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In this article, we have reinvestigated the initial distribution of thermodynamic variables inside the protoplanets 
formed via gravitational instability having mass range 0.3 − 10𝑀𝐽 (1𝑀𝐽 = 1.8986 × 1030 gm) by an embedded 
RKACeM(4,4) method assuming that the polytropic gas law holds in the protoplanets. The findings attained 
by our numerical experiments are recognized to be consistent with the results acquired through other notable 
investigations in this regard. Furthermore, the model is easily computable. The used method is found to be 
efficient in investing the structures of polytropic protoplanets in their initial stages in terms of accuracy, stability, 
computational cost, and solving endpoint constraints.
1. Introduction

Certainly, numerical computing plays an essential and important 
role in solving real-time problems arising in physics, mathematics, en-

gineering, and other branches of science to provide an optimal and ef-

ficient solution. In such computing, three stages are of interest, namely 
the formation of a suitable numerical method, the application of the 
scheme to achieve an efficient solution, and the confirmation of the 
acquired findings [1]. But before selecting and/or constructing novel 
methods, it is a prerequisite to figuring out different aspects, viz. type 
of the equation of interest, the availability of equipment, programming, 
information about the speed of execution, the validity of the attained 
results with reliability and accuracy [1, 2]. It is worth noting that 
RKACeM(4,4) is an embedded technique, dubbed with the 4th order 
Runge-Kutta (RK) arithmetic mean (RKAM(4,4)) method and 4th or-

der RK based centroidal mean (RKCeM(4,4)) method, which provides 
the facility of selecting step size to control local truncation error. The 
method of interest can be used to address various types of problems in-

volving ordinary differential equations (ODEs) with initial or boundary 
values. The method also provides an advantage to use a larger step size 
in integrating an initial value problem (IVP) or boundary value problem 
(BVP) in ODEs, for the RKCeM(4,4) method has a slightly larger stabil-

ity region than that of the RKAM(4,4) method as will see later. Further, 
if the local truncation error of an RK-based method approaches zero, it 
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is said to be consistent. It is well known that in RKAM(4,4) method, 
there is no facility for estimating local truncation errors. This leads 
to the formulation of a variety of embedded techniques, namely the 
RKARMS(4,4) method, RKACeM(4,4) method, RKAHeM(4,4) method, 
RKF(4,5) method, etc. But not all of the methods are suitable for solv-

ing all the types of the IVPs/BVPs arising in mathematical physics [1, 
2].

It is worth mentioning that the interest of researchers in planetary 
science has been rekindled with the detection of a planet (51 Pegasi 
B) outside our solar system. Thereby, a significant volume of works 
has been conducted inside our solar system and elsewhere by using the 
physical conditions regulating the interior of such planets [3] and the 
researches are still being carried out towards the same. However, the 
details about the evolution process of the planets are still debated [4]. 
But it is believed widely that the solar system planets or extrasolar ones 
are formed from materials having high orbital angular momentum left 
over from the star’s birth [5]. The two competing paradigms, found in 
the literature, to explain the evolution process of gas giants are (1) core 
accretion (CA) [6, 7] and (2) gravitational (disk) instability (GI) [8, 9]. 
In accordance with the first paradigm, giant planets are formed by the 
accumulation of solid bodies followed by the accretion of a gaseous en-

velope [5]. This paradigm has, so far, been accepted as the standard 
one in explaining the process of evolution of the solar planets as well as 
that of extrasolar ones. But there are some problems with the CA sce-
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nario. One major problem is that the formation of gas giants via the 
CA takes a very long time. It is also believed that the gas neighbour-

ing a young star disappears before the solid core formation [10]. As 
in [11], the CA paradigm’s main difficulty lies in its very beginning of 
the growth. It is, so far, unclear how metre-sized rocks stick together 
while colliding at high speeds, subject to high radial drifts into the par-

ent star. Further, the CA scenario cannot efficiently describe the process 
of formation of gas giants at radial distances out to ∼100 AU from the 
parent star [12]. However, many authors (see e.g., Ormel and Klahr 
[13]) used the pebble accretion mechanism to solve the limitations of 
the CA scenario. But the subsequent pebble growth into planetesimals is 
not clearly understood [14]. As in [15], the streaming instability mech-

anism can make available an acceptable solution in this regard. Upon 
satisfaction of the threshold of the dust-to-gas ratio, the pebble clumps 
can collapse straight into planetesimals. It is seen that the growth of 
the core via the accretion of pebbles is much quicker; however, the 
mechanism is not so effective [16, 17] and may necessitate more peb-

bles than the observations indicate [18]. Furthermore, the formation of 
terrestrial planets is relatively fast [19]. With the problems in the CA 
mechanism, the GI paradigm, an alternative to the CA mechanism of 
planetary formation, has been reformulated with fragmentation from 
massive protoplanetary discs (PPDs) [11, 18, 20, 21, 22, 23]. But, as in 
[20], this paradigm has also received a lot of criticism. Some notewor-

thy problems of the scenario are (i) PPDs are unable to form planetary 
embryos at the present location of Jupiter [24], conflicting with the ear-

lier results by Boss [9]; (ii) sedimentation of dust is so a slow process 
that it is failed to yield observed solid cores in giant embryos of mass 
≲ 1𝑀𝐽 [25]; (iii) OB stars (hot, massive stars of spectral types O or 
early-type B) are too rare to explain the abundance of Jupiter like plan-

ets observed in exosolar planetary systems [20] and (iv) it is believed 
that the formation of Earth-sized terrestrial planets is rarely possible by 
the GI [4, 20]. However, many authors have tried to solve the prob-

lems found in the GI scenario [11, 18, 20, 21, 22, 26, 27, 28, 29]. The 
tidal downsizing mechanism, a revised form of the GI paradigm with 
planet migration inward and tidal disruptions of GI fragments in the in-

ner regions of the disc [27], could account for all observational facts 
relevant to the process of planetary evolution [22]. With the theoretical 
work as well as simulations, Humphries and Nayakshin [18, 19] exhib-

ited that giant planets assembled by the GI can be very metal-rich as 
required by the solar and exoplanetary data and that these planets can 
migrate inward and explain the closer-in data as well [29]. Recently, 
Atacama Large Millimeter/submillimeter Array (ALMA) has been used 
widely to investigate the PPDs, which makes available information on 
the planetary systems orbiting stars other than the Sun during all stages 
of evolution [23, 30]. As in [18], the age of the ALMA planets is not 
a challenge for the GI mechanism. Because in this mechanism, planets 
form within the first ∼0.1 Myr [12].

