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Summary
African populations are themost diverse in the world yet are sorely underrepresented inmedical genetics research. Here, we examine the

structure of African populations using genetic and comprehensive multi-generational ethnolinguistic data from the Neuropsychiatric

Genetics of African Populations-Psychosis study (NeuroGAP-Psychosis) consisting of 900 individuals from Ethiopia, Kenya, South Africa,

and Uganda.We find that self-reported language classificationsmeaningfully tag underlying genetic variation that would bemissed with

consideration of geography alone, highlighting the importance of culture in shaping genetic diversity. Leveraging our uniquely rich

multi-generational ethnolinguistic metadata, we track language transmission through the pedigree, observing the disappearance of

several languages in our cohort as well as notable shifts in frequency over three generations. We find suggestive evidence for the rate

of language transmission inmatrilineal groups having been higher than that for patrilineal ones.We highlight both the diversity of vari-

ation within Africa as well as how within-Africa variation can be informative for broader variant interpretation; many variants that are

rare elsewhere are common in parts of Africa. The work presented here improves the understanding of the spectrum of genetic variation

in African populations and highlights the enormous and complex genetic and ethnolinguistic diversity across Africa.
Introduction

Humans originated in Africa, resulting in more genetic vari-

ation on the African continent than anywhere else in the

world; the average African genome has nearly a million

more genetic variants than the average non-African

genome.1 Africa is also immensely culturally and ethno-

linguistically diverse; while the rest of the world averages
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3.2 to 4.7 ethnic groups per country, African countries

have an average of greater than 8 each and account in total

for 43% of the world’s ethnic groups.2 Despite this diversity,

African ancestry individuals are sorely underrepresented in

genomic studies, making up only about 2% of GWAS partic-

ipants.3,4 Furthermore, the vast majority of African ancestry

populations currently represented in genetic studies are Afri-

can Americans or Afro-Caribbeans (72%–93% in the GWAS
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catalog andR90% in gnomAD)with primarilyWest African

ancestral origins.5 These resources thus currently leave out

substantial diversity from regions of Africa that also would

be informative for human genetics.

Populations underrepresented in genetic studies

contribute disproportionately to our understanding of

biomedical phenotypes relative to European ancestry popu-

lations. Despite their paltry representation in GWASs, Afri-

can ancestrypopulations contribute 7%of genome-wide sig-

nificant associations.5,6 African population genetic studies

are especially informative given their unique evolutionary

history, high level of genetic variation, and rapid linkage

disequilibrium decay.7 The Eurocentric bias in current geno-

mics studies and resources also makes African descent indi-

viduals less likely to benefit from key genomic findings

that do not translate fully across populations, contributing

to health disparities.8 In this study, we better characterize

the immense genetic and ethnolinguistic diversity in four

countries in eastern and southern Africa, offering insights

into their population history and structure. Data are from

900 genotype samples that are part of the Neuropsychiatric

Genetics of African Populations-Psychosis study (Neuro-

GAP-Psychosis), a major research and capacity building

initiative in Ethiopia, Kenya, South Africa, and Uganda.9,10

Geneticvariation inAfricahasbeenpreviouslydescribedas

following not only isolation-by-distance expectations, but as

being influenced by multiple interconnected ecological, his-

torical, environmental, cultural, and linguistic factors.11–16

These factors capture variation that differs from that tagged

by genetics and can be informative for understanding popu-

lation substructure. Better characterization of the ethnolin-

guistic composition of these samples is a key initial step

towards runningwell-calibrated statistical genomics analyses

includingassociation studies. If ethnolinguisticvariation tags

additional structure thanthat capturedbygeography, explicit

incorporation of relevant cultural information into such ana-

lyses may be the optimal analytic strategy. In addition to the

covariation of culture and genetics,17–19 individuals’ cultural

environments influence how phenotypes are expressed and

whether assortative pairing impacts the distribution of

traits.20–22 We measure how ethnolinguistic culture has

changed in parallel to and independently of genetics, which

provides a foundation for the studyof phenotypes ofmedical

interest. In this study, we explore the genetics of the Neuro-

GAP-Psychosis dataset, which comprises five collection sites

across four countries in Africa, and how individuals’ cultural

affiliations and languages are related to genetic variation.We

also explore ongoing linguistic changes and consider the

impact they will have on genetics.
Material and methods

Collection strategy
Proper informed consent was obtained for this study. Ethical clear-

ances to conduct this study have been obtained from all partici-

pating sites, including:
1668 The American Journal of Human Genetics 109, 1667–1679, Sep
d Ethiopia: Addis Ababa University College of Health Sciences

(#014/17/Psy) and the Ministry of Science and Technology

National Research Ethics Review Committee (#3.10/14/

2018)

d Kenya: Moi University School of Medicine Institutional

Research and Ethics Committee (#IREC/2016/145, approval

number: IREC 1727), Kenya National Council of Science

and Technology (#NACOSTI/P/17/56302/19576), KEMRI

Centre Scientific Committee (CSC# KEMRI/CGMRC/CSC/

070/2016), KEMRI Scientific and Ethics Review Unit

(SERU# KEMRI/SERU/CGMR-C/070/3575)

d South Africa: The University of Cape Town Human Research

Ethics Committee (#466/2016)

d Uganda: The Makerere University School of Medicine

Research and Ethics Committee (SOMREC #REC REF 2016-

057) and the Uganda National Council for Science and Tech-

nology (UNCST #HS14ES)

d USA: The Harvard T.H. Chan School of Public Health

(#IRB17-0822)

