturition or uninfected on the date of parturition.

SMC was removed from the pup’s stomach.

Fresh milk. AG129 dams were either infected retro-orbitally with 1 x 102 FFU of ZIKV

FSS13025 within 24 hours of parturition or uninfected on the date of parturition. After 5 or 7

days post-infection, milking was performed. The pups were isolated from their mother for 6 hr

in the same mouse box as the mother to allow milk to accumulate in the mammary gland.

After separation, pups and dams were left together for 5 min. The dam was then removed and

anesthetized with isoflurane. Milk was collected with a pipette in a microcentrifuge tube [20].

Isolation of the skim fraction from SMC and fresh milk. The SMC or fresh milk was

separated into cream and skim milk by centrifugation (9,000 g for 10 minutes at 4 degrees),

followed by removal of the cream [21]. Only the skim fraction was used in all analyses.

ZIKV virus in mouse mammary gland and breast milk
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Fig 1. ZIKV replication in mammary glands of AG129 mice. Postpartum 8-week-old AG129 dams were retro-orbitally inoculated with 1 x 102

FFU of ZIKV FSS13025 or 10% FBS-PBS as Mock within 24 hours of parturition. (A-D) Viral titers in mammary gland, brain, spleen and serum

ZIKV virus in mouse mammary gland and breast milk

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007080 February 11, 2019 4 / 16

https://doi.org/10.1371/journal.pntd.0007080


Serial passage of fresh milk in vero cells. The skim fraction of fresh milk was resus-

pended in 1 mL of DMEM and filtered with 0.22μM filtration unit (Millex, GV). These filtered

preparations were inoculated into Vero cells for 3 days. After 3 days, the supernatants were

passaged 3 additional times in Vero cells in order to increase the sensitivity of infection.

qRT-PCR analysis of viral burdens

Mouse organs were collected in 800 μl RNA later (Ambion) and the tissues were transferred to

1% BMe/RLT buffer. Maternal mammary gland, brain, spleen, and the pup body minus the

were determined via qRT-PCR at 5, 7, 9 and 11 days post infection (dpi). (E) Levels of infectious ZIKV in mammary gland were determined by FFA

at 5, 7, 9 and 11 dpi. Negative controls were evaluated at 5 days after mock-infection (A-E). n = 3 mice per time point in each panel. Data represent

two independent experiments.

https://doi.org/10.1371/journal.pntd.0007080.g001

Fig 2. Max intensity z-projection of ZIKV-infected mammary tissue. Postpartum AG129 dams were inoculated via retro-orbital route with 1 x 102 FFU of

ZIKV FSS13025 or 10% FBS-PBS as Mock within 24 hours of parturition and sacrificed at 5 dpi. (A) Staining of mammary gland from ZIKV-infected mice with

anti-αSMA (red) and anti-ZIKV NS2B antibodies (green). (B) Staining of mammary tissue from mock-infected mice with anti-αSMA (red) and anti-ZIKV NS2B

antibodies (green). (C) Staining of mammary tissue from ZIKV-infected mice with anti-ZIKV NS2B (green) and DAPI (blue). Tissues were imaged in sequential

mode at 2x digital zoom on a 10x air objective (20x overall). Representative data from 3 ZIKV-infected and 3 mock-infected mice are shown.

https://doi.org/10.1371/journal.pntd.0007080.g002
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Fig 3. Immunohistochemical detection of ZIKV in mammary gland of AG129 mice. Postpartum AG129 dams were

retro-orbitally inoculated with 1 x 102 FFU of ZIKV FSS13025 or 10% FBS-PBS as Mock within 24 hours of parturition

and sacrificed at 5 and 9 dpi. (A) Mammary gland was removed and ZIKV NS2B immunoreactivity was detected at 5

dpi. ZIKV NS2B immunoreactivity was detected in (�) myoepithelial cells and probable macrophages (��) in the

ZIKV virus in mouse mammary gland and breast milk
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head and stomach were each placed in 800 μl. Before analysis, the skin of the head and rest of

the body tissues were removed to avoid contamination from the mother’s saliva. SMC were

removed from the pup’s stomach for separate analysis. The pups heads and stomachs tissues

were processed in 250 μl (stomach was washed twice with PBS in order to remove remnant

milk). The tissues were next homogenized for 3 minutes using Tissuelyser II (Qiagen Inc.) and

centrifuged for 1 minute at 6,000 g. Tissue samples, SMC, and serum from ZIKV-infected

mice were extracted with the RNeasy Mini Kit (tissues) or Viral RNA Mini Kit (serum and

SMC) (Qiagen Inc.). Real-time qRT-PCR was performed using the qScript One-Step qRT-PCR

Kit (Quanta BioSciences) and CFX96 TouchTM real-time PCR detection system (Bio-Rad

CFX Manager 3.1). A published primer set was used to detect ZIKV RNA (Lanciotti, 2008).

