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Abstract: The rapid growth of roving mining camps has negatively influenced their surrounding
environment. Although artisanal and small-scale gold mining (ASGM) is a major source of gold
production, the mining activities and their activeness are not well revealed owing to their informal,
illegal, and unregulated characteristics. This study characterizes the transformations of roving camp-
type ASGM (R-C-ASGM) activities in Central of Katingan Regency, Central Kalimantan Province,
Indonesia, from 2015 to 2021 using remotely sensed data, such as the time-series Sentinel-1 dataset.
The results show that the growth of active R-C-ASGM sites was identified at the center of the
Galangan mining region with expansions to the northwest part along the Kalanaman River, especially
in 2021. Hence, these approaches identify the transformations of roving mining activities and their
active or nonactive status even in tropical regions experiencing frequent heavy traffic rainstorms.
They provide significant information on the socioenvironmental risks possibly caused at local and
regional levels. Our results also inform the design of timely interventions suited to local conditions
for strengthening environmental governance.

Keywords: alluvial mining; artisanal and small-scale gold mining; Indonesia; landcover change;
remote sensing; synthetic aperture radar

1. Introduction

The rapid growth of the rove-type mining sector has negatively influenced their
surrounding environments. Therefore, detecting such occurrences, determining their
development rate, and identifying their active or nonactive status should provide significant
insights into identifying possible socioenvironmental problems caused at local and regional
levels. This may also allow environmental governance to be promoted at various levels.

Artisanal and small-scale gold mining (ASGM) is a major source of gold production
using rudimentary technology at individual or community levels despite being informal,
illegal, and unregulated [1]. This sector has the largest employer in gold mining at the global
level comprising 70% to 80% of informal small-scale workers [2]. Mercury is commonly
used to increase the gold extraction process, resulting in highly toxic environmental and
health risks due to mercury pollution throughout its emissions and release into water and
the atmosphere, respectively [3–5]. Such mercury pollution has largely been observed
in South America, Africa, and Asian regions. Indeed, environmental impacts, such as
deforestation, geomorphic and hydrological changes [6–11], and health problems, such as
mercury intoxication-oriented movement disorders and various injuries associated with
the ASGM activities have been reported [12,13]. Despite its significant socioenvironmental
impacts, more than 80 countries have continuously employed ASGM to alleviate poverty
for their socioeconomic development [14,15].
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Continuous growth has been observed in Indonesia. Active and nonactive ASGM prac-
tices have been placed in 93 regencies of 30 of the 34 provinces, estimating
250,000–300,000 miners [16] in more than 1200 hotspots in 2017 [17]. Furthermore, the
country has been the fastest increase in polluted sites in the last 20 years on a global
scale [2]. In Kalimantan island, one of the ASGM hotspots with alluvial operations, many
illegal mining activities have been widespread even in conservation areas, impacting
biodiversity and human health [17].

The ASGM sector can be classified into the following two types: “travel-type,” in
which the miners commute from their local residences to the mining sites, and “camp-type,”
in which the miners live and conduct mining activities on informal worksites [18] (hereafter
referred to as C-ASGM). In the C-ASGM sector, both roving and non-roving practices are
observed. The scale of the workforce in the ASGM sector has expanded with the increasing
gold prices since 2000 [19]. The strong relationship between ASGM increases and the high
price of gold has been confirmed in the literature [7,18,20].

Remote-sensing technologies have been widely used to characterize natural features
and physical objects and monitor their spatial changes over time. Additionally, this tech-
nology provides a wide variety of continuous data with temporal, spatial, and spectral
resolutions. Freely available satellite remote-sensing data, such as the Landsat series, have
provided long-term Earth observation data since the 1970s and have been widely used for
land cover detection and monitoring [21–24]. Despite the development in geoinformation
technology, few studies have focused on the ASGM sector for quantitative assessments
experiencing the harmful environmental and health risks caused by mercury pollution.
Even [6–11,25–27] demonstrated time-series assessments in deforestation, mining area
detection, and geomorphic and hydrological changes; however, they mainly examined
the travel-type mining sites. To investigate the closed C-ASGM sites, Ref. [18] recently
conducted a quantitative time-series analysis of the growth in C-ASGM sites using satellite
remote-sensing imagery. Furthermore, Ref. [28] analyzed the transformation of C-ASGM ac-
tivities by integrating nighttime light (NTL) intensities as a magnitude of mining activities.
Although a time-series assessment of the closed C-ASGM sector with non-roving practices
has been conducted by [18,28], a roving C-ASGM sector (hereafter R-C-ASGM) has not
yet been discovered. The major challenges, such as acquiring an optical cloud-free time-
series dataset [18,28,29], lead to further difficulty in understanding the R-C-ASGM sector,
operated at a larger scale in tropical regions experiencing frequent heavy traffic rainstorms.