As described in more detail in the published protocol,9 Neuro-

GAP-Psychosis was designed as a case-control study recruiting par-

ticipants from more than two dozen hospitals and medical clinics

in Ethiopia, Kenya, South Africa, and Uganda. Participants were

recruited in languages in which they are fluent, including Acholi,

Afrikaans, Amharic, English, Kiswahili, Luganda, Lugbara,

Oromiffa/Oromigna, Runyankole, and isiXhosa. After consenting

to be in the study, participants gave a saliva sample using an Ora-

gene kit (OG-500.005) for DNA extraction. Study staff then asked a

range of questions on demographics, mental health, and physical

health and took participants’ blood pressure, heart rate, height,

and weight. The whole study visit lasted approximately 60–

90 min. Table S1 contains details about the dataset and country

of origin of all populations included in analyses in this

manuscript.
Ethnolinguistic phenotypes
Multiple phenotypes related to self-reported ethnolinguistic cate-

gorizations have been collected as part of the recruitment process.

This includes multi-generational data including each participants’

birth country as well as primary, secondary, and tertiary language

and ethnicity. All linguistic data were collected from participants

both for themselves as well as for each of their parents and grand-

parents, giving an unusually rich depth of information. The spe-

cific phrasing of questions collected are as follows:

Primary language (lang_self_1): ‘‘What primary language do

you speak?’’

2nd language (lang_self_2): ‘‘What 2nd language do you

speak?’’

3rd language (lang_self_3): ‘‘What 3rd language do you speak?’’

Primary, 2nd, and 3rd ethnicity (ethnicity_1): ‘‘What is your

ethnicity or tribe?’’

Reports for other relatives followed similar phrasing. The pri-

mary language question for each is listed, with ‘‘primary’’ replaced

by ‘‘2nd’’ or ‘‘3rd’’ for the second and third reported languages for

that family member.

Mother (lang_mat_1): ‘‘What was the primary language that

your biological mother spoke?’’
tember 1, 2022



Father (lang_pat_1): ‘‘What was the primary language that your

biological father spoke?’’

Maternal grandmother (lang_mgm_1): ‘‘What primary lan-

guage did your biological mother’s mother speak?’’

Maternal grandfather (lang_mgf_1): ‘‘What primary language

did your biological mother’s father speak?’’

Paternal grandmother (lang_pgm_1): ‘‘What primary language

did your biological father’s mother speak?

Paternal grandfather (lang_pgf_1): ‘‘What primary language

did your biological father’s father speak?

Table S2 contains raw data for language transmission counts for

all languages reported in the NeuroGAP-Psychosis dataset.

Table S3 indicates matrilineal or patrilineal classification of all

self-reported ethnicities in the dataset.
Genetic data quality control
Quality control (QC) procedures for NeuroGAP-Psychosis data

were done using the Hail python library (see web resources). All

of the data was stored on Google Cloud. The QC steps and filters

used were adapted from Ricopili23 and Anderson et al.24 The

data were genotyped using the Illumina Global Screening Array.

For each of the five NeuroGAP-Psychosis sites, a VCF file with gen-

otyping data was stored on Google Cloud. Before QC, each VCF

contained 192 samples and 687,537 variants. When looking at

the data pre-QC, we discovered elevated deviations in Hardy

Weinberg equilibrium. We found that autocall call rate, Illumina’s

custom genotype calling algorithm, explained these deviations.

The QC filtering steps thus took place after removing individuals

with an autocall call rate less than 0.95. Of the original 960 indi-

viduals, 937 remained. These 960 individuals were used for the lin-

guistic transmission analyses presented here (with some missing

data for specific familial categories), while for genetic analyses

further QC on variants was conducted.

The site-specific VCF files were imported as Hail matrix tables

and annotated with appropriate data from themetadata file before

being merged. The resulting matrix table had 937 samples and

687,537 variants. Prior to QC, the joint dataset was split into auto-

somes, PAR, and nonPAR regions of the X chromosome. QC

filtering was conducted separately for the autosome and X chro-

mosome regions. Pre-QC, the autosomal dataset had 937 samples

and 669,346 variants. The following is a list of the QC steps and

parameters used for autosomal QC. (1) Removing variants with a

call rate less than 95%. After filtering, 638,235 variants remained.

(2) Removing individuals with a call rate less than 98%. After

filtering, 930 individuals remained. (3) Removing individuals

whose reported sex did not match their genotypic sex. After

filtering, 923 individuals remained. (4) Removing variants with a

minor allele frequency less than 0.5%. After filtering, 360,321 var-

iants remained. This large drop in variants was expected as the

GSA array poorly tags common variation in samples with African

ancestry.25 (5) Removing variants with a Hardy Weinberg equilib-

rium p value less than 1 3 10�3. After filtering, 331,667 variants

remained. (6) Using PC-Relate with 10 PCs, removing individuals

with a kinship coefficient greater than 0.125. After filtering, 900

individuals remained. After autosomal QC, 900 individuals and

331,667 variants remained.