Fwd, 5’-TTGGTCATGATACTGCTGATTGC-3’; Rev, 5’-CCTTCCACAAAGTCCCT

ATTGC-3’ and Probe, 5’-6-FAM-CGGCATACAGCATCAGGTGCATAGGAG-Tamra-Q-3’.

Cycling conditions were as follows: 45˚C for 15 min, 95˚C for 15 min, followed by 50 cycles of

95˚C for 15 sec and 60˚C for 15 sec and a final extension of 72˚C for 30 min. Viral RNA con-

centration was determined based on an internal standard curve composed of five 100-fold

serial dilutions of an in vitro transcribed RNA based on ZIKV FSS13025.

IHC for ZIKV mammary tissue z-projection images and videos

The mammary gland was collected at 5 days post-infection (dpi) and was fixed in PFA for 24

hr at 4˚C. ZIKV-infected tissues and mock-infected tissues were obtained. Tissues were pro-

cessed and stained according to standard Visikol HISTO process (protocol.visikol.com) for

antibody labeling. Tissues were immersed in Visikol Permeabilization Buffer at room tempera-

ture overnight. The following day, 2 mm thick tissue sections were processed through a series

of washing steps of increasing methanol concentrations (50%, 80%, 100%), followed by perme-

ation with 20% DMSO in methanol, and subsequently decreasing concentrations of methanol

and back into PBS 1X. Tissues were then incubated in Visikol Penetration Buffer for 12 hr,

washed with PBS, and incubated at 37˚C in Visikol Blocking Buffer™ for 12 hr. Tissues were

then transferred to microcentrifuge tubes for antibody labeling. The primary antibodies

Smooth Muscle Actin (αSMA) (Invitrogen; goat polyclonal) and anti-ZIKV NS2B (GeneTex;

rabbit polyclonal) were diluted at 1:100 in Visikol Antibody Buffer, and tissues were incubated

at 37˚C for 7 days. Tissue sections were washed in 1X Visikol Washing Buffer and then trans-

ferred to the secondary labeling solution. Secondary antibodies (DyLight 488 conjugated anti-

goat and Alexa 594 conjugated anti-rabbit IgG-Invitrogen) were diluted at 1:200 in Antibody

Buffer and the samples were incubated for another 3 days along with DAPI counterstain at

1:1000 dilution). Tissues were washed and cleared for imaging using (LSCM). For clearing,

both control and infected tissues were dehydrated with sequentially increasing concentrations

of methanol (i.e. 50% in PBS, 80% in H2O, 100%) for 30 min in each step, followed by incuba-

tion in Visikol HISTO-1 for 12 hours, and then into Visikol HISTO-2. Tissues were mounted

in Visikol HISTO-2 and imaged using a Leica SP5 LSCM (laser scanning confocal microscope)

using DAPI, Argon-488, and 594 nm lasers with 10X and 20X magnification objectives.

interstitium. (B) At 9 dpi, many cells expressing ZIKV NS2B were seen in cells in the stroma surrounding teat canal.