Thus, the GI mechanism with some amendments can be a promis-

ing route to the rapid formation of gas giants in the exterior of our 
solar system, including our own. But one of the problems lies within 
the estimation of the initial configuration [4]. Through literature sur-

vey, it is seen that diverse numerical models present different structures 
for initially formed protoplanets [4, 31, 32], and no author has, so 
far, shown that these protoplanets exit, in reality, with their definite 
structures [2]. This leads researchers to conduct more research on the 
estimation of initial structures of the protoplanets formed by the GI 
envisioned by Boss [9], and planetary formation through this mech-

anism is still a subject for ongoing research. However, Boss [33], in 
his investigation, presumes the protoplanets in their initial stage to be 
in radiative equilibrium, whereas in [25, 31, 34], the gas blob of the 
protoplanets was assumed to be fully convective with a thin outer ra-

diative zone, which is consistent with the assumption made in [35]. In 
their investigations, Paul et al. [36, 37] considered such a protoplanet 
to be convective fully, which is consistent with that found in [38]. On 
the other hand, Paul and Bhattacharjee [39] and Paul et al. [4, 40, 
41] performed their numerical experiments considering the conductive-
2

radiative heat transport. Paul et al. [42, 43] also used a polytropic 
equation of state, where they concluded that the polytropic protoplan-

ets (PPs) with polytropic index 𝑛 = 1.5 as well as 𝑛 = 1, the distributions 
of thermodynamic and other variables are nearer to reality. Here, the 
initial structure of the planet formation approach is on the basis of the 
renowned polytrope conjecture, which is used to characterize gaseous 
planets, main-sequence and fully convective stars, and even compact 
objects like neutron stars and white dwarfs [44]. A polytrope is a sim-

ple structural assumption between pressure and density, assumed to be 
valid throughout a gas sphere and can provide significant insight into 
the structure and evolution of stars. Our intention is that whether the 
law can provide significant insight into the structure of a protoplanet. 
However, this law leads to the formulation of the Lane–Emden (LE) 
equation, which is a dimensionless form of the Poisson equation for the 
gravitational potential of a Newtonian self-gravitating, spherically sym-

metric, polytropic fluid [45]. Such an equation, in most cases, may be 
solved only numerically. It is known that the LE equation has exact so-

lutions for 𝑛 = 0, 1, and 5; for the rest, one may rely on numerical or 
power series methods. The key interest when solving the LE equation 
using power series is how to make the series converge to the outer sur-

face of a gas sphere. However, various endeavours have been made to 
enumerate what the index of polytrope signifies in the restricted context 
of the ideal gas law [46]. There exist other endeavours to import physi-

cal meaning to the index of polytrope [47, 48], but limited in scopes in 
their results. This work will, to the best of our knowledge, be the first 
to reveal the configuration of polytropic protoplanets with the physical 
meaning of the index of polytrope in the usual case for the protoplanets 
formed via GI with an efficient approach.

Therefore, this communication aims to investigate initial configura-

tions of PPs, formed via GI, with mass range 0.3-10 𝑀𝐽 by an embedded 
RKACeM(4,4) method for having optimal and efficient results.

2. Mathematical foundation

2.1. Protoplanetary structure

We assume isolated spherically symmetric gaseous objects of solar 
composition, formed via GI, having a mass limit of 0.3-10𝑀𝐽 . The rea-

son behind the choice is that the mass limit covers most of the detected 
extrasolar giant planets [31, 37]. As in [4], we presume that during the 
pre-collapse stage, the object contract quasi-statically, and the energy 
source is only the gravitational contraction. Each of the objects is as-

sumed to behave as a polytrope meaning that the local pressure and 
density are related through a power law, known as the polytropic gas 
equation of state [49]:

𝑃 (𝑟) = 𝐾𝜌(𝑟)𝛾 . (1)

In Eq. (1), 𝑃 designates the pressure inside the PP at a distance interior 
to a radius 𝑟; 𝜌 is its density at the distance 𝑟 from the centre; 𝐾 > 0 is 
a constant of proportionality, which is related to the total mass of the 
configuration; the ratio of specific heat at constant pressure to that at 
constant volume, 𝛾 = 1 + 1∕𝑛, 𝑛 is the polytropic index (not necessarily 
an integer). It is of interest to note that for a gas sphere with adiabatic 
convective heat transport, 𝛾 = 5∕3, which leads to 𝑛 = 1.5, from which 
an estimation of the index 𝑛 in the case of PP can be made. It is worthy 
to mention at this juncture that the polytropic index 𝑛 appropriately 
signifies the behaviour of polytropic gas, where for initial PPs, 𝑛 should 
significantly be small (0 ≤ 𝑛 ≤ 1.5) [43]. Because at the initial stages, the 
PPs remain less centrally condensed [42, 43], as is to be expected.

The polytropic gas equation of state given by Eq. (1) by combining 
with the equations of hydrostatic support and mass conservation gives 
rise to the LE [45], named after astrophysicists Jonathan Homer Lane 
and Robert Emden. It describes the density profile of a gaseous self-

gravitating object [45]. The equation is of importance in astrophysics, 
for the values of the polytropic index 𝑛 between 0 and 5, the equation 
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approximates to a reasonable accuracy the structures of a variety of 
realistic stellar models. Following Chandrasekhar [50], the LE equation 
governing the equilibrium structure of a self-gravitating isothermal gas 
sphere can be given by

1
𝜉2

𝑑

𝑑𝜉

(
𝜉2

𝑑𝜃

𝑑𝜉

)
= −𝜃𝑛. (2)

Eq. (2) is a second-order non-linear ODE in which the independent vari-

able 𝜉 is a dimensionless radius, the dimensionless independent variable 
𝜃 is the polytropic temperature. The polytropic index 𝑛 of the gas sphere 
is a free parameter (0 ≤ 𝑛 ≤ 5) and for cases of practical interest in 
problems of planetary structure, 𝑛𝜖 [0,1.5] [43]. The centre (𝜉 = 0) and 
surface (𝜉 = 𝜉1, 𝜉1 is the value of 𝜉 where the first zero of the dependent 
variable 𝜃 occurs) are two singularities of this ODE. Physical conditions 
at the centre and surface require Eq. (2) to satisfy the standard bound-

ary conditions (BCs) 𝜃 = 1, and the slope 𝑑𝜃

𝑑𝜉
= 𝜃′ = 0 at 𝜉 = 0. Physical 

conditions in the interior of a polytropic model require 𝜃 and 𝑑𝜃

𝑑𝜉
re-

main finite for every value of 𝜉 lies between 0 and 𝜉1. The polytropic 
temperature, 𝜃, mentioned above is linked to 𝑇 , 𝜌, and 𝑃 through

𝜃 = 𝑇 ∕𝑇𝑐 =
(
𝜌∕𝜌𝑐

)1∕𝑛 =
(
𝑃∕𝑃𝑐

)1∕(1+𝑛)
[43]. (3)

In Eq. (3), 𝑃𝑐 , 𝜌𝑐 , and 𝑇𝑐 specify the central pressure, density, and tem-

perature, respectively, of a PP. The central values for 𝑛 = 0.5, 1.5 are, 
respectively, given by 𝜌𝑐 = 𝑎𝑛

3𝑀
4𝜋𝑅3 , 𝑃𝑐 = 𝐾𝜌

1+1∕𝑛
𝑐 , and 𝑇𝑐 = 𝑐𝑛

𝐺𝑀

𝑅
, where 

𝐾 can be determined by the mass radius relation, as we will see later. 
But for 𝑛 = 0, the pressure-density relation cannot be used explicitly, as 
𝑃𝑐 = 𝐾𝜌

1+1∕𝑛
𝑐 diverges when 𝑛 ⟶ 0. However, for 𝑛 = 0, 𝜌𝑐 , and 𝑇𝑐 can 

be estimated by means of the above corresponding mentioned equa-

tions, whereas 𝑃𝑐 can be attained by 𝑃𝑐 = 𝑏𝑛
𝐺𝑀2

𝑅4 [43]. For 𝑛 = 1, the 
calculation for central values is presented in subsection 2.2.