The PAR and nonPAR regions of the X chromosome were subset

to the 900 samples which passed autosomal QC before going

through variant QC. The same variant thresholds used for auto-

somal QC were used to conduct QC on the PAR region. Pre-QC,
The American Jour
the PAR region had 900 samples and 518 variants. (1) After SNP

call rate filtering, 515 variants remained. (2) After MAF filtering,

411 variants remained. (3) After HWE filtering, 402 variants

remain. Post-QC, the PAR region had 900 samples and 402 vari-

ants. For the nonPAR region, the dataset was split by sex. The fe-

male nonPAR dataset had 441 samples and 17,673 variants.

Variant QC was carried out on the females using the following

metrics. (1) Removing variants with a call rate less than 98%. After

filtering, 16,261 variants remained. (2) Removing variants with a

minor allele frequency less than 1%. After filtering, 11,113 vari-

ants remained. (3) Removing variants with a Hardy Weinberg

equilibrium p value less than 1 3 10�6. After filtering, 11,104 var-

iants remained. After nonPAR QC on the females, the male non-

PAR dataset was merged with the female QC’d nonPAR dataset.

The final nonPAR dataset had 900 samples and 11,104 variants. Af-

ter QC, the autosomal, PAR, and nonPAR datasets were merged

into onematrix table. The final merged post-QC dataset contained

900 samples and 343,173 variants. The counts of variants/individ-

uals per site after autosomal and X QC can be found in Tables S4

and S5.

After QC, the dataset was merged with three reference panel da-

tasets: the 1000 Genomes Project (1kGP), HumanDiversity Project

(HGP), and the African Genome Variation Project (AGVP).26–28

Before merging with HGDP and 1kGP, the AGVP and Neuro-

GAP-Psychosis datasets were merged and lifted over from

GRCh37 to GRCh38. Before this initial merge, AGVP had 1,297

samples and 1,778,578 variants while NeuroGAP-Psychosis had

900 samples and 343,173 variants. Prior to merging these two da-

tasets, multi-allelic variants were removed from the NeuroGAP-

Psychosis dataset resulting in 343,165 variants. The two datasets

were then combined using plink –bmerge. The resulting dataset

had 2,197 samples and 1,908,204 variants after intersection. A

5% genotyping rate filter using the –geno plink command was

then run on the dataset which gave the final merged dataset

counts prior to liftover of 2,197 samples and 206,240 variants.

The liftover of the merged AGVP, NeuroGAP-Psychosis dataset

was conducted using Hail. After liftover, there were 2,197 samples

and 206,156 variants. Next, the AGVP NeuroGAP-Psychosis data-

set was merged with a subset of the gnomAD v.3.1 release (see web

resources) which consisted of newly sequenced HGDP and 1kGP

datasets. This dataset of HGDP and 1kGP had 4,097 samples and

155,648,020 variants prior to merging. After combining AGVP

plus NeuroGAP-Psychosis with HGDP plus 1kGP using plink

–bmerge, the resulting dataset contained 6,294 samples and

149,518 variants. A 5% –geno filter was then run on the dataset

which resulted in the final counts of 6,294 samples and 148,488

variants for the NeuroGAP-Psychosis and reference panels dataset.
Population structure and admixture analyses
Cohort data from the five NeuroGAP-Psychosis plates weremerged

with African reference populations from the 1000 Genomes Proj-

ect26,27, Human Genome Diversity Panel,29 and the African

GenomeVariationProject.28 Thesepopulationsprovide reasonably

comprehensive geographic coverage across sub-Saharan African

from currently available reference panels and contain populations

which are co-located in the same countries as all NeuroGAP-Psy-

chosis samples. We intend for the term ‘‘sub-Saharan Africa’’ to be

interpreted exclusively in thegeographical sense tobemore specific

about the geographic scope of the variation we consider in this

article.We also note that there are additional datasets of African ge-

netic variationbeyond the referencepanels incorporated into these
nal of Human Genetics 109, 1667–1679, September 1, 2022 1669



analyses, including H3Africa, the Uganda Genome Resource, and

many cohorts from specific collection sites.30–32 PCAwas runusing

flashPCA.33 Detailed examination of admixture was conducted us-

ing the program ADMIXTURE34 with 5-fold cross validation error

to inform the correct number of clusters.We used the unsupervised

mode of ADMIXTURE ten times for each value of k to capture any

differentmodes present in the data. All runs treated data as diploid.

Plots from ADMIXTURE output were generated with pong.35

ADMIXTURE was run using a tailored representation of global ge-

netic data consisting of all continental African populations, the

CHB population from China to capture East Asian admixture,

the GBR from Britain to capture European admixture, and the

GIH from India to capture South Asian ancestry. Regions were

assigned as according to the UN Statistics division geoscheme

(see web resources).

