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Abstract

Objective

Determine if cocaine use impacts gut permeability, promotes microbial translocation and

immune activation in people living with HIV (PLWH) using effective antiretroviral therapy

(ART).

Methods

Cross-sectional analysis of 100 PLWH (ART�6 months, HIV-RNA <200 copies/mL) from

the Miami Adult Studies on HIV (MASH) cohort. Cocaine use was assessed by self-report,

urine screen, and blood benzoylecgonine (BE). Blood samples were collected to assess gut

permeability (intestinal fatty acid-binding protein, I-FABP), microbial translocation (lipopoly-

saccharide, LPS), immune activation (sCD14, sCD27, and sCD163) and markers of inflam-

mation (hs-CRP, TNF-α and IL-6). Multiple linear regression models were used to analyze

the relationships of cocaine use.

Results

A total of 37 cocaine users and 63 cocaine non-users were evaluated. Cocaine users had

higher levels of I-FABP (7.92±0.35 vs. 7.69±0.56 pg/mL, P = 0.029) and LPS (0.76±0.24 vs.

0.54±0.27 EU/mL, P<0.001) than cocaine non-users. Cocaine use was also associated with

the levels of LPS (P<0.001), I-FABP (P = 0.033), and sCD163 (P = 0.010) after adjusting for
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covariates. Cocaine users had 5.15 times higher odds to exhibit higher LPS levels than non-

users (OR: 5.15 95% CI: 1.89–13.9; P<0.001). Blood levels of BE were directly correlated

with LPS (rho = 0.276, P = 0.028), sCD14 (rho = 0.274, P = 0.031), and sCD163 (rho =

0.250, P = 0.049).

Conclusions

Cocaine use was associated with markers of gut permeability, microbial translocation, and

immune activation in virally suppressed PLWH. Mitigation of cocaine use may prevent fur-

ther gastrointestinal damage and immune activation in PLWH.

Introduction

People living with HIV (PLWH) exhibit pathological processes that affect the gastrointestinal

tract. One of the main features of infection with the human immunodeficiency virus (HIV) is

the massive destruction of CD4+ T cells in the gastrointestinal tract, which are more frequently

infected by HIV than those in blood, indicating the gastrointestinal tract as a major target and

viral reservoir for HIV in the human body [1]. The loss and poor reconstitution of CD4+ T

cells in the gastrointestinal tract promote disruption of intestinal homeostasis, mucosal regen-

eration, and gut integrity despite antiretroviral therapy (ART) [2–6].

Preserving the gut barrier is vital for the intestinal epithelium. When the intestinal barrier is

damaged, intestinal permeability increases, allowing translocation of products including lipo-

polysaccharide (LPS), into the bloodstream, causing endotoxemia and inflammation [7].

I-FABP are small cytosolic proteins that transport fatty acids to the enterocytes. In the event of

intestinal ischemia or gut integrity damage, I-FABP is leaked from the gut to the systemic cir-

culation indicating intestinal barrier dysfunction and permeability [8].

The diversity of the intestinal microbiome appears to be reduced in PLWH [9–15]. The

combination of reduced intestinal CD4+ T cells and alterations in the microbiome contribute

to disruptions of tight junctions in the intestinal epithelium, which in turn leads to the loss of

gut integrity and microbial translocation in PLWH [16]. Microbial translocation (MT) refers

to the passage or transport of the microflora or its products from the gastrointestinal tract into

the systemic circulation without causing bacteremia [17]. PLWH present with products of

MT; specifically LPS, also known as endotoxin [18, 19]. In turn, LPS in the circulation induces

immune activation and inflammation, considered hallmarks of HIV infection and predictors

of poor clinical outcomes in PLWH [20–24]. Chronic immune activation has been identified

as one of the factors that increase morbidity and mortality among PLWH regardless of ART

use and viral suppression and [25]. In addition, constant low levels of viral replication from

viral reservoirs, particularly in the gastrointestinal tract, persist despite effective ART thereby

promoting chronic immune activation [26]. This creates a vicious cycle where gut barrier

immunity is compromised by HIV infection, promoting microbial translocation and immune

activation, which in turn contribute to HIV disease progression.