In the equations presented above, 𝐺 symbolizes Newton’s universal 
gravitational constant, 𝑀 represents the mass inside radius 𝑅, i.e., the 
entire mass of a PP; 𝑎𝑛, 𝑏𝑛, and 𝑐𝑛 represent constants partaking dif-

ferent values for different 𝑛. For such 𝑛, the values of 𝑎𝑛 and 𝑏𝑛 are 
obtainable in any standard book [51]. The value of 𝑐𝑛 for a specific 𝑛
can be attained via 𝑐𝑛 =

4𝜋𝜇𝐻

3𝑘
𝑏𝑛

𝑎𝑛
, where 𝜇 (= 2.3) designates the mean 

molecular weight of the gas of the protoplanets containing hydrogen, 
helium and heavy elements, 𝐻 (= 1.67 × 10−24 gm) represents the mass 
of a hydrogen atom, and 𝑘 (= 1.38 ×10−16 cm2 gms−2 K−1) represents the 
Boltzmann constant.

The equation specifying the mass distribution in a PP is [43]

𝑑𝑀(𝑟)
𝑑𝑟

= 4𝜋𝑟2𝜌, (4)

where 𝑀(𝑟) denotes the mass of the PP interior to 𝑟.

2.2. Mass-radius relationship for polytropes

Using Eqs. (2) and (4), we see

𝑀
(
𝜉1
)
=

𝑅

∫
0

4𝜋𝑟2𝜌𝑑𝑟 = 4𝜋𝛼3𝜌𝑐

𝜉1

∫
0

𝜉2𝜃𝑛𝑑𝜉 = −4𝜋𝛼3𝜌𝑐

(
𝜉2

𝑑𝜃

𝑑𝜉

)
𝜉=𝜉1

, (5)

where 𝛼2 = (𝑛+1)𝐾
4𝜋𝐺

𝜌
1∕𝑛−1
𝑐 . Now, Eq. (5) on eliminating with 𝑅 = 𝛼𝜉1

yields the mass-radius relation presented below:

𝑀
𝑛−1
𝑛 𝑅

3−𝑛

𝑛 = (𝑛+ 1)𝐾
𝐺(4𝜋)1∕𝑛

[
−𝜉

𝑛+1
𝑛−1

𝑑𝜃

𝑑𝜉

] 𝑛−1
𝑛

𝜉=𝜉1

. (6)

From Eq. (6), we see that if we specify the mass and radius of a PP, and 
supply the assumed polytropic index 𝑛, except 𝑛 = 0 and 1, 𝐾 can be 
determined, which is essential because 𝐾 summarizes the LE equation’s 
thermodynamical property. Our calculated 𝐾 values for 𝑛 = 0.5 and 𝑛 =
1.5 are presented in Table 1.

It is to be noted here that for 𝑛 = 1, the mass and radius of a proto-

planet are independent of each other (see Eq. (6)). In this case, 𝐾 can 
3

Table 1. Polytropic constant 𝐾 for 𝑛 = 0.5 and 𝑛 = 1.5.

Mass 𝑅 𝐾

𝑛 = 0.5 𝑛 = 1.5
0.3 𝑀𝐽 3.5 × 1012 1.3971 × 1026 8.2153 × 1014

1 𝑀𝐽 5.3 × 1012 3.3371 × 1026 1.8583 × 1015

3 𝑀𝐽 7.8 × 1012 7.6797 × 1026 3.9444 × 1015

5 𝑀𝐽 8.4 × 1012 6.6745 × 1026 5.0364 × 1015

7 𝑀𝐽 9.1 × 1012 7.1138 × 1026 6.1037 × 1015

10 𝑀𝐽 11.0 × 1012 1.2852 × 1027 8.3095 × 1015

be generated for a given 𝑅 from Eq. (6) as 𝐾 = 𝑅2𝐺(4𝜋)
2 . Then with that 

constant value of 𝐾 , the central density of each of the PP having as-

sumed masses can be obtained from 𝑀 =
√
2∕𝜋

(
𝐾

𝐺

)3∕2
𝜌𝑐

[
−𝜉2 𝑑𝜃

𝑑𝜉

]
𝜉=𝜉1

, 
which is obtained from Eq. (5) for 𝑛 = 1, and thereby with the relation 
𝑃𝑐 = 𝐾𝜌

1+1∕𝑛
𝑐 , the central value of pressure, 𝑃𝑐 , for each PP can be ob-

tained. The central temperature for the constant 𝜇 can be obtained from 
𝑇𝑐 =

𝜇𝐻

𝑘
𝐾𝜌

1∕𝑛
𝑐 with 𝑛 = 1 as 𝐾 and 𝜌𝑐 are now known.

3. Numerical method

3.1. Nondimensionalization

For numerical treatment, we use the transformation 𝜉 = 𝑥𝜉1, which 
brings Eq. (2) to the following form:

𝑑2𝜃

𝑑𝑥2 + 2
𝑥

𝑑𝜃

𝑑𝑥
= −𝜉21𝜃𝑛, 0 ≤ 𝑥 ≤ 1, (7)

where 𝜉1 is the first zero of the LE function.

The conditions for solving Eq. (7) then become 𝜃(0) = 1 and 𝜃′(0) = 0.

The use of transformations 𝑟 = 𝑥𝑅 and 𝜉 = 𝑥𝜉1 in Eq. (4) brings it to 
the following form:

𝑀(𝑥) =
4𝜋𝜌𝑐𝑅

3

𝜉21

(
−𝑥2 𝑑𝜃

𝑑𝑥

)
. (8)

4. A description of the RAKCeM(4,4) method

4.1. The RAKCeM(4,4) method

Let us consider the following ODE:

𝑦′(𝑥) = 𝑓 (𝑥, 𝑦(𝑥)) (9)

with the initial condition 𝑥 ≥ 𝑥0, 𝑦(𝑥0) = 𝑦0, where 𝑓 (𝑥, 𝑦) is suffi-

ciently differentiable function in a neighbourhood of the exact solution 
(𝑥, 𝑦(𝑥)). With a view to solving Eq. (9) effectively, an embedded RK 
technique can be employed [1, 2, 52]. A general 𝑠–stage RK pair can be 
characterized by means of the extended Butcher tableau of parameters, 
tabulated in Table 2 [32].

Table 2. The Butcher tableau.

𝐶 𝐴

𝑏𝑇

𝑏̂𝑇

𝐸𝑇

In Table 2, 𝑏𝑇 , 𝑏̂𝑇 , and 𝐶 ∈ 𝑅𝑠 and 𝐴 ∈ 𝑅𝑠 ×𝑅𝑠. Then the respective 
two approximations 𝑦𝑛+1 and 𝑦̂𝑛+1 at 𝑥 = 𝑥𝑛+1 using the two methods 
can be expressed as [52]

𝑦𝑛+1 = 𝑦𝑛 + ℎ

𝑠∑
𝑖=1

𝑏𝑖𝑘𝑖, (10)

𝑦̂𝑛+1 = 𝑦𝑛 + ℎ

𝑠∑
𝑏̂𝑖𝑘𝑖, (11)
𝑖=1
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where ℎ > 0 represents the step size, and the slopes are given by 𝑘𝑖 =
𝑓 (𝑥𝑛 + 𝑐𝑖ℎ, 𝑦𝑛 + ℎ ∑𝑠

𝑖=1 𝑎𝑖𝑗𝑘𝑖), 𝑐𝑖 =
∑𝑠

𝑗=1 𝑎𝑖𝑗 , 𝑖 = 1, 2, ... .
It is to be noted that from the embedded form, one can estimate the 

local truncation error (𝜏) by 𝑦𝑛+1 − 𝑦̂𝑛+1, which can be used to control ℎ
[53].