FSTestimatesacrosspopulationsweregeneratedusingsmartPCA.36

FST heatmapswere generated in R using the package corrplot (see web

resources). The relationship between ancestry composition on the

autosomes vs X chromosome was examined using Wilcoxon rank

tests and Mantel tests in R with the package ade4.37
Relationship between genetics and language
To measure linguistic variation, we made use of the PHOIBLE 2.0

phonemic database (see web resources), which contains phoneme

inventories and phoneme qualities for languages around the

world. For every individual, we identified all languages spoken—

excluding English—which were present in the PHOIBLE database

(84.5% of languages spoken by the individuals themselves, and

81.1% of languages spoken by their relatives). Using the phoneme

inventories (including both primary phonemes and their allo-

phones) from PHOIBLE, we found the mean phoneme presence

for each individual’s or each relative’s spoken languages (if one

of two spoken languages contained the sound /g/, the /g/ value

for that individual would be 0.5). The resulting matrices (of indi-

viduals or their relatives, and mean phoneme presences) were

transformed using PCA conducted in R to create three sets of prin-

cipal components (PCs): from personally spoken languages, from

those spoken bymatrilineal relatives (mother andmaternal grand-

mother), and from those of patrilineal relatives (father and patri-

lineal grandfather).

To observe the broader linguistic changes taking place, all lan-

guages were assigned the highest-level classifications available in

Glottolog 4.2.1 (see web resources). These classifications were modi-

fied tominimize thenumberofhigh-level classificationswhilemain-

taining an element of geographic origin. Several classifications were

consolidated intoNilo-Saharan (madeupofNilotic,Central Sudanic,

Kuliak, and Gamuz classifications) and Khoisan (Khoe-Kwadi, Kxa,

and Tuu), and Afro-Asiatic was expanded (with Ta-Ne-Omotic and

Dizoid). Indo-European was split to account for the recent history

of its speakers:Afrikaans andOorlamswereplaced intoauniquecate-

gory, the languages of Europe into another, and those of the Indian

subcontinent (Hindi andUrdu) into a third. We excluded languages

that were unclassified or identified as speech registers.

Every individual was associated with a survey location, meaning

the geographic coordinates where the sample was collected, and

we used the spoken languages to assign a different, linguistic loca-

tion. To do this, using all languages an individual spoke, and these

languages’ locations from Glottolog, we calculated the mean loca-

tion of each individual’s languages.

To compare linguistic, genetic, and geographic variation, we

used a set of Procrustes analyses implemented in R.38 For linguistic
1670 The American Journal of Human Genetics 109, 1667–1679, Sep
and genetic variation, the first three PCs of variation were used.

Since Procrustes minimizes the sum of squared euclidean dis-

tances, the geographic coordinates of each individual were con-

verted to points on a sphere. To measure the correlation between

geographic variation and linguistic or genetic variation, the lin-

guistic and genetic PCs were transformed (via rotation and scaling)

to minimize the sum of squared distance between individuals’

geographic locations and the transformed genetic or linguistic

PCs. The first three PCs of Procrustes-transformed linguistic and

genetic variation—representing their similarity to geographic vari-

ation—were then plotted onto a map.

We additionally calculated the transmission frequency of lan-

guages from sets of family members. Given the discrepancy in

number of languages in the matri-vs patri-groupings, patrilineal

languages were additionally subsampled to the same overall num-

ber as matrilineal and rates were recalculated.
Anthropological variables
To identify relevant anthropological data, we accessed data from

the Ethnographic Atlas (EA)39 using D-Place.40 We associated

each ethnicity reported in the NeuroGAP-Psychosis survey data

to a society in the EA (if possible), and used variable EA076: Inher-

itance rule for movable property. For ethnicities with data, individ-

uals whose ethnicities were associated with consistent inheritance

rules or marital residence patterns were assigned that rule or

pattern. Of the 907 NeuroGAP-Psychosis individuals, 779 were as-

signed an inheritance rule (matrilineal or patrilineal). Addition-

ally, 751 individuals could be assigned a post-marital residence

rule (patrilocal, neolocal, or virilocal-like) using EA012: Marital

residence with kin, but matrilocality and other forms of residence

were not found among the sampled ethnicities, and we did not

use these for our analyses. Similarly, other variables such as

EA074: Inheritance rule for real property (land) did not vary for avail-

able individuals (all available ethnicities traditionally practiced

either patrilineal, male-biased, or neutral patterns of real property

inheritance). Only a single ethnicity corresponding to eight indi-

viduals could be assigned a matrilineal inheritance pattern based

on EA043:Descent: major type.
Results

Genetic population structure and admixture

We compared the ancestral composition of our samples

relative to global reference data from the 1000 Genomes

Project, Human Genome Diversity Panel, and the African

Genome Variation Project (AGVP) to see the full breadth

of genetic diversity.26,28,29 Most NeuroGAP-Psychosis sam-

ples appear genetically similar to their geographically

closest reference samples when compared to global data-

sets (Figures 1 and S1). However, large amounts of admix-

ture is visible within some individuals, particularly among

South African individuals (supplemental methods). In

South Africa, some individuals cluster wholly within the

European reference cluster; this is expected based on the

demographic composition of Cape Town, where these

samples were collected, which is home to a substantial

fraction of people of Dutch ancestry (Afrikaners) and indi-

viduals of mixed ancestry.12,15,29,41,42
tember 1, 2022



Figure 1. Genetic and admixture composition of the NeuroGAP-Psychosis samples against a global reference
(A) First two principal components showing NeuroGAP-Psychosis samples as projected onto global variation of the full 1000 Genomes,
HGDP, and AGVP. While most samples fall on a cline of African genetic variation, some South African samples exhibit high amounts of
admixture and European genetic ancestry. Color scheme for global PCA plot: Latin American, yellow; East Asian, dark orange; European,
tan; South Asian, fuschia; West African, green/blue; East African, red/orange; South African, purple; NeuroGAP-Psychosis collections,
gray.
(B) ADMIXTURE plot at best fit k (k ¼ 10) of all African samples as well as three representative non-African populations from the 1000
Genomes Project. The GIH, CHB, and GBR were included to capture South Asian, East Asian, and European admixture, respectively. In-
dividuals are represented as bar charts sorted by population, and ancestry components for each person are visualized with different
colors. A key describing the country of origin for all populations can be found in Table S1.
We additionally investigated the degree of admixture

