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Parkinson’s disease (PD) is a progressive neurological disorder characterized by loss of
neurons that synthesize dopamine, and subsequent impaired movement. Umbilical cord
mesenchymal stem cells (UC-MSCs) exerted neuroprotection effects in a rodent model of PD.
However, the mechanism underlying UC-MSC-generated neuroprotection was not fully
elucidated. In the present study, we found that intranasal administration of UC-MSCs
significantly alleviated locomotor deficits and rescued dopaminergic neurons by inhibiting
neuroinflammation in a PD mouse model induced by 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP, a toxic agent which selectively destroys nigrostriatal neurons
but does not affect dopaminergic neurons elsewhere). Furthermore, UC-MSC treatment
altered gut microbiota composition characterized by decreased phylum Proteobacteria, class
Gammaproteobacteria, family Enterobacteriaceae, and genus Escherichia-Shigella. In
addition, the neurotransmitter dopamine in the striatum and 5-hydroxytryptamine in the
colon were also modulated by UC-MSCs. Meanwhile, UC-MSCs significantly maintained
intestinal goblet cells, which secrete mucus as a mechanical barrier against pathogens.
Furthermore, UC-MSCs alleviate the level of TNF-α and IL-6 aswell as the conversion of NF-κB
expression in the colon, indicating that inflammatory responses were blocked by UC-MSCs.
PICRUSt showed that some pathways including bacterial invasion of epithelial cells,
fluorobenzoate degradation, and pathogenic Escherichia coli infection were significantly
reversed by UC-MSCs. These data suggest that the beneficial effects were detected
following UC-MSC intranasal transplantation in MPTP-treated mice. There is a possible
neuroprotective role of UC-MSCs in MPTP-induced PD mice by cross talk between the
brain and gut.
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INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative
disorder which occurs due to the loss of dopaminergic
neurons. The global prevalence of PD is predicted to be
doubled by the year 2040 (Dorsey and Bloem, 2018),
making it a faster growing neurodegenerative disorder
than Alzheimer’s disease (Group, 2017). It has been shown
that pathological mechanisms of PD include α-synuclein
aggregation, mitochondrial dysfunction, oxidative stress,
autophagy, and neuroinflammation (Charvin et al., 2018).
Recent studies have revealed that dysfunction and alteration
intestinal barrier in the microbial composition are related to
the etiology of PD. In addition, the common non-motor
symptoms of PD patients such as constipation begin years
before the onset of motor dysfunction (Visanji et al., 2013).
The PD mouse model disrupts the intestinal barrier,
suggesting that gut–brain interaction plays an important
role in PD pathology (Perez-Pardo et al., 2019). In
addition, microbiome normalization can improve impaired
motor function in MPTP-induced PD mice (Zhou et al., 2019;
Sun et al., 2021). These findings indicate that targeting the
gut–brain axis is a promising strategy to treat PD.

Mesenchymal stem cells (MSCs) are an important source for
tissue repair due to their multifunctional differentiation, easy
sampling, rapid expansion, and low immunogenicity, and are
also free from ethical issues. MSCs have been used in clinical
trials to treat neuropsychiatric disorders such as autism
spectrum disorder and multiple sclerosis (Riordan et al.,
2018; Riordan et al., 2019). Evidence shows that MSCs have
been used to improve intestinal functions and inflammation in
inflammatory bowel disease (Soontararak et al., 2018) and to
restore gut microbial dysbiosis in various refractory diseases,
such as acute liver injury (Dong et al., 2019), rheumatoid
arthritis (Li et al., 2020), type 1 diabetes (Lv et al., 2020), and
acute lung injury (Sun et al., 2020). Previous studies had
reported that administration of MSCs improves motor
function and rescues dopaminergic neurons in PD animal
models by reducing oxidative stress (Chi et al., 2019),
modulating autophagy (Park et al., 2014), and inhibiting
neuroinflammation (Kim et al., 2009). However, the
molecular mechanisms and interactions between MSCs and
gut microbiota in PD remain unknown. What is more,
studies demonstrate similar trends in the microbial
composition of PD subjects, while pathogenic Gram-negative
bacteria (Proteobacteria, Enterobacteriaceae, and Escherichia-
Shigella) and mucin-degrading Verrucomicrobiaceae are
increased (Gorecki et al., 2019). MSC treatment can reduce
the proportion of Proteobacteria (Lv et al., 2020) and
Escherichia-Shigella (Sun et al., 2020). Taken together, we
assume that the intestinal microbes of PD were also
regulated by MSCs.