The butcher array form for the 4-stage technique can be given in a 
form presented in Table 3.

Table 3. The Butcher array form correspond-

ing to the 4-stage technique.

0

𝑐2 𝑎21

𝑐3 𝑎31 𝑎32

𝑐3 𝑎41 𝑎42 𝑎43

𝑏1 𝑏2 𝑏3 𝑏4

The Butcher tableau form for the RKAM(4,4) method can be pre-

sented in Table 4 as [52]

Table 4. The Butcher array form of the 
RKAM(4,4) technique.

0
1
2

1
2

1
2

0 1
2

1 0 0 1 0

1 1
6

1
3

1
3

1
6

and the equivalent equations defining the RKAM(4,4) method as [54]

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

3

(
𝑘1 + 𝑘2

2
+

𝑘2 + 𝑘3
2

+
𝑘3 + 𝑘4

2

)
, (12)

with the slopes

𝑘1 = 𝑓 (𝑥𝑛, 𝑦𝑛), 𝑘2 = 𝑓
(
𝑥𝑛 + ℎ∕2, 𝑦𝑛 + ℎ𝑘1∕2

)
,

𝑘3 = 𝑓
(
𝑥𝑛 + ℎ∕2, 𝑦𝑛 + ℎ𝑘2∕2

)
, 𝑘4 = 𝑓

(
𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘3

)
.

The RKCeM(4,4) method is [55]

𝑦𝑛+1 = 𝑦𝑛+
2ℎ
9

(
𝑘21 + 𝑘1𝑘2 + 𝑘22

𝑘1 + 𝑘2
+

𝑘22 + 𝑘2𝑘3 + 𝑘23
𝑘2 + 𝑘3

+
𝑘23 + 𝑘3𝑘4 + 𝑘24

𝑘3 + 𝑘4

)
(13)

with the slopes

𝑘1 = 𝑓 (𝑥𝑛, 𝑦𝑛),

𝑘2 = 𝑓
(
𝑥𝑛 + ℎ∕2, 𝑦𝑛 + ℎ𝑘1∕2

)
,

𝑘3 = 𝑓
(
𝑥𝑛 + ℎ∕2, 𝑦𝑛 + ℎ𝑘1∕24 + 11ℎ𝑘2∕24

)
,

𝑘4 = 𝑓
(
𝑥𝑛 + ℎ∕2, 𝑦𝑛 + ℎ𝑘1∕12 − 25ℎ𝑘2∕132 + 73ℎ𝑘3∕66

)
.

In Butcher array form, the RKCeM(4,4) method can be put in Table 5

appended below [55]:

Table 5. The Butcher tableau of the 
RKCeM(4,4) technique.

0
1
2

1
2

1
2

1
24

11
24

1 1
12

− 25
132

25
66

1
3

1
3

1
3

Combination of the RKAM(4,4) method given by Eq. (12) with that 
of RKCeM(4,4) given by Eq. (13) gives rise to an embedded method, 
referred to as RKACeM(4,4) method, and can be formulated as under:

𝑘1 = 𝑓 (𝑥𝑛, 𝑦𝑛) = 𝑘∗, 𝑘2 = 𝑓
(
𝑥𝑛 + ℎ∕2, 𝑦𝑛 + ℎ𝑘1∕2

)
= 𝑘∗,
1 2

4

𝑘3 = 𝑓
(
𝑥𝑛 + ℎ∕2, 𝑦𝑛 + ℎ𝑘2∕2

)
, 𝑘4 = 𝑓

(
𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘3

)
,

𝑘∗3 = 𝑓
(
𝑥𝑛 + ℎ∕2, 𝑦𝑛 + ℎ𝑘1∕24 + 11ℎ𝑘2∕24

)
,

𝑘∗4 = 𝑓
(
𝑥𝑛 + ℎ∕2, 𝑦𝑛 + ℎ𝑘1∕12 − 25ℎ𝑘2∕132 + 73ℎ𝑘∗3∕66

)
,

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

3

(
𝑘1 + 𝑘2

2
+

𝑘2 + 𝑘3
2

+
𝑘3 + 𝑘4

2

)
, (14)

𝑦∗
𝑛+1 = 𝑦𝑛+

2ℎ
9

(
𝑘∗21 + 𝑘∗1𝑘

∗
2 + 𝑘∗22

𝑘∗1 + 𝑘∗2
+

𝑘∗22 + 𝑘∗2𝑘
∗
3 + 𝑘∗23

𝑘∗2 + 𝑘∗3
+

𝑘∗23 + 𝑘∗3𝑘
∗
4 + 𝑘∗24

𝑘∗3 + 𝑘∗4

)
.

(15)

The Butcher tableau form for the RKACeM(4,4) method is given in Ta-

ble 6 as [55]

Table 6. The Butcher tableau form for the 
RKACeM(4,4) technique.

0

1
2

1
2

1
2

0 1
2

1 0 0 1

. . . . . . . . .

1
2

1
24

11
24

1 1
24

−25
132

73
66

1
3

1
3

1
3

1
3

1
3

1
3

𝐸𝑇

Hence by Butcher array presented in Table 2,

𝑏𝑇 = 𝑦𝐴𝑀
𝑛+1 = 𝑦𝑛 +

ℎ

3

(
𝑘1 + 𝑘2

2
+

𝑘2 + 𝑘3
2

+
𝑘3 + 𝑘4

2

)
, (16)

𝑏̂𝑇 = 𝑦𝐶𝑒𝑀
𝑛+1

= 𝑦𝑛 +
2ℎ
9

(
𝑘∗21 + 𝑘∗1𝑘

∗
2 + 𝑘∗22

𝑘∗1 + 𝑘∗2
+

𝑘∗22 + 𝑘∗2𝑘
∗
3 + 𝑘∗23

𝑘∗2 + 𝑘∗3
+

𝑘∗23 + 𝑘∗3𝑘
∗
4 + 𝑘∗24

𝑘∗3 + 𝑘∗4

)
,

(17)

and the local truncation error estimation, 𝐸𝑇 = |𝑏𝑇 − 𝑏̂𝑇 |. To approxi-

mate the solution through the RKACeM(4,4) technique, one needs four 
stages, which share the same set of vectors 𝑘1 and 𝑘2 using 𝑏𝑇 and 𝑏̂𝑇 , 
but 𝑘3 and 𝑘4 use 𝑏𝑇 while 𝑘∗3 and 𝑘∗4 use 𝑏̂𝑇 .

4.2. Error control in the RKACeM(4,4) method

Error estimate (ERREST) for the embedded RKACeM(4,4) tech-

nique is obtained through the local truncation errors provided by the 
RKAM(4,4) and RKCeM(4,4) approaches. The following subsection dis-

cusses the local truncation errors.

4.2.1. Local truncation error in the RKACeM(4,4) method

Definition

Local truncation error at the point 𝑥𝑛+1 is the difference between 
the computed value 𝑦𝑛+1 and the value at the point 𝑥𝑛+1 on the solution 
curve that goes through the point (𝑥𝑛, 𝑦𝑛).

Error estimation

The local truncation error, 𝜏 , for the RKACeM(4,4) method can be 
obtained from Eqs. (14) and (15) as 𝜏 = 𝑦𝑛+1 − 𝑦∗

𝑛+1 that can be used to 
control ℎ. As in [56, 57], an ERREST for the RK(4,4) method can be 
given by ||𝜓(𝑥𝑛, 𝑦𝑛 ∶ ℎ|| ≤ 73

720𝑀𝐿4, where 𝐿 > 0 and 𝑀 > 0 are constants.