within samples and how genetic groups cluster in the

data. We ran ADMIXTURE,34 which partitions genetic vari-

ation into a given number of distinct genetic clusters. This

helps to visualize the groups that are most genetically

distinct from one another, as each additional component

can be thought of as representing the next most differenti-

ated ancestry component in the data, akin to principal

components analysis (PCA). We identified the best fit k

value, using 5-fold cross validation, to be 10 using a

tailored global reference.

Examining the ancestry composition at the best fit k,

we identify several ancestry components unique to areas

within Africa (Figures 1B and S1). Notably, several such

components, including those unique to Ethiopia (yel-

low), West Africa (blue), and South Africa (purple),

appear at earlier values of k than that separating South

Asians from East Asians and Europeans (fuschia from

tan and orange). While sample sizes affect the ordering

of components identified in ADMIXTURE analyses, this

suggests a high level of genetic differentiation between

areas of the African continent rivaling that between

those out-of-Africa continental ancestries, as has been
The American Jour
previously demonstrated.28,32 We also note that Ethio-

pian participants have evidence of Eurasian admixture,

possibly related to historical back-migration into the Af-

rican continent.30,41,43,44

Projecting our samples onto PC space generated from

only African reference samples, the top two principal com-

ponents (PCs) separate geography, and more specifically

east-west and north-south patterns of variation within Af-

rica (Figure 2), mirroring isolation by geographic distance

in human genetic data. At higher PCs, however, there is

fine-scale structure in the data separating different

geographically proximal groups within the East African in-

dividuals, shown in red. We thus focus our deeper exami-

nations into the East African samples to assess potential

drivers of this differentiation (Figures S2–S6). Clear struc-

ture is visible in the data to PC8, with higher PCs resolving

substructure within geographic regions. For example, two

clusters are evident among PCs within participants

enrolled in the study from Moi University in Kenya, who

tend to speak distinct languages in the Afro-Asiatic and

Niger-Congo families (Figure S4). For a detailed discussion

of genetic variation within each country, see the supple-

mental methods. The percent variance explained for PCA
nal of Human Genetics 109, 1667–1679, September 1, 2022 1671



Figure 2. Genetic composition of subcontinental African structure in the NeuroGAP-Psychosis samples
PCA plots for PCs 1–8 with an African reference panel. A map of collection locations is shown to the left of PCA plots. Points are colored
by region to assist in interpretation: green, west; blue, west central/central; red, east; orange, Ethiopia; purple, south. See Figures S2–S6
for plots highlighting each cohort individually.
plots including the global reference panel as well as the Af-

rican tailored reference panel can be found in Figure S7.

Self-reported population composition

Across samples with self-reported ethnolinguistic informa-

tion,weobserve 62primary ethnicities and 107primary lan-

guages in the 960 NeuroGAP-Psychosis samples. We also

find that languages have shifted in frequency over time,

with English increasing in reporting frequency in the cur-

rent generation, and several grandparental languages disap-

pearing in our dataset (Figures 3 and S8).

Genetic variation partitions with language

To assess the correlation between the primary self-reported

language that an individual reports to be their primary and

the genetic partitioning that we observed, we conducted

Procrustes analyses to measure the correlation between ge-

netic, linguistic, and geographic variation. Procrustes anal-

ysis rotates and scales one set of coordinates to minimize

the total distance between it and a second set, providing

both ametric of similarity between these sets of coordinates

and a visualization of their overlap.We use this to compare

each individual’s first three PCs of genetic variation to their

geographic locations. We do not have access to the loca-

tions where participants live or were born, so we use either

the locations at which individuals were sampled (study

sites) or the centroidsofnon-English languages that they re-

ported speaking (language based). By including a database

ofphonemes (units of sound) found in the self-reported lan-

guages of individuals and their families and comparing
1672 The American Journal of Human Genetics 109, 1667–1679, Sep
these to the first three PCs of autosomal andXchromosome

variation, we found consistent correlations between ge-

netic, linguistic, and geographic variation throughout Af-

rica (Figure 4 and Table 1). We also plotted the genetic

PCs, superimposed onto geography via Procrustes, to visu-

alize the geographic distribution of genetic variation

(Figure S9). Because the autosomes and X chromosomes

have considerably different numbers of single nucleotide

polymorphisms (SNPs), we additionally compared X chro-

mosome variation to chromosome 7, which has a similar

length to the X chromosome, and chromosome 22, which

is most similar in SNP count to chromosome X (variant

counts with/without reference panel intersection: X ¼
603/1,348, chr22 ¼ 705/1,455; Figure S9). To measure lin-