The use of the synthetic aperture radar (SAR), an active independent Earth observation
system from solar illumination or day–night cycles [30], is an alternative suited tool for
optical data [31]. Further, Ref. [32] reviewed the optical and SAR data for monitoring
ASGM sites and ensured results between the datasets. Previous studies have revealed
the potential of SAR data usage in mining-induced area detection using SAR sensitivities
of radar systems to surface roughness and dielectric properties of materials [27,31,32].
Therefore, SAR data are a powerful tool to overcome weather-related limitations mainly
found with optical sensors. This helps detect and monitor closed R-C-ASGM sectors to
obtain a qualitative and comprehensive understanding.

This study primarily assesses the transformation of the R-C-ASGM activities from
2015 to 2021 in Katingan Regency, Central Kalimantan Province, Indonesia, where active
alluvial-based R-C-ASGM activities have been conducted. This study’s results are ex-
pected to contribute to the understanding of R-C-ASGM development spread in remote
rural areas, the prediction of the level of socioenvironmental pollution, and strengthening
environmental governance at the regional level.

2. Materials and Methods
2.1. Overall Methodological Workflow

The methodological workflow used in this study is demonstrated in Figure 1. This
workflow employed three main steps to achieve its primary objective of assessing the
transformation of the R-C-ASGM activities. First, the S-1 backscattering coefficients (σ0)



Int. J. Environ. Res. Public Health 2022, 19, 6266 3 of 14

were calculated with vertical–vertical (VV) and vertical–horizontal (VH) polarizations.
Second, selections of algorithm/polarization were performed to detect the most locally
sensitive values. Third, the changes in the R-C-ASGM occurrences during 2015–2021 were
calculated based on the S-1 temporal series. This evidence allowed us to understand the
historical transformation of the R-C-ASGM activities at the study site. This study presents
a discussion based on all the findings described above. The methods used in each step are
explained in the following sections.

Figure 1. Overall methodology.

2.2. Study Area

Indonesia is a well-mineralized metallogenic region with significant gold mineraliza-
tion, associated with quartz veins in andesite-hosted epithermal settings. One of the major
ASGM hotspots in Central Kalimantan with gold-bearing alluvial soils has attracted large
ASGM-targeted migrants from Java and South Kalimantan [33]. The Galangan mining
region in Central Kalimantan is the geographical and historical center of the land-based
mining area, which developed rapidly in the early 1990s [32]. The Hampalit town, es-
pecially, was a base for active mining activities for both indigenous miners and a gold
company, namely PT Hampalit Mas Perdahana, which closed during the financial crash
of 1997. Company-initiated mining activities extracted heavy minerals through an open-
pit method, digging deep excavation pits. Thus, removing all the soil and vegetation
landscape on the surface creates a barren wasteland [13,33]. However, indigenous ASGM
communities have extracted gold along with river systems by floating pumps, resulting in
disturbances of riverbanks and an increase in sediment volumes [33]. After the company’s
closure, the lands were taken by migrated miners. They have continuously traveled to
the greater areas, from Kalanaman, Pundu to Galangan, to explore newer locations with
greater gold production by seasons [33].

This study targets Galangan mining (Central of Katingan Regency, the Central Kali-
mantan Province, Indonesia), utilizing the alluvial-based mining method (Figure 2). In this
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mining region, the Katingan River, one of the major river basins in Southeast Asia, flows
north to south.

Figure 2. Study area.

2.3. S-1 Imagery

A total of seven level-1 grand range detected (GRD) Sentinel-1 datasets, covering
2015–2021, downloaded from the European Space Agency (ESA), were utilized to extract
and calculate time-series changes of the ASGM occurrences. Through the EU/ESA Coperni-
cus program, the S-1 mission (S-1A and S-1B) provides an exceptional combination of high
spatial (10 m) and temporal (6 days) resolution data by operating two polar-orbiting radar
imaging systems working with the C band (~5.7 cm wavelength). The main operational
mode is interferometric wide swath mode (IW) with VV and VH polarizations, and images
are freely and routinely available [34].