For the RKAM(4,4) technique, 𝜏 is given by 𝑦𝐴𝑀
𝑛+1 = 𝑦𝑛 + 𝜏𝐴𝑀 and 

that for the RKCeM(4,4) method is conferred by 𝑦𝐶𝑒𝑀
𝑛+1 = 𝑦𝑛 + 𝜏𝐶𝑒𝑀 , 

where 𝑦𝐴𝑀 and 𝑦𝐶𝑒𝑀 are the respective approximated outcomes given 

𝑛+1 𝑛+1
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by Eqs. (16) and (17) at 𝑥𝑛+1, and 𝜏𝐴𝑀 and 𝜏𝐶𝑒𝑀 are the respec-

tive local truncation errors obtained via the methods, RKAM(4,4) and 
RKCeM(4,4). An ERREST for the outcomes at the point by the methods 
is given by 𝑦𝐴𝑀

𝑛+1 − 𝑦𝐶𝑒𝑀
𝑛+1 = 𝜏𝐴𝑀 − 𝜏𝐶𝑒𝑀 . The 𝜏 includes the 𝑦 derivatives 

of the RKAM(4,4) method and can be set as [55]

𝜏𝐴𝑀 = ℎ5

2880

[
−24𝑓𝑓 4

𝑦
+ 𝑓 4𝑓𝑦𝑦𝑦𝑦 + 2𝑓 3𝑓𝑦𝑓𝑦𝑦𝑦 − 6𝑓 3𝑓 2

𝑦𝑦
+ 36𝑓 2𝑓 2

𝑦
𝑓𝑦𝑦

]
(18)

while the same for the RKCeM(4,4) technique is given by

𝜏𝐶𝑒𝑀 = ℎ5

69120

[
− 762𝑓𝑓 4

𝑦
+ 8𝑓 4𝑓𝑦𝑦𝑦𝑦 + 36𝑓 3𝑓𝑦𝑓𝑦𝑦𝑦 − 744𝑓 3𝑓 2

𝑦𝑦

+ 273𝑓 2𝑓 2
𝑦
𝑓𝑦𝑦

]
. (19)

Then one can see using Eqs. (18) and (19) that

||𝜏𝐴𝑀 − 𝜏𝐶𝑒𝑀
|| = ℎ5

69120

[
186𝑓𝑓 4

𝑦
+ 16𝑓 4𝑓𝑦𝑦𝑦𝑦 + 12𝑓 3𝑓𝑦𝑓𝑦𝑦𝑦 + 600𝑓 3𝑓 2

𝑦𝑦

+ 591𝑓 2𝑓 2
𝑦
𝑓𝑦𝑦

]
. (20)

As in [56], if it is assumed that the following bounds for 𝑓 and its partial 
derivatives hold for 𝑥 ∈ [𝑎, 𝑏] and 𝑦 ∈ (−∞, ∞), one can obtain

|𝑓 (𝑥, 𝑦)| < 𝑄,
||||| 𝜕

𝑖+𝑗𝑓 (𝑥, 𝑦)
𝜕𝑥𝑖, 𝜕𝑦𝑗

||||| <
𝑃 𝑖+1

𝑄𝑗−1 , 𝑖+ 𝑗 ≤ 𝑝, (21)

where 𝑝 represents the order of the method, and 𝑃 > 0 and 𝑄 > 0 are 
constants.

In this case, we have 𝑝 = 4. Hence, with the use of Eq. (21), one can 
see [55]

|||𝑓𝑦
||| < 𝑝|||𝑓𝑦 + 𝑓𝑓𝑦

||| < 2𝑃𝑄|||𝑓𝑓 4
𝑦

||| <
𝑄4𝑃 4

𝑄4|||𝑓 4𝑓𝑦𝑦𝑦𝑦
||| <

𝑄4𝑃 4

𝑄3|||𝑓 3𝑓𝑦𝑓𝑦𝑦𝑦
||| < 𝑄3. 𝑃 .𝑃 3

𝑄2|||𝑓 3𝑓 2
𝑦𝑦𝑦

||| < 𝑄3
(

𝑃 2

𝑄

)2

|||𝑓 2𝑓 2
𝑦
𝑓𝑦𝑦

||| < 𝑄2.𝑃 2. 𝑃 2

𝑄

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

< 𝑃 4𝑄.

Thus, from Eqs. (20) and (21), we have ||𝜏𝐴𝑀 − 𝜏𝐶𝑒𝑀
|| ≤ 281

13824𝑃 4𝑄ℎ5.

Hence, |||𝑦𝐴𝑀
𝑛+1 − 𝑦𝐶𝑒𝑀

𝑛+1
||| ≤ 281

13824𝑃 4𝑄ℎ5.

Now, if the tolerance is assumed to be TOL = 10−5, then by setting |||𝑦𝐴𝑀
𝑛+1 − 𝑦𝐶𝑒𝑀

𝑛+1
||| ≤ 𝑇 𝑂𝐿, the EC and the selection of step size can be estab-

lished to yield

281
13824

𝑃 4𝑄ℎ5 < 𝑇 𝑂𝐿, i.e., ℎ <

[
49.2 × 𝑇 𝑂𝐿

𝑃 4𝑄

]1∕5
.

4.3. Algorithm for solving 1st order IVP by RKACeM (4,4) technique

The algorithm for finding an approximate solution to the IVP given 
by Eq. (9) is presented below:

INPUT: endpoints 𝑎, 𝑏; initial condition 𝛼; tolerance 𝑇 𝑜𝐿; initial step 
size ℎ.

OUTPUT: 𝑥, 𝑤, ℎ, where 𝑤 approximates 𝑦(𝑥), and the step size ℎ was 
used.

Step 1 set 𝑥 = 𝑎, 𝑤 = 𝛼, 𝐹𝐿𝐴𝐺 = 1.

OUTPUT (𝑥, 𝑤).

Step 2 while (FLAG = 1) do steps 3-11.
5

Step 3 set 𝑘1 = 𝑓 (𝑥𝑛, 𝑦𝑛);
𝑘2 = 𝑓 (𝑥𝑛 + ℎ∕2, 𝑦𝑛 + ℎ𝑘1∕2);
𝑘3 = 𝑓 (𝑥𝑛 + ℎ∕2, 𝑦𝑛 + ℎ𝑘2∕2);
𝑘4 = 𝑓 (𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘3);
𝑠𝑘1 = 𝑘1;
𝑠𝑘2 = 𝑘2;
𝑠𝑘3 = 𝑓

(
𝑥𝑛 + ℎ∕2, 𝑦𝑛 + ℎ𝑘1∕24 + 11ℎ𝑘2∕24

)
;

𝑠𝑘4 = 𝑓
(
𝑥𝑛 + ℎ∕2, 𝑦𝑛 + ℎ𝑘1∕12 − 25ℎ𝑘2∕132 + 73ℎ𝑘3∕66

)
;

Step 4 set 𝑦𝑛+1 = 𝑦𝑛 + ℎ

(
𝑘1+𝑘2

2 + 𝑘2+𝑘3
2 + 𝑘3+𝑘4

2

)
∕3

𝑠𝑦𝑛+1 = 𝑦𝑛+
2ℎ
9

(
𝑠𝑘21+𝑠𝑘1𝑠𝑘2+𝑠𝑘22

𝑠𝑘1+𝑠𝑘2
+

𝑠𝑘22+𝑠𝑘2𝑠𝑘3+𝑠𝑘23
𝑠𝑘2+𝑠𝑘3

+
𝑠𝑘23+𝑠𝑘3𝑠𝑘4+𝑠𝑘24

𝑠𝑘3+𝑠𝑘4

)
ERREST = 𝑎𝑏𝑠(𝑦𝑛+1 − 𝑠𝑦𝑛+1) × 281∕13824
𝛿 = (𝑇 𝑂𝐿∕(2 × ERREST))1∕4

Step 5 If ERREST ≤ TOL, then do steps 6 and 7.