guistic variation, we queried the PHOIBLE 2.0 phonemic

database (see web resources), which contains phoneme in-

ventories and phoneme qualities for many languages

around theworld. The resultingmatrices ofmeanphoneme

presences were used in a PCA to create four sets of linguistic

PCs: a score from languages spoken by the participant, a

combined score from those spoken by matrilineal relatives

(the participant’s mother and maternal grandmother), a

combined score from those of patrilineal relatives (father

and paternal grandfather), and a composite score that in-

cludes all relatives weighted according to relatedness to

the individual (1 for languages spoken by each individual,

0.5 for those of parents, and 0.25 for grandparents). Here,

‘‘matrilineal’’ and ‘‘patrilineal’’ refer to the traits associated

with direct lines of descent following exclusively mothers

and fathers, respectively. We use the languages spoken by
tember 1, 2022
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Figure 3. Primary self-reported language shifts over three generations
(A) Individual languages were re-classified into broader language families for comparable granularity. Note that while all languages in the
legend are represented in the plot, not all are visible due to being at low frequency in the data.
(B) All languages reported with at least 3% frequency in any generation are shown across the generations. Note the increase in endorse-
ment of English and drop in Oromiffa/Oromigna in the present generation.
(C) Primary language reported by the individuals within each NeuroGAP-Psychosis study country.
these relatives to understand whether sex-biased language

transmissionmay have taken place andwhether it parallels

sex-biased gene flow. By comparing linguistic variation

associated with these relatives to genetic data and spatial

positions, we can explore whether norms and traditions

have shaped linguistic and genetic variation.

The first three PCs of both autosomal and X chromo-

some variation are less correlated to geography (r ¼
0.543 and 0.523; p < 5E�5) than are the first three PCs

of linguistic variation (r ¼ 0.589; p < 5E�5). Both auto-

somal and X chromosomal variation are similarly corre-

lated to linguistic variation when considering all individ-

uals together. Looking within East African cohorts alone,

X chromosome variation is less correlated to geography

(Table 1, Figure 4). Similarly, linguistic variation associated

with individuals’ matrilineal relatives is less correlated to

geography and to genetics than that of patrilineal relatives

(Figures 4D and 4F).
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Language transmission through families

Using detailed multi-generational ethnolinguistic infor-

mation (see Ethnolinguistic phenotypes in Material and

methods), we computed overall transmission rates of lan-

guage families over three generations. We initially exam-

ined the raw self-reported information of the participant

with respect to the primary, second, and third languages

spoken.We assessed the frequency with which the primary

language reported by the participant matched that of each

of their older relatives (i.e., maternal and paternal grand-

parents, mother, and father) as well as the frequency

with which the participants’ primary reported language

matched any (primary, secondary, or tertiary) of the lan-

guages reported for their relatives (Table 2). We find that

transmission rates are similar between family members of

the same generation when looking at primary language

matching any language, regardless of whether including

or excluding English.
nal of Human Genetics 109, 1667–1679, September 1, 2022 1673



Figure 4. Procrustes correlations be-
tween genetics, geography, and language
Procrustes correlations (all p < 5E�5) are
shown between geography and genetics
(A and B), geography and language (C and
D), and genetics and language (E and F).
The left column includes results for the
entire NeuroGAP-Psychosis collection.
The right column contains results subset
to the four cohorts in East Africa. For lin-
guistic analyses, linguistic variation is
measured by the first three PCs of phoneme
inventories from languages reported by in-
dividuals as spoken by themselves and
their relatives. Matrilineal relatives include
the mother and maternal grandmother.
Patrilineal relatives include the father and
paternal grandfather. Familial refers to a
weighted average of all reported family
members. Note that Y-axis labels vary be-
tween plots.
To take a closer look at language transmission across the

pedigree, we calculated the rate of transmission between

various relatives in our family tree.Wenote thatwehave in-

formation only for the four countries present in the Neuro-

GAP-Psychosis dataset, so our results do not capture the full

breadthof ethnolinguistic diversity across the continent. In

these calculations, we ran tests excluding English to get a

better sense of the transmission of languages that have

been present in the continent for a longer period of time.

We additionally identified whether individuals came from

ethnic groups in which the transmission of movable

property was historically matrilineal or patrilineal accord-

ing to the Ethnographic Atlas (EA)39 and recalculated the

transmission rates within those two classifications. Here,

we were interested in measuring whether the inheritance

of property through the male (patrilineal) or female

(matrilineal) lines parallels the transmission of languages.
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Partitioning east African individuals

by the presence of matrilineal vs

patrilineneal transmission of movable

property in their traditional societies

(from Murdock’s Ethnographic Atlas,

code EA07639,40), we see a significantly

higher transmission rate from individ-

uals assigned to amatrilineal classifica-

tion (p¼ 0.028). As our sample size for

matrilineal groups is quite small (n ¼
105 and 674 for matrilineal and patri-

lineal transmission, respectively), we

subsampled the patrilineal groupings

to the same size as matrilineal and

re-ran our analyses. Considered alto-

gether, the trend disappears (p ¼
0.097). However, when looking at fa-

milial relationships at just the parental

and grandparental levels, we do detect

a significantly higher language trans-
mission rate for individuals assigned to matrilineal groups

(p ¼ 0.012).