(C) Magnification of teat: There was strong ZIKV NS2B expression in some Langerhans cells. (D) Negative control

mammary tissue from a mock-infected mouse is shown. Arrows indicate NS2B-expressing cells. TC, teat canal; n = 3

mice per group.

https://doi.org/10.1371/journal.pntd.0007080.g003
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Enzyme IHC, histopathology, and electron microscopy

The mammary gland was collected at 5, 7, 9 and 11 dpi; SMC were collected at 5 dpi; and

mock-infected samples were prepared. Tissues were fixed in zinc formalin for 24 hr at room

temperature. Tissues were processed for paraffin embedding, and sections for slides were cut

at 4 μm thickness. For histopathologic evaluation, slides were stained with hematoxylin and

eosin. For IHC, slides were microwaved in Antigen Unmasking Solution (Vector Laborato-

ries), endogenous peroxidase activity was blocked by incubation in Bloxall (Vector Laborato-

ries), and nonspecific protein binding was blocked by incubation in 10% goat serum. Slides

were then incubated in rabbit anti-ZIKV NS2B antibody (Genetex) diluted at 1:100. ZIKV

NS2B protein is a cofactor of the NS2B-NS3 protease which cleaves the viral polyprotein and is

thus present during viral replication. Therefore, detection of NS2B serves as a marker of repli-

cating virus as opposed to incomplete, phagocytosed, or degraded virions. Slides were then

incubated sequentially in ImmPRESS HRP anti-rabbit IgG (Vector Laboratories), and

NovaRED HRP Substrate (Vector Laboratories). IHC slides were also counterstained with

hematoxylin. For each slide, the anti-ZIKV NS2B antibody staining was controlled with a slide

using nonspecific Rabbit IgG (Vector Laboratories) substituted for the anti-ZIKV NS2B anti-

body, and control tissues from known infected and uninfected mice were included for each

batch. A board-certified veterinary pathologist, who was blinded to each slide’s experimental

conditions, read and scored each slide for immunoreactivity. Mammary gland slides were

examined for mastitis by a pathologist. Bright field imaging was performed with a Zeiss Axio

Scan.Z1 microscope and the images were acquired using Zen 2 software (Carl Zeiss). SMC

were frozen on dry ice and sent to the Texas A&M Veterinary Medical Diagnostic Laboratory

for transmission electron microscopy.

Indirect immunofluorescence microscopy

To detect viral NS2B protein expression, Vero E6 cells were grown to 70% confluency on glass

coverslips. Cells were either mock-infected or inoculated with ZIKV FSS13025 at a MOI of

0.001 or with SMC supernatant. The SMC was collected from the pup’s stomach on d3 after

birth from AG129 dams that had been previously infected retro-orbitally with 1 x 102 FFU of

ZIKV FSS13025. The SMC was collected at day 3 post infection because this time point was

the peak RNA viral burden in the SMC. At day 5 after SMC treatment, Vero cells were fixed in

4˚C methanol and permeabilized with 0.1% Triton X-100. Protein blocking was performed

with 10% goat serum, followed by incubation with anti-ZIKV NS2B antibody (Genetex) at

1:400 dilution. Coverslips were incubated with Alexa Fluor 594 (Invitrogen) at 1:300 dilution

and then inverted onto glass slides for mounting. Imaging was performed by confocal

microscopy.

Statistical analysis

All data were analyzed with Prism software, version 7.0 (GraphPad Software) and expressed as

means ± SEM. For viral burden and focus forming assay data, Krustal-Wallis test was used to

compare more than two groups. This test was performed only in ZIKV-infected samples.

Mock was not considered in the analysis. p<0.05 was considered a significant difference.

Fig 4. Transmission of ZIKV RNA in mouse breast milk. Postpartum AG129 dams were retro-orbitally inoculated with 1 x 102 FFU of ZIKV

FSS13025 or 10% FBS-PBS as Mock within 24 hours of parturition. Pups were sacrificed on d1, d3, d5 and d7 after birth. (A and B) Levels of ZIKV

RNA in the head and the rest of the body were measured by qRT-PCR (n = 6 mice, each day). (C and D) ZIKV RNA levels in stomach milk clots

(SMC) and stomach tissues were quantified via qRT-PCR (n = 3 mice, each day). (E and F) Presence of infectious ZIKV in SMC and stomach was

assessed using FFA (n = 3 mice, each day). Data represent two independent experiments.

https://doi.org/10.1371/journal.pntd.0007080.g004
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Results

Presence of infectious virus in the mammary glands of AG129 mice with

ZIKV infection

To begin evaluating whether ZIKV could infect the mammary gland and be transmitted to

breastfed infants, 8-week-old female AG129 mice were infected with ZIKV strain FSS13025.