Step 6 set 𝑥𝑛+1 = 𝑥𝑛 + ℎ

𝑦𝑛+1 = 𝑠𝑦𝑛+1
Step 7 OUTPUT (𝑥𝑛+1, 𝑦𝑛+1, ℎ)

Step 8 set ℎ = 𝛿ℎ

Step 9 if 𝑥 ≥ 𝑏 then set 𝐹𝐿𝐴𝐺 = 0
else if 𝑥 + ℎ > 𝑏 then set ℎ = 𝑏 − 𝑥.

Step 10 (The procedure is complete.)

STOP.

5. Results and discussion

In the case of polytropic protoplanets, their initial structures are 
directly dependent on the solution of Eq. (7), which necessitates the 
specification of the parameter 𝑛. It is found that the higher is the value 
of 𝑛, the greater is the value of central temperature [43]. But an ini-

tial protoplanet should have a low central temperature and hence 𝑛 is 
supposed to be small [42]. Following Paul et al. [43], the four values 
of 𝑛, namely 0, 0.5, 1.0, and 1.5 are considered. It is to be noted down 
here that for all the values of 𝑛, LE equation does not possess analytic 
solutions. So, one may rely on numerical techniques. It is also to be 
noted down here that for 𝑛 = 0 and 𝑛 = 1, the LE equation yields the 
respective analytic solution, 𝜃 = 1 − 𝜉21𝑥2

6 and 𝜃 = 𝑠𝑖𝑛(𝜉1𝑥)∕(𝜉1𝑥). It is per-

ceived that for 𝑛 = 0, the solution is monotonically decreasing towards 
the surface which is physically reasonable. This is also true for 𝑛 = 1. 
However, for solving Eq. (7), for all the assumed values of 𝑛, numeri-

cal calculations can be carried out. In our calculation, we have used the 
embedded RKACeM(4,4) technique to integrate Eq. (7) effectively for 
all the assumed values of 𝑛 in estimating the distribution of 𝜃 as well 

Fig. 1. The distribution of 𝜃 for different 𝑛.
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Fig. 2. Comparison of our computed results with exact solutions for 𝑛 = 0 and 
𝑛 = 1; (a) for 𝑛 = 0 and (b) for 𝑛 = 1.

as 𝑑𝜃

𝑑𝑥
for 𝑥 ∈ (0, 1). Then with the help of Eq. (3), the initial configura-

tions of the thermodynamic variables are attained. The remaining mass 
distribution was obtained by Eq. (8) using the distribution of 𝑑𝜃

𝑑𝑥
for the 

mentioned 𝑥. Our calculated initial profiles of the thermodynamic and 
other variables for different 𝑛 are shown in Figs. 1–9.

Fig. 1 shows the distribution of 𝜃 that immediately regulates the 
distribution of pressure, temperature, and density for different 𝑛. The 
results can be realized to be acceptable to that achieved in [42, 43]. The 
computed distribution of 𝜃 for 𝑛 = 0 and 𝑛 = 1 with the analytic solutions 
is illustrated in Fig. 2. We have also estimated the respective RMSE (root 
mean square error) values to show the accuracy of our obtained results 
and are presented in Table 7, from which it can be observed that our 
computed outcomes agree fairly well with the exact solutions.
Fig. 3. Temperature distribution inside the PPs with masses 0.3 𝑀𝐽

6

Fig. 4. Temperature distribution inside some PPs with 𝑛 = 1.5.

Table 7. RMSE values of our com-

puted results with that of the ex-

act solution.

Polytropic index RMSE value

𝑛 = 0 2.9860 × 10−9

𝑛 = 1 2.4168 × 10−7

Fig. 3 delineates temperature profiles inside the PPs having masses 
0.3 𝑀𝐽 and 10 𝑀𝐽 for the assumed values of 𝑛. It is seen from Fig. 3 that 
a higher value of 𝑛 leads to a higher central temperature of a PP. Our 
computed temperature distribution that came through our numerical 
experiment compares well with those obtained in [4, 32, 43, 54]. Fig. 4

displays initial profiles of the temperature inside the assumed PPs for 
𝑛 = 1.5. Fig. 4 shows that a massive protoplanet has a hotter interior. 
Our estimated profiles for temperature for all the considered values of 𝑛
inside the assumed PPs compare well with those attained in [31, 32, 39, 
and 10 𝑀𝐽 for different 𝑛; (a) with 0.3 𝑀𝐽 and (b) with 10 𝑀𝐽 .
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Fig. 5. The configurations for pressures inside the PPs with masses 1 𝑀𝐽 and 7 𝑀𝐽 for assumed 𝑛; (a) with 1 𝑀𝐽 and (b) with 7 𝑀𝐽 .
Fig. 6. Pressure distribution inside some PPs with 𝑛 = 1.

43]. It is also interesting to note here that our estimated temperature 
profile for one Jupiter mass PP with the polytropic equation of state for 
𝑛 = 1.5 agrees reasonably well with the configuration of temperature 
attained in the study due to Helled et al. [58] that was conducted with 
SCvH (Saumon, Chabrier, Van Horn) equation of state.

Fig. 5 signifies the profiles for pressure for the PPs having masses 
1 𝑀𝐽 and 7 𝑀𝐽 for all the assumed values of 𝑛 and Fig. 6 depicts the 
same for the PPs with assumed masses for 𝑛 = 1. It is seen from Fig. 5

that the pressure profile of a protoplanet depends on 𝑛, for a large 𝑛, 
central pressure of a PP increases, while its surface pressure decreases. 
The distribution of pressure for 1 𝑀𝐽 with 𝑛 = 1.5 attained in this study 
is found to be in a reasonable agreement with that attained in [58]. It is 
aforementioned that the study due to Helled et al. [58] was conducted 
with SCvH equation of state. However, on the other hand, Fig. 6 shows 
that as massive as the PP is taken within the assumed mass so higher 
the central pressure is attained, except for the PP of mass 10 𝑀𝐽 , which 
is an excellent agreement with those of Paul et al. [4, 32, 40, 43].
7

Fig. 7 represents density distribution inside the initially formed PPs 
of masses 0.3 𝑀𝐽 as well as 10 𝑀𝐽 for all 𝑛, and Fig. 8 depicts the distri-

bution of density inside the assumed PPs for 𝑛 = 1.5. Fig. 7 shows that a 
higher value of 𝑛 yields a higher central condensation. It is noteworthy 
that 𝑛 = 0 relates to homogeneous models, it yields a sphere of constant 
density. Also, it can be observed from Fig. 7 that for 𝑛 = 0.5, the dis-

tributions are flatter and almost similar to a constant density model. 
On the other hand, one can observe from Fig. 8 that the PP with mass 
0.3 𝑀𝐽 (Saturn) is denser over the 1 𝑀𝐽 and 3 𝑀𝐽 PPs, and the 10 𝑀𝐽

PP is less denser over the 5 𝑀𝐽 and 7 𝑀𝐽 PPs at a specific distance 
from the centre, which is found to be an excellent agreement with the 
corresponding findings attained in Paul et al. [4, 32, 37, 43]. It is also 
apparent from the figures (Figs. 7, 8) that in our model, the distribution 
of matter is not uniform, which is as to be expected. However, for 𝑛 = 1
and 𝑛 = 1.5, the density profiles attained in this study for the considered 
PPs compare fairly well with those presented in [4, 43, 54]. But our at-

tained density distribution considerably differs from those obtained in 
[31]. In reality, initial profiles of the protoplanets formed through the 
GI are still unidentified, and diverse initial configurations for them can 
be found to be predicted by different numerical models [32].