The results fromour various testsof language transmission

and those fromProcrustes analysis support the anthropolog-

ical data that classified the peoples in the regions of Africa

that we studied as patrilocal,39,45 but how language was

transmitted is uncertain. The lower geography-X chromo-

some correlation in East African cohorts suggests that the

cultural norms (a predominance of patrilocality) have had

effects on genetic variation. We cannot conclusively deter-

mine whether language transmission here was historically

sex biased, as recent changes to cultures (including move-

ment to urban areas, colonial histories, access to markets,

etc.), has affected the associations between groups of people

and languages. There is no evidence of recent sex-biased

language transmission in this region from our linguistic

data alone. However, the decreased association between



Table 1. Procrustes correlation between genetics, geography, and language

Genetic Geography Self Maternal languages Paternal languages

All individuals autosomal 0.5426 0.6223 0.5935 0.6078

All individuals X chrom. 0.5231 0.6078 0.5988 0.6082

East African cohorts autosomal 0.7868 0.6815 0.6856 0.6924

East African cohorts X chrom. 0.6170 0.6103 0.6178 0.6200

All p < 5E�5. The first three PCs of autosomal and X chromosome variation were used for comparisons. Linguistic variation was calculated as a function of mean
phoneme presence across all languages reported by the individual across their pedigree. Maternal language contains results from the languages spoken by the
participants’ mother and maternal grandmother; paternal contains results from their father and paternal grandfather.
X-chromosome variation and language (Figure 4B) suggests

that eastAfricahas ahistoryofpatrilineal language transmis-

sion, which parallels the region’s historically predominant

patrilocal social structure.39

Interestingly, we also find that 12 languages reported for

earlier generationswerenot spokenby theparticipants, indi-

cating that they have disappeared from our dataset. Khoe-

khoe, Somali, and Urdu disappeared in the parental genera-

tion, andAmba,Afar, Argobba,Gumuz,Harar,Hindi, Soddo,

Soo, andTamilwereno longer reported languages in the par-

ticipants’ generation. We caution, however, that many of

these languages were observed at very low rates overall.
Testing for evidence of sex-biased demography

To examine whether there was evidence for sex-biased

gene flow in our samples, we assessed the similarity of

ancestry proportions on the X chromosome versus auto-

somes. Ancestry fractions were highly correlated across

these genomic regions, indicating no evidence for sex-

biased demography at this scale, although care should be

taken in interpretation given the difference in effective

sample size for the X chromosome as compared to the au-

tosomes (Figures S11 and S12). Wilcoxon signed rank tests

comparing the fractions of ancestry on X versus autosomes

from ADMIXTURE at k ¼ 4 did not find a significant differ-

ence in the means, nor for PC1 vs PC2 (p ¼ 0.3754). Simi-

larly, the Mantel tests indicated an observed correlation of

0.987 (simulated p value ¼ 0.001) for the X chromosome

compared to the autosomal FST values. We additionally

ran Procrustes analyses comparing genetic and linguistic

variation on the X chromosome as compared to the auto-

somes in their entirety (chromosome 7 was most similar

in length to chrX and chromosome 22 was most similar

in SNP count to chrX) (Figure S10). Similarly, the Procrus-

tes tests showed significant correlation between the first

three PCs of X and autosomal variation (r ¼ 0.850 for

sub-Saharan Africa and r ¼ 0.753 for East African cohorts

alone). Compared to chromosomes 7 and 22, results were

similar (r ¼ 0.826 and 0.780 for sub-Saharan Africa, and

r ¼ 0.728 and 0.691 for East African cohorts).
Reference panels miss meaningful allele frequency

resolution within Africa

We visualized allele frequencies for functionally impor-

tant variants across our five collection sites as compared
The American Jour
to reference data from the 1000 Genomes Project. One

example variant, rs2071348 (GenBank: NC_000011.9;

g.5264146T>A), key in beta-thalassemia, dramatically

varies in frequency depending on the precise location in

Africa considered. The NeuroGAP-Psychosis allele fre-

quencies observed across the five sites were 12.26% in

Ethiopia, 11.35% in Kenya (KEMRI), 9.71% in Kenya

(Moi), 13.11% in Uganda, and 5.7% in South Africa. As

this variant has direct consequences on human health,

consideration of the difference in frequency across the

continent is meaningful. For another example,

rs72629486 (GenBank: NC_000001.10; g.2938924T>G

[p.Leu225Trp], Figure S13), a missense coding single

nucleotide variant in the gene ACTRT2, ranges in minor

allele frequency (MAF) in NeuroGAP-Psychosis from 5%

in Ethiopia down to 1.3% in Uganda (other frequencies

were 2.6% in Kenya [KEMRI], 2.6% in Kenya [Moi], and

2.3% in South Africa). This is nearly the full range of

the frequency distribution for all global populations in

the gnomAD database,46 which lists the variant in the

AFR as 5.5%, missing finer subcontinental resolution.

rs72629486 is predicted to be deleterious and probably

damaging by SIFT and PolyPhen, respectively, and has a

combined annotation dependent depletion score of

22.9, highlighting that this variant is likely to be highly

functionally important.47–49
Discussion

Africa is a highly diverse continent, home to immense ge-

netic, linguistic, and cultural diversity. This ethnolinguis-

tic variation is extremely complex and is meaningful to

disentangle prior to statistical genetics analyses. Here, we

measured the correlation between genetic, linguistic, and

geographic variation focusing on four African countries

for which we have collected data as part of the Neuro-

GAP-Psychosis study. We find that genetic and linguistic

variation are closely correlated to each other as well as to

geography. This is consistent with previous work exam-

ining global patterns of diversity as well as the expansion

of Bantu speaking people, one of the largest demographic

events in African history.11,12,16,50–55 We find that across

the regions of Africa that we surveyed, language is closely

correlated to both genetics and geography, a phenomenon

that has been noted in Europe and Ethiopia
nal of Human Genetics 109, 1667–1679, September 1, 2022 1675