To reduce atmospheric effects, which reduced the quality of images, Climate Hazards
Group InfraRed Precipitation with Station (CHIRPS) data was referred to using Google
Earth Engine to target months experiencing less rain with local weather station data. Thus,
this study focused on July to August from 2015 to 2021.

All datasets were acquired from the descending track with relative orbit number 3 of
each image’s backscatter intensity to better the image. The available S-1 dense time-series
offers a unique opportunity to monitor ASGM activities, especially in tropical regions
experiencing the magnitude of frequent rainstorms.



Int. J. Environ. Res. Public Health 2022, 19, 6266 5 of 14

2.4. Image Preprocessing

The preprocessing workflow is based on ESA’s open-source software, ESA named
sentinels application platform (version 8.0.0), and its functionalities. The following steps
were implemented in the S-1 Toolbox: orbit correction, thermal noise removal, radiometric
calibration, speckle filtering with 5 × 5 windows, and terrain correction using the 3-arcsec
digital elevation model (DEM) from the shuttle radar topography mission (SRTM) [35].
Here, the radiometric calibration aims to convert the digital pixel value of the S-1 images
into an image intensity value of σ0. The data were projected to the World Geodetic System
1984, Universal Transverse Mercator Zone 49 South. Terrain-corrected σ0 intensities of the
VV and VH were used for further analysis.

2.5. Selection of Threshold and Detection of Changed Areas in Time-Series

After image preprocessing, optimized threshold values were identified based on the
VV and VH polarizations acquired in 2017 and 2018. Sixteen automatic global thresh-
olding algorithms and binary image classifications using one-dimensional feature space
were applied to extract mining-induced areas. In this process, Fiji (version 2.1.0) software
(https://imagej.net/software/fiji/, accessed on 1 March 2022), an open-source Java image
processing package, was used to determine each algorithm’s threshold values. Huang’s
fuzzy [36], Internodes [37], Isodata [38], IJ_Isodata, Li’s Minimum Cross-Entropy [39–41],
Maximum Entropy [42], Mean [43], Minimum Error [44], Minimum [37], Moments [45],
Otsu’s [46], Percentile [47], Renyi’s Entropy [42], Shanbhag’s [48], Triangle [49], and
Yen’s [50] threshold algorithms were separately performed. This study also tested a super-
vised classification method, such as histogram intersection, applied by [31]. Subsequently,
the results were validated using reference data to examine the best separability for the
change detection. The reference data for the accuracy assessment were derived from
high-resolution images obtained on 9 June 2017 and 23 September 2018, using Google
Earth Pro.

Owing to heavy cloud coverage in the study area, the acquisition of the scenes was
extremely limited only to the abovementioned data. However, these images identified
mining activities along the Katingan River. According to human visual image interpretation,
areas affected by mining activities were separately digitized, and the changed areas were
identified by overlaying. Third, 100 points were randomly selected from the datasets to
determine the best suitability by polarizations. Fourth, the determined best combination of
algorithm and polarization was applied to all datasets post-classification of a majority filter
with a moving window size of 5 × 5 pixels to remove isolated pixels. Furthermore, the
detected areas observed in the river buffers were eliminated to remove the mudflats in the
rivers, possibly caused by changes in the magnitude of precipitation between the acquired
years. Consequently, the annual changes in the extent of illegal mining were calculated for
the following six temporal series: 2015/2016, 2016/2017, 2017/2018, 2018/2019, 2019/2020,
and 2020/2021.

In previous studies, mining areas in the Central of Katingan Regency were estimated
to cover ~400 km2 in 2007 [32]. Hence, the long-term trends in R-C-ASGM sites could be
observed from satellite imagery even with a 10-m ground resolution. We summarized the
main specifications of the databases used in Table 1.

Table 1. Main specification of satellite imagery used in the study.