Fig. 9 illustrates our calculated mass distribution in a 5 𝑀𝐽 PP for 
the assumed values of 𝑛. The mass distribution for 𝑛 = 1 is seemed to be 
closer to reality, which is also true for 𝑛 = 1.5. This nature is found to 
be valid for all the PPs with 𝑛 = 1 and 1.5 and as a result of the same 
reason mentioned above, the corresponding outcomes are excluded. As 
in [43], if the shock wave is the trigger for fragmentation of the nebula, 
the protoplanets in their initial stages are expected to be convective. It is 
noteworthy that for convection, 𝑛 = 1.5 [43]. Though, Figs. 2, 5, 7, and 9
show that for 𝑛 = 1, the PPs have a little envelope, but the distributions 
of pressure, temperature, density, and mass are realistic, which are also 
true for 𝑛 = 1.5. However, the system possesses a unique solution for all 
𝑛 signifying that the GI scenario is a reasonable paradigm. The outcomes 
emanated in the study can be significant in studying the evolution of 
giant planets from the protoplanets (precursior of planets) formed by GI 
that recognizes gravity as the only force capable of creating structures 
by accumulating material in space.

For drawing a comparison, we used RKAM(4,4) and RKCeM(4,4) 
methods in producing the results with that of the RKACeM(4,4) method. 
To have a better understanding and to present them meaningfully, the 
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Fig. 7. Density distribution inside the PPs with masses 0.3 𝑀𝐽 and 10 𝑀𝐽 for the assumed values of 𝑛. (a) with 0.3 𝑀𝐽 and (b) with 10 𝑀𝐽 .
Fig. 8. Density distribution inside the assumed PPs with 𝑛 = 1.5.

initial configurations of the thermodynamic variables inside only 10 𝑀𝐽

PP for 𝑛 = 1 produced by the mentioned methods are tabulated in Ta-

ble 8. The presentation of other such results for other PPs is overlooked, 
as we think they would only be space-consuming. It can be contingent 
from Table 8 that the outcomes obtained by dint of the method of our in-

terest are as good as those attained via the RKAM(4,4) and RKCeM(4,4) 
methods.

With the intention of comparing the computational efficiency in pro-

ducing the results by the methods, the codes with the mentioned meth-

ods were run on the same computer (4th generation Intel(R) Core(TM) 
i5-4570 processor) setting various initial time steps with different start-

ing points, namely 0.05, 0.01, and 0.001. The cost of computation for 
the RKACeM(4,4) framework was noticed to be slightly higher than 
that of the RKAM(4,4) and RKCeM(4,4) methods for each scenario 
except when 𝑥 is taken as 0.05 and 0.01. Regarding computing fac-

tors, the outcomes of our calculations strike the findings of Paul and 
Senthilkumar [2]. The selection of tolerance may be the reasoning for 
the fact. Because, for the embedded approach such as RKACeM(4,4), 
the adapted step size can be resized, if required, based on the accuracy 
of the outcomes at each step of the solution process. In such a case, 
8

Fig. 9. Mass distribution inside a PP with mass 5 𝑀𝐽 for the assumed values of 
𝑛.

it may necessitate repeated calculations before the intended result is 
obtained therein. However, there is no way to change the step size in 
either the RKAM(4,4) or RKCeM(4,4) approaches, and therefore the cur-

rent step size is used in a specific integration domain. Table 9 elucidates 
the above-mentioned point that the RKACeM(4,4) requires fewer time 
steps, but it takes a fraction of a second longer to compute the results 
than the RKAM(4,4) and RKCeM(4,4) methods do. But the time taken 
by the suggested model for the computing purpose might not be major 
bargaining. Nevertheless, it is worth noting that the unknowns of a sys-

tem of ODEs are interdependent. Hence, if an error is sustained in the 
case of an unknown, it will affect the estimates of the unknowns in the 
next subsequent steps, and errors can thereby be piled up. Depending 
on how the tolerance is set up in the RKACeM(4,4) method, an outcome 
with a specified precision may be obtained. But there is not such an ad-

vantage in both the RKAM(4,4) and RKCeM(4,4) methods. The findings 
produced by the RKAM(4,4) and RKCeM(4,4) methods rely completely 
on the step size selection, where there is no way to advance the size 



G.C. Paul, M.C. Barman and H. Rahman Heliyon 8 (2022) e10394

Table 8. Comparison of our computed results for varying 𝑥 (0.99 −0.001) by the RKAM(4,4), RKCeM(4,4), and the novel RKACeM(4,4) techniques 
for the configuration of thermodynamic variables inside a 10 𝑀𝐽 PP with 𝑛 = 1.

𝑟∕𝑅 RKAM(4,4) method RKCeM(4,4) method RKACeM(4,4) method

𝑃 (dynes cm−2) 𝑇 (◦K) 𝜌 (gm cm−3) 𝑃 (dynes cm−2) 𝑇 (◦K) 𝜌 (gm cm−3) 𝑃 (dynes cm−2) 𝑇 (◦K) 𝜌 (gm cm−3)

0.99 4562.3286 1191.4634 1.6132e-08 4562.3286 1191.4634 1.6132e-08 4561.8384 1191.3994 1.6131e-08

0.9 5161.3694 1267.2722 1.7158e-08 5161.3694 1267.2722 1.7158e-08 5160.8885 1267.2131 1.7157e-08

0.8 5813.1070 1344.9049 1.8209e-08 5813.1070 1344.9049 1.8209e-08 5812.6480 1344.8518 1.8208e-08

0.7 6435.2524 1415.0449 1.9159e-08 6435.2524 1415.0449 1.9159e-08 6434.2164 1414.9310 1.9157e-08

0.6 7010.8850 1476.9774 1.9997-08 7010.8849 1476.9774 1.9997e-08 7009.9375 1476.8776 2.0000e-08

0.5 7525.4508 1530.2193 2.0718e-08 7525.4508 1530.2194 2.0718e-08 7525.1043 1530.1841 2.0718e-08

0.4 7966.6785 1574.4399 2.1317e-08 7966.6784 1574.4398 2.1317e-08 7966.3915 1574.4115 2.1317e-08

0.3 8322.8260 1609.2475 2.1788e-08 8322.8260 1609.2475 2.1788e-08 8322.3033 1609.1969 2.1787e-08

0.2 8583.6253 1634.2662 2.2127e-08 8583.6253 1634.2662 2.2127e-08 8583.4766 1634.2521 2.2125e-08

0.1 8743.1226 1649.3800 2.2332e-08 8743.1226 1649.3800 2.2332e-08 8743.0325 1649.3715 2.2331e-08

0.01 8796.2695 1654.3854 2.2399e-08 8796.2695 1654.3854 2.2399e-08 8796.2682 1654.3853 2.2399e-08

0.001 8796.8249 1654.4376 2.2400e-08 8796.8249 1654.4376 2.2400e-08 8796.8249 1654.4376 2.2400e-08

Table 9. Comparison of our computed results for central values calculated by the RKAM(4,4), RKCeM(4,4), 
and RKACeM(4,4) methods. The calculations are made for 𝑛 = 1 and a PP with 1 𝑀𝐽 with different initial 
time steps. Starting values are different but the calculations are made upwards to the point 0.99 in each case.