Cocaine is one of the most frequently used illicit drugs in the United States [27] and it is

disproportionately used by PLWH [28]. Epidemiological studies have demonstrated that

active illicit drug use, particularly cocaine, is associated with poor adherence to ART,

reduced virologic and immunologic control, HIV disease progression, and mortality [29,

30]. Cocaine use poses deleterious risks related to the gastrointestinal tract, including malnu-

trition, anorexia, gastrointestinal bleeding, reduced blood supply to enterocytes, and
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dysbiosis of the gut microbiome among PLWH [31–33]. Also, in vitro and in vivo studies

suggest that cocaine can impair gut integrity, leading to microbial translocation and systemic

inflammation [34, 35]. Nonetheless, the role of cocaine use on gut permeability, microbial

translocation, and immune activation among PLWH has not been thoroughly investigated

and characterized. Therefore, the purpose of this study was to examine the relationships

between cocaine use, gut permeability, microbial translocation, and immune activation in

the context of HIV infection.

Methods

Study participants

Participants for this cross-sectional study were selected from the ongoing Miami Adult Studies

in HIV (MASH) cohort, a National Institute on Drug Abuse (NIDA)-funded study examining

the impact of substance use on HIV infection and comorbidities. The MASH cohort includes a

large number of non-Hispanic Blacks, Hispanics, and non-injection drug users who are fol-

lowed every 6 months with comprehensive surveys administered on the same day as fasting

blood and urine samples are collected. Participants for this study were selected from the

MASH cohort if they met the following criteria: age 21 and older; HIV infected on ART with

suppressed HIV viral load (<200 copies/ml) and CD4+ T cell count>200 cells/μL for at least

6 months; and no hazardous drinking as determined by an Alcohol Use Disorders Identifica-

tion Test (AUDIT) score below 8. The exclusion criteria for this study were comprised of co-

infection with hepatitis B or C virus and diagnosis of an inflammatory bowel disease, con-

firmed with review of medical records. This study was approved by the Florida International

University Institutional Review Board. All participants provided written consent for participa-

tion in the study and release of medical records.

Laboratory analyses

Blood samples were collected every 6 months as part of each MASH cohort study visit and ali-

quoted for storage at -80˚ for later use. Plasma samples collected at baseline were used to assess

blood levels of LPS for microbial translocation, intestinal fatty-acid binding protein (I-FABP)

a biomarker for gut integrity, soluble CD14 (sCD14), sCD163, and sCD27 for immune activa-

tion, and hs-CRP, TNF-α and IL-6 for inflammation. I-FABP was assessed using the Human

FABP2/I-FABP Immunoassay by R&D Systems (Minneapolis, MN, USA) according to manu-

facturer’s instructions with a sample dilution of 1:5. LPS was measured using the Pierce Chro-

mogenic Endotoxin Quant Kit by Thermo Fisher Scientific (Rockford, IL, USA) according to

manufacturer’s instructions with the following modifications: samples were diluted 1:10 with

endotoxin-free water to avoid interference with background color and preheated to 70˚C for

15 minutes prior to analyses to inactivate plasma proteins. Triplicates were assessed for each

sample. Immune activation markers were measured in singlicate using the magnetic analyte-

specific bead-based Luminex multiplex immunoassays (Luminex Human Discovery Assays,

R&D Systems, Minneapolis, MN, USA). Soluble CD14 was assayed at a 1:200 plasma dilution,

while sCD27, and sCD163 were run at 1:2. Analyte concentrations were determined by the

protocol-based data acquisition software using a standard curve derived from the known refer-

ence concentration as supplied by the manufacturer. TNF-α and IL-6 were measured by using

the analyte-specific bead-based Luminex multiplex immunoassays (EMD, Millipore Corpora-

tion). High-sensitivity C-reactive protein (hs-CRP), a marker of systemic inflammation, was

also measured in blood (Labcorp, Burlington, NC, USA).
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Substance use

Cocaine use was defined as self-reported use (in the past 30 days), a positive urine drug screen

(American Bio Medica1, Kinderhook, NY, USA), or blood benzoylecgonine (BE) concentra-

tion�0.1 ng/mL. Cocaine is rapidly converted in the liver into its primary metabolite, BE [36].

A modified liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was

used to measure BE concentrations in plasma [37]. The target analyte and internal standard

were identified and quantified using a triple quadrupole mass spectrometer (TSQ Quantum

Ultra with a HESI-II probe, Thermo Fisher Scientific Inc., San Jose, CA, USA). Cigarette

smoking and alcohol consumption (AUDIT score) was self-reported.