Satellite Type Acquisition
Date

Spatial
Resolution

Image
Number Polarization Wavelength

Sentinel-1 C-SAR

20 July 2015
7 August 2016
21 July 2017.
4 July 2018.
11 July 2019

10 August 2020
24 July 2021

10 m 3 Descending
(VV, VH) C band

https://imagej.net/software/fiji/
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3. Results
3.1. Visualization of Time-Series Color Composites of VV and VH Polarizations

The processed VV and VH polarizations were displayed in RGB color composites
in six temporal series: 2015/2016, 2016/2017, 2017/2018, 2018/2019, 2019/2020, and
2020/2021, as shown in Figure 3. In this visualization process, the older years were
assigned red, and the newer years were assigned green and blue, which detects changes
in land covers between two different periods. VV polarizations show slightly brighter
intensities compared to that of VH’s. VH polarization can detect significant landcover
changes along the Katingan and Kalanaman Rivers in 2016/2017 and 2020/2021.

Figure 3. Time-series color composites by (A) VV and (B) VH polarization channels.

3.2. Determination of Threshold

Both VV and VH polarizations acquired in 2017 and 2018 were primarily used to
derive the best combination of algorithm and polarization. The changed areas identified
from each result were validated using features extracted from high-resolution Google earth
images (GEI), as mentioned in Section 2.5. The most sensitive algorithm and polarization
channel indicate changes in illegal mining extents.
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After processing the optimized thresholding, the locally sensitive methods were found
only in the IJ_Isodata and Yen algorithms. Therefore, those were applied both to VV &
VH polarization channels. Table 2 presents the identified thresholds. The threshold values
identified by the IJ_Isodata showed lower intensities: −15.07 dB (2017_VV), −21.47 dB
(2017_ VH), −14.84 dB (2018_VV), and −20.16 dB (2018_VH). The Yens were: −15.07 dB
(2017_VV), −20.16 dB (2017_VH), 13.32 dB (2018_VV), and −20.16 dB (2018_VH). The
results show no significant value differences in both VV and VH polarizations (IJ_Isodata
algorithm). The same values were generated in 2017_VV and 2018_VH from the Yen
algorithm; however, 2018_VV showed a larger difference between the two periods. As new
mining areas are usually associated with land cover changes from vegetation to bare areas
or water, the magnitude of intensity in such areas is expected to be lower intensities in VV
and VH polarizations. Thus, the IJ_Isodata algorithm was more sensitive to finding mining
activity-induced land landcover changes than the Yen algorithm in this study.

Table 2. Threshold values by algorithm and polarizations.

2017 2018

Algorithm VV VH VV VH

IJ_Isodata −15.07 dB −21.47 dB −14.84 dB −20.16 dB
Yen −15.07 dB −20.16 dB 13.32 dB −20.16 dB

Figure 4 shows detected areas induced by R-C-ASGM activity during 2017/2018, based
on human visual interpretation of GEI and thresholding results by VV and VH polarizations
optimized by the IJ_Isodata algorithm. After different threshold values, similar intensities
were found in both VV and VH polarization in the identified areas. For example, an
average of −18.03 dB (standard deviation (STDEV) of 1.14 dB)) and −24.23 dB (STDEV of
1.51 dB) was observed for 2017 VV and VH, respectively. Furthermore, −18.11 dB (STDEV
of 1.55 dB) and −23.89 dB (STDEV of 2.22 dB) were observed during 2018. By comparing
the results, some areas in the middle part were not detected by VV and VH polarization;
however, the visual comparison indicates that areas induced by R-C-ASGM activities can
be detectable in both time-series features.

3.3. Detection of Newly Expanded R-C-ASGM Areas

Using the results in Section 3.1, the accuracy assessment was performed to judge their
sensitivity. The results show 73.3% and 76.0% for the VV and VH polarizations, respectively.
We recalculated the accuracy by omitting the points found at boundaries due to high
spectral resolution sensitivity resulting from mixed pixels. As a result, we found 76.7% and
82.1% accuracies for the VV and VH polarizations, respectively. The best combination was
found with the IJ_Isodata algorithm with VH polarization. The particular threshold values
for each VH polarization were generated for the final classification, possibly leading to
better detection of active R-C-ASGM activities (Table 3).
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Figure 4. GEI 2017 (a), 2018 (b), detected changes from GEI 2017–2018 (c). VV polarization in 2017 (d),
2018 (e), detected changes from VV 2017–2018 after applying the threshold values (f). VH polarization
in 2017 (g), 2018 (h), detected changes from VH 2017–2018 after applying the threshold values (i).

Table 3. Threshold values for time-series VH polarizations.