MSCs are mainly derived from the bone marrow (BM), adipose
(AD), and umbilical cord (UC). Compared with BM and AD, UC-
MSC harvesting is non-invasive, and cell proliferation is fastest
in vitro (Li et al., 2015; Fričová et al., 2020). UC-MSCs are not
affected by cell contact inhibition, and they are still in a state of

proliferation after confluence (Choudhery et al., 2013). These
studies indicate that UC-MSCs may be ideal for PD therapy.
However, previous studies had reported that UC-MSC
transplantation methods mainly focus on stereotactic and
intravenous injection in PD animal models (Wang et al., 2016;
Chi et al., 2019). There is still a lack of research on the intranasal
instillation of UC-MSCs. The advantage of intranasal delivery is
brain-targeting; BM-MSCs can be found in multiple brain regions
and last up to 4.5 months by intranasal delivery in the PD animal
model (Danielyan et al., 2014). Therefore, the present study will
further explore the neuroprotective effect of nasal drip
transplantation UC-MSCs on PD model mice.

In the present study, we discovered the neuroprotective effects
of UC-MSC administration in PD mice. UC-MSCs inhibited
reactive gliosis and neuroinflammation and facilitated motor
functional recovery in MPTP-treated mice. The
neurotransmitter dopamine (DA) in the striatum (ST) and 5-
hydroxytryptamine (5-HT) in the colon were also modulated by
UC-MSCs. In the same animal, we found that UC-MSCs
corrected microbial composition, maintained colonic goblet
cells, suppressed colonic pro-inflammatory response, and the
activation of the NF-κB pathway in MPTP-treated mice. Our
findings provide insights into the effects of UC-MSCs on the
brain–gut axis in the PD mouse model.

MATERIALS AND METHODS

Cell Culture and Phenotype Identification
Fresh umbilical cord samples were obtained from normal
spontaneous full-term delivery mothers with written
informed consent and reserved in a sterilized phosphate-
buffered saline (PBS) solution processed within 3 h. The cord
was rinsed three times to remove the residue blood and clots, cut
into 3-cm-long pieces, and rinsed again in a petri dish until the
solution became clear. After blood vessels were removed,
Wharton’s jelly was dissected into pieces approximately
0.3 cm3 in size and then transferred into culture vessels, with
10 ml mesenchymal stem cell complete medium (Beijing Yocon
Biology Co., Ltd.) at 37°C in a 5% CO2 incubator. The medium
was replaced with fresh medium every 3 days after the initial
plating. The cultured cells were passaged when cell confluency
reached 80%.

Cells at passage 3 were seeded into 12-well plates at a density of
1.3 × 104 cells per well and observed for 5 days for proliferation
measurement. At passage 3, the cells were harvested for
phenotype identification through staining with antibodies
against CD34, CD45, HLA-DR, CD73, CD90, and CD105
(Sino Biological, Beijing, China) and analyzed using a flow
cytometer (Celula, Sichuan, China). An MSC three-line
differentiation kit was purchased from Guangzhou Cyagen
Biological Co., Ltd. The adipogenic, osteogenic, and
chondrogenic differentiation were carried out in accordance
with the product instructions. Oil red O, Alizarin Red, and
Alcian Blue staining were used to observe the abilities of
adipogenesis, osteogenic, and chondrogenic differentiation.
UC-MSCs from passages 2 to 5 were used for the experiments.
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MPTP Injury Mouse Model and UC-MSC
Treatment
Sixty male C57BL/6 mice (8 weeks old, body weight 22–25 g)
were purchased from Vital River Laboratory Animal
Technology Co., Ltd. (Beijing, China). The mice were housed
in a specific pathogen-free laboratory under a controlled
environment with a temperature of 22 ± 3°C and humidity
60 ± 5% at 12-h light/12-h dark cycle. All mice were given free
access to food and tap water. The experimental protocols and
animal care were strictly in accordance with the approval of the
Animal Care and Management Committee of Hebei Medical
University.