HIV disease progression and medication history

Markers of HIV disease progression (CD4+ T cell count and HIV viral load) were abstracted

from medical records with participants’ written authorization. Use and adherence with ART

was obtained from the AIDS Clinical Trials Group (ACTG) validated adherence questionnaire

administered to study participants.

Statistical analyses

Descriptive statistics including means, standard deviations, and percentages were used to

describe the data. Log transformations were performed for non-normally distributed continu-

ous outcomes for I-FABP, LPS, sCD14, sCD27, sCD163, hs-CRP, TNF-α and IL-6. Indepen-

dent sample T-tests (or non-parametric Wilcoxon Rank-Sum Test) were conducted to

compare the distribution of continuous outcomes between cocaine users and non-users. Pear-

son and Spearman correlations were used to evaluate correlations between continuous vari-

ables. Multiple linear regression models were implemented to analyze the relationships of

cocaine use with log-transformed I-FABP, LPS, sCD14, sCD27, sCD163, hs-CRP, TNF-α and

IL-6 while controlling for covariates [age, sex, race, CD4 cell count, suppressed HIV viral load

(20–200 copies/mL), and cigarette smoking]. The dependent variables in the logistic regression

models were I-FABP and LPS at the following cut-offs: I-FABP and LPS� or�median. An

alpha less than 0.05 was considered statistically significant. All statistical analyses were per-

formed using SPSS software, version 27.

Results

Participant characteristics

A total of 100 PLWH were selected for this study, with mean age of 53.4±6.9 years (Table 1).

Thirty-seven participants (37%) used cocaine. Most participants were African American (66%)

and 29% were Hispanic. Participants had a mean duration of known HIV diagnosis of 17.2

±7.3 years, 78% had undetectable HIV viral load (<20 copies/mL) and 22% were virally sup-

pressed (HIV viral load 20–200 copies/mL). Participants had a mean BMI of 28.7±5.8 kg/m2

and 37% were obese. Approximately twice as many cocaine users smoked cigarettes than

cocaine non-users (64.9% vs. 36.5%, P = 0.006).

Correlations between biomarkers

As shown in Table 2, blood BE, the major metabolite of cocaine in blood, was directly associ-

ated with LPS (rho = 0.276, P = 0.028), sCD14 (rho = 0.274, P = 0.031), and sCD163

(rho = 0.250, P = 0.049). I-FABP only correlated with sCD27 (r = 0.221, P = 0.034) and LPS

only correlated with sCD163 (r = 0.422, P<0.001). Plasma levels of sCD14 correlated with

sCD27 (r = 0.381, P<0.001) and sCD163 (r = 0.240, P = 0.021).
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Table 1. Participant’s characteristicsa.

Characteristics Total Cocaine Non-users Cocaine Users P valueb

(N = 100) (N = 63) (N = 37)