Threshold
(IJ_Isodata Algorithm) 2015 2016 2017 2018 2019 2020 2021

Intensities (dB) −20.88 −19.95 −21.47 −20.16 −20.36 −20.76 −19.8

Figure 5 shows the occurrence of active mining sites for the six periods (2015/2016,
2016/2017, 2017/2018, 2018/2019, 2019/2020, and 2020/2021), overlaying on the European
Space Agency (ESA) WorldCover 10 m 2020 (WC2020). The occurrence of R-C-ASGM-
induced areas exhibited 25.0 km2 (2015/2016), 28.0 km2 (2016/2017), 32.1 km2 (2017/2018),
20.3 km2 (2018/2019), 7.4 km2 (2019/2020), and 47.9 km2 (2020/2021), respectively. The
magnitude of the occurrences was found in 2015/2016–2017/2018; however, fewer oc-
currences were observed in 2019/2020. Simultaneously, the largest occurrence was again
observed in 2020/2021 along the river. The detected areas were concentrated in the center
of the Galangan region and along the Kalanaman River, where LC is classified as barren in
ESA WC2020. The magnitudes of the occurrences were particularly observed in 2020/2021
in the northwestern parts of the study area along the Kalanaman River. The pattern of
occurrences is observed mostly along with the river networks.
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Figure 5. Occurrence of active mining sites detected by VH polarizations and their overlay on the
ESA WC2020.
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4. Discussion
4.1. Contributions

We studied the transformations of the R-C-ASGM activities from 2015 to 2021 using
the S-1 time series. A quantitative time-series analysis of the R-C-ASGM sectors can help
better understand the rate and pattern of development of such mining activities over
time. Detecting such occurrences and their patterns in tropical regions experiencing the
magnitude of frequent rainstorms can provide significant information or estimation on
the potential rates and levels of socioenvironmental pollution and its human risk resulting
from mercury use at R-C-ASGM sites. Understanding the characteristics of R-C-ASGM
practices helps strengthen environmental governance at various levels.

As described, the establishment of new mining areas is usually associated with changes
in land cover from vegetation to bare/water areas. We employed a change detection method
based on generating the binary masks using a threshold defined by the image, optimized
by the IJ_Isodata algorithm (Table 2). The analysis reveals that VH polarization was more
sensitive than VV polarization, resulting in better separation of areas induced by mining
activity (Table 3). While the classification accuracy was 76.0%, a higher accuracy (82.1%)
was found with omission of random points at boundary. For 24.0% of errors, influence
factors would not be caused by algorithm matter. Instead, the following factors can be
considered for this misclassification; SAR specific errors such as foreshortening and layover
in mountainous areas owing to the side looking of SAR; differences in data acquired time;
weather conditions before the data acquired time; and spatial resolution of data. Previous
studies using SAR datasets in the mining sectors only achieved 52.0% [51], 84.9% (producer
accuracy), and 72.4% (user accuracy) [31]. Our study does not focus on generating a high-
accuracy map of active mining, which can be a replacement for a field survey. Instead,
we aim to provide information that leads to and supports the initial survey and social
implementation at a local level. Without any field data, we cannot target any destinations
for surveying, resulting in huge loss of time and cost. Thus, the generated possible active
map helps plan field survey. Our study is not an alternative tool to a field survey; therefore,
76.0% (82.1% highest) accuracy is sufficient for this study.

This study demonstrated the transformation of active sites in the R-C-ASGM sector
from 2015 to 2021 in the Galangan region, Central Kalimantan, Indonesia, where active
alluvial-based R-C-ASGM activities have been historically conducted. This study detected
the active mines and their various transformation forms using a quantitative analysis
over time (Figure 5), as described in Section 3.2. Few studies have quantified R-C-ASGM
practices with satellite imagery data. A recent study by [18,28] conducted a quantitative
time-series analysis of the closed Non-R-C-ASGM sites, employing the vertical tunnel
method (shaft) of mining, in Golontato, Indonesia, using optical satellite remote-sensing
imagery. However, this work further quantified R-C-ASGM sites where activities are
operated at a large scale in tropical regions experiencing frequent heavy rainstorms.