Viral burdens in several tissues were first assessed at 5, 7, 9 and 11 dpi via qRT-PCR. ZIKV

RNA levels in the mammary glands were similar at the four time points (Fig 1A). As expected,

high levels of ZIKV RNA were present in the brain, spleen, and serum with no significant dif-

ference among the four time points. With the exception of serum, there was a slight reduction

on 5 dpi compared with 11 dpi (Fig 1B–1D), indicating ZIKV dissemination into tissues. To

test for the presence of infectious virus in the mammary gland, we measured viral titers by

FFA (Fig 1E). High levels of infectious ZIKV were present in the mammary gland at 5 dpi with

a slight reduction in the subsequent days analyzed, demonstrating that ZIKV establishes pro-

ductive infection in the AG129 mouse mammary glands.

IHC for z-projection on ZIKV mammary tissue images and movies

To localize ZIKV replication within the mammary gland of AG129 mice, 8-week-old female

AG129 mice were mock-infected or infected with ZIKV strain FSS13025, followed by visuali-

zation of ZIKV infection via laser scanning confocal microscopy. After clearing with Visikol

HISTO, 800–1000 μm thick portions of the mammary gland were imaged under laser scanning

confocal microscopy. Immunofluoresence staining was performed to assess expression of

ZIKV NS2B, a marker for viral replication [22], and alpha smooth muscle actin (αSMA), pres-

ent in myoepithelial cells. At 5 dpi, strong expression of NS2B and αSMA was detected in the

mammary gland of ZIKV-infected AG129 mice (Fig 2A and 2B). The 3D images from this tis-

sue (S1 and S2 Figs) and staining for ZIKV NS2B and DAPI (Fig 2C) showed similar results.

Thus, ZIKV NS2B colocalizes with αSMA-expressing cells within the mammary glands of

AG129 mice, suggesting myoepithelial cells as one of the cellular hosts of ZIKV in the mam-

mary gland.

Enzyme IHC detection of ZIKV replication in the mammary gland

To confirm ZIKV replication within the mammary gland of AG129 mice, tissues were fixed in

Zinc formalin and then stained for expression of ZIKV NS2B at 5, 7, 9 and 11 dpi. No differ-

ence was observed among all times points, and we show 5 and 9 dpi as representative (Fig 3).

NS2B expression was detected in cells morphologically consistent with mammary epithelial

cells, myoepithelial cells, and interstitial macrophages (Fig 3A). NS2B expression in cells in the

stroma surrounding the teat canal on a nipple cross section (Fig 3B) and teat Langerhans cells

Fig 5. Infectivity of milk supernatant on vero cells. AG129 dams were retro-orbitally inoculated with 1 x 102 FFU of ZIKV FSS13025 within 24 hours

of parturition. (A-C) Vero cells were mock-infected as a negative control, infected with ZIKV FSS13025 at an MOI of 0.001 as a positive control, cultured

with stomach milk clot (SMC) supernatant collected from the pup stomachs 3 days after birth, or (D) cultured with fresh milk obtained directly from

dams at days 5 and 7 after infection; mock fresh milk was collected on day 5 after parturition. (A) Vero cells were fixed at day 5 after infection or culture

with SMC supernatant. ZIKV NS2B protein (red) was labeled with a specific antibody. Nuclei were stained with DAPI (blue). Arrows indicate cells

expressing ZIKV NS2B protein. (B) CPE and (C) plaques were visualized at at day 5 after infection or culture with SMC supernatant. Slides for

immunofluorescence were examined on a Nikon/eclipse 80 microscope and CPE on an Eclipse TE300 microscopy and Nikon DXM1200C camera. (D)

Postpartum AG129 mice were retro-orbitally inoculated with 1 x 102 FFU of ZIKV FSS13025 or 10% FBS-PBS as mock within 24 hours of parturition.

Pups were sacrificed on day 5 after birth. ZIKV NS2B expression was determined in SMC via IHC. Negative control SMC samples are obtained from

pups born to mock-infected mice. Representative images from n = 10 mice per group are shown. (E) Levels of infectious ZIKV in the fresh milk samples

were determined after serial passages in Vero cells using FFA. The Vero cell culture supernatants were collected at day 3 after culture with fresh milk,

and this passaging was repeated for 2 additional rounds.; n = 3 mice per group.

https://doi.org/10.1371/journal.pntd.0007080.g005
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was also observed (Fig 3C). Additionally, histopathologic evaluation of these tissues revealed

an absence of mastitis. Thus, ZIKV replicates locally in the mammary gland, and these enzyme

IHC results in combination with z-projection images suggest that myoepithelial cells are major

cellular hosts of ZIKV.