Age (years) 53.4±6.9 52.8±7.4 54.3±5.8 0.304

Gender (male) 53.0% 55.6% 48.7% 0.504

Race/Ethnicity

African American 66.0% 57.6% 42.4% 0.015

Hispanic 29.0% 33.3% 21.6% 0.213

White 28.0% 34.9% 16.2% 0.100

Other 6.0% 6.4% 5.4% 0.603

Log10 HIV VL (copies/mL) 1.75±0.33 1.78±0.32 1.70±0.36 0.549

Undetectable HIV VL (<20 copies/mL) 78% 69.7% 30.3% 0.207

Suppressed HIV Viral Load (20–200 copies mL) 22% 54.5% 45.5% 0.142

Duration of HIV (years) 17.2±7.3 18.0±7.2 15.6±7.1 0.150

CD4 cell count (cells/μL) 641.7±354.1 633.4±305.6 655.9±428.5 0.780

Cigarette smoker 47.0% 36.5% 64.9% 0.006

Alcohol (drinks/week) 2 (0, 5) 1 (0, 3) 2 (0, 6) 0.284

BMI (kg/m2) 28.7±5.8 29.0±5.9 28.2±5.6 0.520

Obese (BMI>30kg/m2) 37.0% 38.1% 35.1% 0.767

LPS (EU/mL) 0.59±0.23 0.53±0.24 0.72±0.12 <0.001

I-FABP (pg/mL) 2515.83± 1072.95 2337.56±1072.95 2866.97±798.06 0.014

sCD14 (pg/mL) 1038.47±424.2 1021.81±402.55 1080.73±480.7 0.552

sCD27 (pg/mL) 7.95±2.94 7.70±2.52 8.58±3.81 0.291

sCD163 (pg/mL) 635.71±418.52 613.25±431.73 692.74±385.01 0.393

hs-CRP (mg/L) 3.70±3.57 3.58±3.63 3.94±3.48 0.638

TNF-ɑ (pg/mL) 8.02 (5.76–11.44) 8.31 (5.78–11.44) 7.48 (3.05–11.47) 0.445

IL-6 (pg/mL) 0.7 (6.6–50.8) 24.8 (8.5–55.5) 4.9 (3.3–28.3) 0.453

Bold indicates statistical significance at P < 0.05.
aData are summarized as mean ± standard deviation (or median [interquartile range]) for continuous variables and No. (%) for categorical outcomes.
bBetween group comparisons consisted of T-tests (or Wilcoxon Rank-Sum Test) for continuous variables and Chi-square Tests for categorical variables.

https://doi.org/10.1371/journal.pone.0275675.t001

Table 2. Correlation matrixa.

BMI hs-CRPb CD4+ I-FABPb LPSb sCD14b sCD27b sCD163b BEc

Age -0.231� 0.117 -0.084 0.093 -0.047 0.010 0.191 -0.139 0.014

BMI - 0.293�� 0.234� -0.186 -0.132 0.183 -0.010 0.197 0.066

hs-CRPb - - 0.247� -0.066 -0.152 0.061 0.036 -0.057 0.065

CD4+ - - - -0.022 0.097 -0.058 -0.181 -0.093 -0.109

I-FABPb - - - - 0.123 -0.088 0.221� 0.023 0.133

LPSb - - - - - -0.079 0.068 -0.084 0.276�

sCD14b - - - - - - 0.381�� 0.240� 0.274�

sCD27b - - - - - - - 0.377�� 0.125

sCD163b - - - - - - - - 0.250�

Bold indicates statistical significance at p < 0.05.
aPearman’s correlation, unless otherwise specified
bLog-transformed
cSpearman’s correlation

�P < 0.05

��P < 0.01

https://doi.org/10.1371/journal.pone.0275675.t002
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Gut permeability and microbial translocation

Cocaine users had higher levels of I-FABP (2866.97±798.06 vs. 2337.56±1072.95 pg/mL,

P = 0.014) and LPS (0.72±0.12 vs. 0.53±0.24 EU/mL, P<0.001) than cocaine non-users, indi-

cating greater gastrointestinal permeability and microbial translocation among the cocaine

users (Fig 1). A series of multiple regression models were carried out to investigate whether

cocaine use was associated with I-FABP and LPS levels in plasma, controlling for age, sex, race,

CD4 cell count, suppressed HIV viral load (20–200 copies/mL), and cigarette smoking

(Table 3). When adjusted for these confounders, cocaine use was significantly associated with

both I-FABP (P = 0.033) and LPS levels (<0.001) as shown in Table 3.

Logistic regression analyses indicated that cocaine use was significantly associated with

high LPS levels [�median 0.63 (IQR:0.48–0.73) EU/mL (P<0.001] after controlling for the

same covariate. In addition, cocaine users had 5.15 times higher odds to exhibit high LPS levels

than non-users (OR: 5.15 95% CI: 1.89–13.9; P<0.001), as shown in Table 4. No significant

association was found between cocaine use and high levels of I-FABP.

Immune activation and inflammation

T-tests showed no differences in markers of immune activation between cocaine users and

non-users (Fig 1). Table 3 also shows that there were no significant associations between

cocaine use and sCD14 (P = 0.933), sCD27 (P = 0.587) using multiple regression analyses.

Fig 1. Comparison of gut permeability, microbial translocation, immune activation, and inflammatory markers between cocaine users and non-

users. Bold indicates statistical significance at P< 0.05. Microbial translocation: a) LPS. Gut permeability: b) I-FABP. Immune activation: c) sCD14, d)

sCD27, e) sCD163. Inflammation: f) hs-CRP, g) TNF-α, h) IL-6.

https://doi.org/10.1371/journal.pone.0275675.g001
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However, the association between cocaine use and sCD163 was statistically significant at

P = 0.010) (Table 3). No significant associations were found between cocaine use and inflam-

matory markers hs-CRP (P = 0.688), TNF-α (P = 0.433) and IL-6 (P = 0.456) after adjusting

for age, sex, race, CD4 cell count, suppressed HIV viral load (20–200 copies/mL) and cigarette

smoking. However, LPS levels were significantly associated with hs-CRP (P = 0.040) and TNF-

α (P = 0.030) after adjusting for the covariates (S1 Table).