Table 2. Language transmission rates from relatives

Family member Overall Patrilineal Patrilineal (downsampled) Matrilineal

Father 0.810 0.837 0.901 0.871

Mother 0.802 0.811 0.837 0.800

Paternal grandfathers 0.778 0.726 0.775 0.926

Paternal grandmothers 0.773 0.738 0.779 0.939

Maternal grandfathers 0.762 0.708 0.736 0.903

Maternal grandmothers 0.758 0.726 0.750 0.812

Frequency of a participant’s reported primary language matching one of the top three reported languages spoken by relatives. Rates were calculated excluding
English. Given that all but one of the NeuroGAP-Psychosis populations with linguistic data were collected in East Africa, we conducted an additional suite of an-
alyses zooming into this region to examine transmission in this part of the continent. In East Africa, individuals were thus additionally partitioned by their affiliation
with ethnic groups with either a matrilineal or patrilineal transmission of movable property. Patrilineal languages were run in their entirety as well as downsampled
to 105 to match the sample size available for matrilineal languages.
previously.44,56–58 The patterns of linguistic and genetic

variation in this dataset suggest a history of patrilocal resi-

dence, in accord with previous studies of the region.45,59,60

We find that individuals collected from the same

geographic location show significant genetic differentia-

tion by language family, particularly in east Africa, where

there is especially immense linguistic diversity. Previous

studies have examined this covariation between culture

and genetics produced by a history of migrations and pop-

ulation expansions,44,61–63 and we explore how this affects

genetic datasets by examining both genetics and ongoing

changes to culture. These data should be synthesized to in-

fluence how population substructure is controlled for in

genetic tests, and we suggest that anthropological data

should be incorporated into a nuanced treatment of ge-

netic clusters if these affiliations explain associations

with the phenotype that are not captured by genetics.

For example, future work exploring the direct incorpora-

tion of ethnolinguistic affiliations into linear mixed

models would be useful, e.g., in the context of including

it as a random effect covariance matrix to better control

for stratification.64

As there is such immense genetic variation across Af-

rica,28,31,32,29,65 we highlight cases where such variability

may be particularly informative. Africa is not simply one

monolithic location, as it is sometimes treated in genomics

resources that include primarily or exclusively individuals

of the African diaspora as representatives of genetic varia-

tion for the entire African continent.46,66 Rather, there is

an extraordinary amount of genetic variability within it.

These example loci highlight both the diversity of varia-

tion within the African continent, as well as the fact that

within-Africa variation can be informative for broader

variant interpretation; many variants appearing rare else-

where are common in parts of Africa.

As part of the NeuroGAP-Psychosis study’s recruitment

process, multi-generational self-reported ethnolinguistic

data were collected from participants, including individual

ethnicity and at least primary, second, and third language

from participants for themselves, as well as for each of their

parents and grandparents. This provides us with an unusu-
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ally rich depth ofmultigenerational demographic informa-

tion from participants, a unique strength of our dataset

that affords us the opportunity to investigate language

transmission through the pedigree and shifts in language

frequencies over time. First, we examined the overall

change in self-reported language frequencies over three

generations. Perhaps most striking is the increase in the re-

porting frequency of English by participants as their pri-

mary language as compared to their reports for older gen-

erations of their family. Twelve languages reported for

earlier generations were no longer reported as spoken by

the participants, suggesting their loss from this cohort.

Interestingly, these languages represent a mix of both his-

torically spoken and imported languages for the countries

that enrolled participants in the NeuroGAP-Psychosis

study. These results emphasize that the analysis of pheno-

types should consider not only how they relate to genetics,

but how phenotypesmay be affected by a rapidly changing

cultural environment. While these results are intriguing,

we stress that our participants are not necessarily represen-

tative of the local populations from which they come and

do not begin to cover the full breadth of variation across

Africa. A further consideration is a potential upwards bias

towards reporting of English and Amharic as a primary lan-

guage due to a preference toward reporting the language of

consent as primary, as well as toward languages taught in

local educational systems. This additionally highlights

the importance of careful consideration of items on self-

report forms to ensure accurate and representative pheno-

type collection.

In summary, better understanding the composition of

samples is a key first step to calibrating subsequent statisti-

cal genetics analyses. Cultural factors such as language can

dramatically impact the structure of cohort data; we find

that self-reported language classifications meaningfully

track underlying genetic variation that varies indepen-

dently from geography. The work presented here improves

the understanding of the immense spectrum of genetic and

ethnolinguistic variation found across multiple African

populations and sheds light on the shifts in reported lan-

guage over the past three generations in five collection sites.
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Helden, P.D., Möller, M., Hoal, E.G., and Henn, B.M. (2016).

Fine-scale human population structure in Southern Africa re-

flects ecogeographic boundaries. Genetics 204, 303–314.
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