ZIKV in mouse breastmilk does not induce systemic infection

Having established the presence of ZIKV RNA and infectious viral particles in the mammary

gland, we proceeded to examine whether ZIKV was transmitted from infected mothers to neo-

nates through breastfeeding. Neonatal heads, stomach tissues, SMC, and the rest of the bodies

(without skin to avoid contamination from the mother’s saliva) were examined for the pres-

ence of ZIKV RNA by qRT-PCR. No ZIKV RNA was detected in the head and the rest of body

in the neonates 1 to 7 days after birth (Fig 4A and 4B). However, viral RNA was present in

SMC and stomach tissues at almost all time-points tested from 1 to 7 days after birth (Fig 4C

and 4D). As ZIKV RNA does not necessarily indicate production of infectious virus, we next

assessed for the presence of infectious ZIKV in SMC and stomach tissues via FFA. No infec-

tious ZIKV particles were detected in SMC and stomach (Fig 4E and 4F). Thus, breastfeeding

does not appear to be a significant route of ZIKV transmission into neonates in this mouse

model.

Infectivity of milk in Vero cells

To further assess the lack of infectious ZIKV in SMC, we inoculated SMC supernatant onto

Vero cells. Infectivity of the SMC supernatant was assessed by immunofluorescence staining

for ZIKV NS2B expression and CPE in the Vero cells, and plaque assay of the Vero culture

supernatants. ZIKV NS2B expression and CPE were observed in the positive control cells

infected with ZIKV. However, Vero cells inoculated with SMC supernatant did not show any

NS2B protein expression or CPE (Fig 5A and 5B), and plaque assay confirmed the absence of

infectious virus in the culture supernatant of SMC supernatant-treated Vero cells (Fig 5C). To

assess whether ZIKV NS2B expression is observed in the breast milk were present in the SMC

and might also infect the stomach tissue, 8-week-old female AG129 mice were infected with

ZIKV strain FSS13025, followed by sacrificing of pups on d5 after postpartum and examina-

tion for the expression of ZIKV NS2B on the pup SMC and stomach tissue by IHC. Of 10 sam-

pled pup stomachs, ZIKV NS2B expression surrounded nuclear material in SMC from 3 pup

stomachs (Fig 5D). However, no ZIKV NS2B expression was detected in the full thickness of

the gastric walls. These results suggest that replicating ZIKV may be passed in milk and is likely

cell-associated; however, breast milk does not contain sufficient replication-competent ZIKV

to initiate infection in cell culture and in IFN receptor-deficient mice.

Finally, we determined whether there is infectious virus present in fresh breast milk by

FFA. To increase the sensitivity of infection in these samples, we performed serial passages in

Vero cells of fresh breast milk collected at 5 and 7 days postpartum. Only one fresh milk sam-

ple collected at d5 showed a low infectivity in the first passage. However, we observed an

increase of infectious particles at the second and third passage in both times points (Fig 5E).

Discussion

In this study, we were able to detect ZIKV RNA in pup stomach milk clots and maternal mam-

mary glands, and within the latter, ZIKV NS2B antigen localized to cells morphologically con-

sistent with glandular epithelial cells, myoepithelial cells, and macrophages. ZIKV-permissive

cells were also identified in the teat stroma and epidermis. Further, low levels of replicating

virus were detected in fresh milk and ZIKV NS2B expression was detected in SMC samples.
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These results provide a framework for investigating ZIKV entry into the milk and raise the

additional question of whether normal nursing-associated ingestion of maternal epidermal

cells and blood may also play roles in ZIKV transmission.