Discussion

Gastrointestinal complications and persistent immune activation are some of the key patholo-

gies of HIV infection [18, 25]. PLWH are also predisposed to risk factors that may exacerbate

these problems, such as substance abuse [28]. In this study, we examined markers of gut per-

meability, microbial translocation, immune activation and inflammation in the context of

cocaine use among PLWH who were on stable ART and virally suppressed. Cocaine users

− identified via self-report, urine drug screen, and BE in blood − exhibited greater gut integrity

damage and microbial translocation than cocaine non-users, as evidenced by higher levels of

I-FABP and LPS, respectively. We also found associations between cocaine use and markers of

immune activation, although the results were less consistent. Our data therefore suggest that

cocaine use may exacerbate HIV-related microbial translocation and immune activation.

These findings emphasize that strategies to prevent, identify, and treat substance use disorders

among PLWH are needed and may aid in decreasing the high disease burden in this vulnerable

population.

To the best of our knowledge, this is the first study showing direct associations of cocaine

use with gut permeability and microbial translocation among PLWH. For example, Volpe

et al. [33] did not detect any differences in LPS or sCD14 levels by HIV status or cocaine use,

Table 4. Logistic regression analysis predicting the likelihood of high levels of gut integrity damage and microbial translocation in cocaine users living with HIV.

Variable Cocaine Usersa

Unadjusted OR (95% CI) P-value Adjusted ORa (95% CI) P-value

I-FABP (pg/mL)

Above median (� 2460.43) 2.69 (0.94–5.11) 0.069 2.20 (0.89–5.45) 0.087

LPS (EU/mL)

Above median (� 0.63) 4.86 (1.95–12.1) 0.001 5.15 (1.89–13.9) 0.001

Bold indicates statistical significance at P < 0.05.
a Reference category non-cocaine users
b Estimates are adjusted for age, sex, race, CD4 cell count, suppressed HIV viral load (20–200 copies/mL), and cigarette smoking.

https://doi.org/10.1371/journal.pone.0275675.t004

Table 3. Associations between cocaine use, gut integrity damage, microbial translocation and immune activation.

I-FABPa LPSa sCD14a sCD27a sCD163a

B SD t P B SD t P B SD t P B SD t P B SD t P

Cocaine use 0.24 0.11 2.17 0.033 0.39 0.11 3.88 <0.001 0.02 0.11 0.19 0.850 0.08 0.09 0.89 0.371 0.44 0.16 2.65 0.010

IFABPb 0.12 0.11 1.05 0.296 -0.13 0.10 -1.15 0.252 0.16 0.08 1.48 0.142 0.02 0.15 0.24 0.808

LPSb -0.12 0.09 -1.07 0.285 -0.01 0.07 -0.14 0.866 -0.09 0.14 -0.84 0.401

Bold indicates statistical significance at P < 0.05.
a Estimates are adjusted for age, sex, race, CD4 cell count, suppressed HIV viral load (20–200 copies/mL), and cigarette smoking.
bLog-transformed

https://doi.org/10.1371/journal.pone.0275675.t003
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possibly due to a small sample size (N = 32). That said, MASH participants in this study

showed similar I-FABP [38–41] and LPS [42–44] levels to the ones reported in other studies

conducted in PLWH. Importantly, PLWH display higher concentrations of I-FABP compared

to HIV-uninfected peers [38]. Our data show that cocaine users had higher levels of I-FABP

and LPS than cocaine non-users. Thus, cocaine use may exacerbate gut permeability and sub-

sequent microbial translocation in PLWH. Interestingly, levels of I-FABP in plasma did not

correlate significantly with LPS, sCD14, or sCD163, although others have reported these asso-

ciations [38]. A novel finding from this study was that cocaine users were 5.15 times more

likely to exhibit high microbial translocation levels than non-users, which indicates the damag-

ing effect of cocaine on the GI mucosa.

HIV has been shown to directly affect the enterocytes due to the action of its accessory pro-

tein Transactivation of transcription (Tat) that inhibits the uptake of glucose into the entero-

cyte. In addition, the envelope glycoprotein gp120, promotes calcium accumulation inside the

cell affecting the ionic homeostasis [45, 46], and activates the intestinal immune system with

the release of pro-inflammatory cytokines [47, 48]. Also, there is a massive loss of CD4+ T cells

in the GI lamina propria. This loss also affects the CD4+ T helper 17 cells in the intestine,

which are responsible for the intestinal homeostasis, and mucosal regeneration and integrity

[2, 3].