Method Initial time step and 
starting values

Total step 
needed

Computational time 
(second)

𝑃 (dynes cm−2) 
at the endpoint

𝑇 (◦K) 
at the endpoint

RKAM(4,4) 0.05 9400 0.0061 600.5622 227.2759

0.01 9800 0.0102 612.0836 229.4456

0.001 9890 0.0133 612.9525 229.6084

RKCeM(4,4) 0.05 9400 0.0071 600.5622 227.2759

0.01 9800 0.0119 612.0836 229.4456

0.001 9890 0.0158 612.9525 229.6084

RKACeM(4,4) 0.05 25 0.0012 600.4087 227.2468

0.01 31 0.0078 612.0151 229.4327

0.001 33 0.0160 612.8868 229.5961
Fig. 10. ERRESTs in 𝜃. Here a polytropic protoplanet having mass 1 𝑀𝐽 with 
𝑛 = 1 is considered.

of the step. This contributes to an escalation in the overall number of 
time steps, which can tend to increase computational error. Therefore, 
in terms of accuracy, the method chosen in this analysis is considered 
to be superior to any of the two methods.

In order to test the efficiency of the RKACeM(4,4) method, ERRESTs 
for 𝜃 are computed while estimating them from the point 0.001 upwards 
to 0.99 for a 1 𝑀𝐽 PP with 𝑛 = 1 and are displayed in Fig. 10. The 
figure depicts the effectiveness of the method adopted in this analysis. 
It is worth mentioning here that in the case of both the RKAM(4,4) and 
RKCeM(4,4) methods, there is no way of quantifying errors.
9

We have carried out our experiments for varying endpoints using 
all of the methods we considered to see how well they worked in solv-

ing endpoint constraints. Major discrepancies in outcomes are noticed 
at the presumed endpoints while using the RKAM(4,4) and RKCeM(4,4) 
methods, but the RKACeM(4,4) method yields consistent results in the 
case of the variable endpoints. The results while estimating the distribu-

tions of temperature and pressure of a PP with mass 10 𝑀𝐽 for 𝑛 = 1 are 
displayed in Fig. 11 for a deeper interpretation. Other similar figures 
are omitted for brevity. But the same analyses may be carried out with 
other protoplanets of presumed masses. Thus, concerning the accuracy, 
efficacy, and solving endpoint constraints, the RKACeM(4,4) method 
is found to be more appropriate for solving LE than that of the estab-

lished RK(4,4) and RKCeM(4,4) methods. This embedded method can 
raise the computational expense somewhat regarding the choice of the 
starting step size and tolerance, which is its one limitation. But in to-

day’s high-performance machines, computational cost as estimated via 
the experiment cannot be a serious concern. However, the computa-

tional cost can be reduced by setting up a suitable time step, starting 
point, and tolerance.

We have analyzed the stability of the RKAM(4,4) and RKCeM(4,4) 
techniques. It is to be noted here that while solving an IVP in ODEs nu-

merically, at each integration step, a local truncation error is induced 
due to the incorrectness of the formula. The GTE (global truncation 
error) of a numerical method may become massive for the intensifi-

cation and growth of the local truncation error, even when the error is 
little at each integration step of the numerical method. The growth phe-

nomenon of the GTE in the numerical method is known as the numerical 
instability of that method. The stability regions of the RKAM(4,4) and 
RKCeM(4,4) methods are examined wherein, as a test equation, the 
first order IVP, 𝑦′ = 𝜆𝑦, 𝑦(𝑥0) = 𝑦0 is employed. Hence, from Eqs. (10) 
and (11), the stability polynomial for each of the RKAM(4,4) and 
RKCeM(4,4) techniques is obtained, respectively, as

𝑄𝑅𝐾𝐴𝑀 (𝑧) =
𝑦𝑅𝐾𝐴𝑀

𝑛+1

𝑦𝑅𝐾𝐴𝑀
= 1 + 𝑧+ 𝑧2

2
+ 𝑧3

6
+ 𝑧4

24
+ 𝑧5

120
+𝑂(𝑧6). (22)
𝑛
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Fig. 11. Profiles for 𝑃 and 𝑇 with varying endpoints obtained via the RKAM(4,4), RKCeM(4,4), and RKACeM(4,4) methods for a polytropic protoplanet with mass 
10 𝑀𝐽 for the polytropic index 𝑛 = 1.
and

𝑄𝑅𝐾𝐶𝑒𝑀 (𝑧) =
𝑦𝑅𝐾𝐶𝑒𝑀

𝑛+1

𝑦𝑅𝐾𝐶𝑒𝑀
𝑛

= 1 + 𝑧+ 𝑧2

2
+ 𝑧3

6
+ 𝑧4

24
+ 37𝑧5

5184
+𝑂(𝑧6), (23)

where 𝑧 = ℎ𝜆.

To regulate the stability regions of the RKAM(4,4) and RKCeM(4,4) 
methods using Eqs. (22) and (23), respectively, on the complex plane, 
the following conditions are used:

|||𝑄𝑅𝐾𝐴𝑀 ||| ≤ 1 and
|||𝑄𝑅𝐾𝐶𝑒𝑀 ||| ≤ 1.

The stability regions of the RKAM(4,4) and RKCeM(4,4) methods 
are shown in Fig. 12. From the figure, it can be viewed that the sta-

bility region of the RKCeM(4,4) method is slightly bigger than that of 
the RKAM(4,4) method, which means that larger step sizes can be con-

sidered in integrating the problem by the RKCeM(4,4) method over the 
RKAM(4,4) method, which, in turn, may reduce computational cost.
10
6. Conclusion

In this study, the RKACeM(4,4) method, due to its advanced char-

acteristics, is employed to test its efficiency in investigating the initial 
distribution of thermodynamic and other variables in gas giant proto-

planets formed by GI, assuming that the polytropic law holds well in 
them. The model computed polytropic temperature, on which the dis-

tribution of thermodynamic and other variables are dependent, is found 
to agree well with the analytic solutions for 𝑛 = 0 and 𝑛 = 1 on the ba-

sis of the attained RMSE values. The simulated outcomes by the present 
investigation are also found to be in a reasonable agreement with some 
corresponding published results. The advantage of the method used in 
the study is that there is a scope of using tolerance that helps to con-

trol the error occurred in the output data, and the stability region of 
this method is larger than that of the RKAM(4,4) method. That means 
the deliberated method is more stable than the RKAM(4,4) method. 
Therefore, it can be concluded that the RKACeM(4,4) method can be 
an advantageous as well as efficient to study and analyze the initial 
structures of the PP formed via the GI in terms of ERREST, stability, 
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Fig. 12. Stability regions of RKAM(4,4) and RKCeM(4,4) methods.

solving endpoint constraints as well as computational cost with set-

ting up appropriate initial time step, starting point, and tolerance over 
the RKAM(4,4) method. The method used in this study, therefore, can 
be helpful for other research subjects, such as the N-body problem or 
gravitational instability. The problems require the strict conservation of 
energy and momentum, which means that a reasonable accuracy of the 
results attained by the numerical method is essential.
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