Few studies have utilized satellite data to reveal the volume of illegal mining activities.
Especially, a recent study by [28] quantified that the extent of illegal mining sites and
the magnitude of mining activities in the camps experienced 4.8- and 3.8-fold increases,
respectively, from 2014 to 2020. Although the study areas, mining type, and indicator of
transformations differ from this study, a similar trend in the occurrence of active illegal
mining activities was found in their results. Further, Ref. [32] focused on a study area
that is comparable to ours. Their study found an annual expansion of 8 km2 through the
Landsat series in the Galangan region from 1999 to 2002 [32]. This study found a higher
magnitude of the occurrence rate during 2015/2021. The possible reason for this may be
associated with an increase in the global gold price since 2006. Similarly, the gold price in
Indonesia has increased since 2007, with an especially steady increase since 2017, which
approximately doubled at the end of 2020 [18]. The magnitude of occurrences was found
especially in 2020/2021 when a rapid increase in the gold price was observed globally and
nationally, while the lower rate of occurrence observed in 2019/2020 could be due to the
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globally spread influence of the coronavirus pandemic, which affects the workforce, mining
activities, markets’ supply chain, and cash flow [52,53].

For the shifts in the occurrence patterns, the result showed that the magnitudes
of active areas were found in the western Galangan region and along with the river
networks in 2020/2021. Even migrated miners have continuously roved the greater areas
by season [33]. Their main mining target sites can be shifted along the Kalanaman Rivers
to explore greater gold production. The possible reason for this shift can be associated with
the expansions of river extents. From the European Commission Joint Research Centre
Yearly Water Classification History dataset [54], which contains yearly water classifications
from 1988 to 2020, water extent along the Kalanaman River areas exhibited 1.83 (2015),
2.90 (2016), 2.91 (2017), 2.76 (2018), 2.59 (2019), and 3.40 km2 (2020), respectively. Thus,
alternative R-C-ASGM sites were expected to be further developed that were associated
with the expansion of water extents along the Kalanaman River after 2020. Moreover,
Ref. [32] previously revealed shifts in mining direction with PALSAR (June-September
2006). The authors found the various shifts in the active area of the western Galangan region.
However, a time-series analysis of the study further identifies the detailed characteristics
such as volumes, mine status, and trends of active mins’ shifting directions in the hidden
R-C-ASGM sectors, representing a more comprehensive understanding of R-C-ASGM
sectors across the region.

The R-C-ASGM sector can operate successfully due to its high productivity of gold.
However, it is estimated that approximately 270 tons of mercury are annually released only
from Central Kalimantan to the Sea of Java as of 2007 [32]. Furthermore, severe mercury
contamination (sediment, local fish, and hair samples) and typical symptoms resulting
from mercury intoxications (ataxia, tremor, and dysdiadochokinesia) among workers with
high ASGM activities have been observed in the Galangan region [13]. Despite its status
as an informal sector, the increase in global gold prices accelerated the massive entry of
immigrants into the mining sector, resulting in its massive growth. The growth in those
sectors further accelerate to cause mercury-related environmental pollution and health
problems at the stages of mining and amalgamation. Therefore, detecting such rapidly
developing hidden R-C-ASGM sectors can provide significant insights into the potential
rates and the levels of socioenvironmental pollution. This would also strengthen the
environmental governance with the participation of different stakeholders at various levels.

4.2. Limitations

This study has certain limitations associated with the characteristics of SAR data.
Although SAR data helps in the active independent observation of weather, it causes fore-
shortening and layover in mountainous areas owing to the side looking of SAR, leading to
misclassification. Further, precipitation before the acquisition can decrease the backscatter
intensity in polarizations, overestimating illegal mining extents. Moreover, some smaller
and complex areas are undetectable due to the used datasets (10 × 10 km grid cell). Finally,
because of the S-1 series’ operation period, the methodologies applied in this study are
limited only to the period after 2014.

Although the proposed method cannot detect the existing mining areas before 2015, it
identifies the occurrences of R-C-ASGM-related active sites and their changing patterns.

5. Conclusions

This study assessed the transformation of the R-C-ASGM sector in Katingan Regency,
Central Kalimantan Province, Indonesia, using S-1 time-series data. The results presented
herein show the massive occurrence of the active R-C-ASGM sites. In particular, a magni-
tude of occurrence was found in the center of the Galangan region and along the Kalanaman
River in 2021. Therefore, it can be concluded that the active mining sector undertaken by
the R-C-ASGM method can be detected from a set of time-series datasets. These results
extend our understanding of the transformations of the mining site and the status of their
activeness in the hidden R-C-ASGM sectors. Subsequently, it also provides significant
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insight into the potential for further socioenvironmental problems at the regional level.
These findings are expected to assist in developing rapid and appropriate interventions for
strengthening environmental governance by involving various stakeholders.
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