Cocaine use has been associated with several gastrointestinal disturbances including diar-

rhea, nausea, vomiting, and anorexia [33], but mechanisms underlying the impact of cocaine

on the gastrointestinal system have not been completely elucidated. While cocaine itself has a

relatively short half-life, usually in the range of a few hours, its metabolites remain significantly

longer in the circulation [49, 50]. Further, chronic cocaine use extends its half-life, prolonging

its elimination from the body [49, 50]. Cocaine may lead to dysbiosis of the gut microbiome

and also appears to have the ability to dysregulate the expression of tight junction proteins in

the intestinal epithelium, promoting gut permeability of toxic microbial products and subse-

quent inflammatory response [34, 35]. Thus, the damaging effects of HIV on the enterocytes,

the loss of intestinal CD4+ T cells and the likely role of cocaine in the disruption of gut barrier

and increased permeability may indicate that cocaine and HIV seem to simultaneously com-

promise gut homeostasis and further promote microbial translocation. Our data showed that

levels of BE in blood correlated with levels of sCD14 and sCD163, suggesting that cocaine

metabolites promote immune activation while they remain in blood. However, we did not

observe a significant association between cocaine and sCD14 and sCD27 immune activation

and inflammatory markers in the regression analyses. It is important to reiterate that all our

participants in this study were on stable ART (�6 months), suppressed viral load (<200 cop-

ies/mL), more than half had undetectable HIV viral load (<20 copies/mL), had CD4+ cell

count>200 cells/μL, and did not report hazardous drinking (AUDIT score >8). These results

indicate that cocaine may directly destabilize gut integrity as evidenced by the association

between cocaine use, I-FABP and LPS. In addition, cocaine use was related to immune activa-

tion as shown by significant associations with sCD163.

This study had several important strengths, including the inclusion/exclusion criteria,

which allowed us to isolate the effect of cocaine use in the context of HIV disease. Indeed, sub-

stance use is a risk factor for HIV disease progression [29, 51, 52]. We have previously shown

that cocaine use can accelerate HIV disease progression by reducing adherence to HIV treat-

ment, as well as through physiological mechanisms independent of ART adherence [29, 53]. In

addition we used urine drug screen and determined cocaine metabolites in blood to strengthen

the self-reported data on cocaine use, although even these biomarkers provide a relatively

short window of detection [49]. Several limitations of this study should be acknowledged. Due

to the eligibility criteria, the results of this study are mainly applicable to PLWH who are virally
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suppressed and do not exhibit hazardous alcohol consumption patterns. Further, lack of HIV-

uninfected participants prevents us from ascertaining how the impact of cocaine differs in

PLWH from those uninfected with HIV. To the best of our knowledge, the impact of cocaine

on microbial translocation and immune activation has not been examined outside of the con-

text of HIV. Other biomarkers to assess gut permeability including tight junction proteins

(occludin, zonulin, etc.), and Regenerating islet-derived protein 3 (REG3α) [8, 54–56] have

not been determined in this study. However, LPS employed in this study is a widely used

marker of microbial translocation, while I-FABP has been used as a marker of gut permeability

in other studies with PLWH [38–41]. Longitudinal studies are needed since the cross-sectional

design of this study prevents any determination of a temporal or causative association. Future

studies should include participants who use and do not use cocaine, as well as people unin-

fected with HIV, as this may elucidate the specific changes in gut permeability, microbial

translocation, immune activation and inflammation associated with cocaine use in PLWH.

Conclusions

Cocaine use is considered a relevant factor that accelerates HIV disease progression and pro-

motes mortality among PLWH. The findings of this study suggest that cocaine use is associated

with a loss of gut integrity and increased microbial translocation and immune activation in

PLWH despite ART use and viral suppression. Thus, cocaine appears to have profound effects

on both the gastrointestinal tract and the immune system. Further research with longitudinal

design is needed in order to elucidate mechanisms behind the effects of cocaine on gut health

and immunity in the context of HIV infection. This study provides important data to aid in

the development of effective approaches that target lifestyle modifications and treatment for

substance use disorders to decrease the burden of disease among PLWH.
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