We propose that infectious ZIKV may enter human breast milk but may be subsequently

inactivated by endogenous or exogenous factors such as lipid, antimicrobial proteins, or gastric

acid. Several studies have shown that the acidic pH and the digestive enzymes present in the

stomach inactivate virus [23–25], and combine with mucus to form a chemical barrier to infec-

tion. Because dams were infected on the day of parturition, milk in this experiment should not

have contained any ZIKV-neutralizing antibody. Recently in a rhesus macaques model, ZIKV

RNA was present in saliva, another potential route of mucosal exposure [3], but no infectious

virus was detected. Another study demonstrated that human breast milk inactivates ZIKV

after prolonged storage [26]. Additionally, human breast milk has been reported to reduce the

infectivity of HIV, HCV, and dengue virus. Thus, antiviral properties of breast milk may

reduce BMT [21, 27].

Human viruses with known clinically relevant risk of BMT are cytomegalovirus (CMV)

[28] and HIV-1 [27, 29–31]. Although mastitis is a risk factor for BMT of both viruses, most

cases of BMT occur in the absence of mastitis. Further, most cases of CMV and HIV BMT

involve a seroconverted mother rather than infection of a naïve mother in the nursing period.

Infectious CMV has been isolated from up to 80% of infected breast milk samples, whereas

infectious HIV has been extremely difficult to isolate from breast milk. DNA and RNA from

other human viruses including herpesviruses, parvovirus, rubella virus, arboviral flaviviruses,

and hepatitis viruses A, B and C have been detected in milk [32]. However, perhaps owing to

low clinical relevance of BMT of these viruses, it is largely unknown whether detected nucleic

acids were non-infectious viral genetic material or derived from neutralized virions.

After over two decades of research, the pathogenesis of HIV BMT remains poorly under-

stood. It is estimated that BMT causes approximately 40% of mother-to-child transmission

case of HIV. However, isolation of infectious virus from breast milk is rarely successful. HIV

RNA, and rarely infectious virus, have been isolated from whey and cellular fractions of milk

[33]. In contrast to CMV, viral loads in cellular fractions of milk correlate to transmission

whereas loads in cell-free fractions do not. These findings have suggested that an intracellular

location shields HIV from immune defenses such as lactoferrin, tenascin-C, defensins, and

mucin [34]. Meanwhile, factors such as antibodies and HIV-gag-specific cytotoxic T lympho-

cytes may reduce cell-associated virus loads. Our early findings with ZIKV showed nursing

mouse pups were not infected following ingestion of milk from infected dams. Therefore, the

data are not sufficient to conclude that ZIKV infection can be passed via breastfeeding, and

support early data suggesting the same for humans [8].

High ZIKV susceptibility of AG129 mice, which globally lack type I and type II IFN recep-

tors, is often cited as a pitfall for many virology studies. However, in the current state of ZIKV

science, in which it is unknown whether BMT is a clinical reality and there are no animal mod-

els of ZIKV entry into milk, a highly susceptible dam represents an excellent starting point to

begin mechanistic manipulations which may reduce entry of viral RNA into milk. Further-

more, neonates, which are also deficient in IFN receptors, are a highly sensitive detection sys-

tem for arranging conditions that may enable BMT. Indeed, the absence of infection in

neonates in this study provides an early suggestion that infectious ZIKV is not easily transmit-

ted through breast milk or other maternal-neonatal contact. It should also be noted that in

humans, the tonsil is one of the first potential entry sites for orally ingested ZIKV [3], whereas

mice do not have tonsils.

Because ZIKV is already known to have devastating consequences on the developing brain

and there are both benefits to and substitutes for breastfeeding [35] it is imperative to fully
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understand the mechanisms which enable or prevent BMT. The results of this study provide a

mouse model for investigating entry of ZIKV RNA into breast milk, and the pups provide a

sensitive system for testing modulations which might permit BMT.

Supporting information

S1 Fig. AG129 dams were inoculated via retro-orbital route with 1 x 102 FFU of ZIKV

FSS13025 within 24 hours of parturition and sacrificed at 5 dpi. Staining of mammary

gland from ZIKV-infected mice with anti-αSMA (red) and anti-ZIKV NS2B antibodies

(green). Representative 3D images from 3 ZIKV-infected mice are shown.

(MOV)

S2 Fig. AG129 dams were inoculated via retro-orbital route with 10% FBS-PBS as Mock

within 24 hours of parturition and sacrificed at 5 dpi. Staining of mammary tissue from

mock-infected mice with anti-αSMA (red) and anti-ZIKV NS2B antibodies (green). Represen-

tative 3D images from 3 mock-infected mice are shown.

(MOV)
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