The mice were randomly assigned to receive either
intraperitoneal injection of MPTP or normal saline. The
MPTP-induced PD mouse model was conducted as previously
described (Xu et al., 2019a). MPTP (30 mg/kg, M0896; Sigma-
Aldrich) was injected intraperitoneally once a day for 5 days to
produce an experimental PD model.

The method of UC-MSC administration is modified
according to previously published (Long et al., 2017;
Narbute et al., 2019; Simon et al., 2019). Intranasal
application of UC-MSCs or PBS into MPTP-or vehicle-
treated mice was performed 5 days after MPTP injection.
Two hours after MPTP injection, each nostril was treated
with 5.0 μl of hyaluronidase (100 U; H3506; Sigma-Aldrich)
in sterile PBS solution to enhance the permeability of the
nasal mucous membrane. Thirty minutes later, 5.0 μl cell
suspension was instilled in the nasal cavity with a pipette in a
5-min interval. The daily dose contained 1 × 106 cells/40 μl
(Figure 1B).

Behavioral Test
The motor function was evaluated by two modified pole tests and
a traction test (Sun et al., 2018). Behavior training was conducted
once a day for three consecutive days, and a behavior test was
conducted on the day after the last treatment. The two
neurobehavioral tests were performed by investigators blinded
to other treatment and group assignment information.

Immunohistochemistry and
Immunofluorescence Staining
Mice were anesthetized with isoflurane, and their brains were
gently and quickly removed and post-fixed for 24 h in 4%
paraformaldehyde. After being embedded in paraffin, the
brains were cut into 3-μm coronal sections by using a
microtome (Leica). Sections containing the substantia
nigra (SN) were subjected to immunostaining. Briefly, the
sections were dewaxed by xylene (I, II, Ⅲ) for 15 min and
rehydrated in alcohol (100, 100, 85, and 75%) for 5 min. The
tissue sections are placed in citric acid antigen retrieval buffer
(pH 6.0) for antigen retrieval. Endogenous peroxidase
activity was inhibited by incubation with 3% hydrogen
peroxide for 25 min. Then sections were blocked with 3%
BSA for 30 min at room temperature and overnight at 4°C
with rabbit anti-tyrosine hydroxylase (TH, dilution 1:1000
for immunohistochemistry and 1:2000 for
immunofluorescence staining, GB11181, Servicebio).
Subsequently, the sections were incubated with
horseradish–peroxidase-labeled goat anti-rabbit IgG
antibody (dilution 1:200, GB23303; Servicebio) for 50 min

FIGURE 1 | (A) Schematic diagram of the experimental design. (B) Diagram of the experimental process before sample collection, among which intranasal delivery
schema can be found in Rhea EM et al. (2020). DOI:10.3390/pharmaceutics12111120.
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at room temperature. The sections then were transferred to
fresh 3, 3′-diaminobenzidine for coloration and rinsed with
tap water to stop staining. Results were expressed as TH-
positive neuron numbers in SN. For immunofluorescence
staining, antigen retrieval was performed after the sections
were treated with FITC reagent, rabbit-anti-Iba-1 (dilution 1:
200, 01919741; Wako), and its corresponding secondary
antibody CY3-conjugated goat anti-rabbit IgG (1:300,
GB21303; Servicebio) were incubated. For co-expression of
TH and GFAP, the mice brain sections were co-incubated
with rabbit anti-TH (dilution 1:200, GB11181; Servicebio)
and mouse anti-glial fibrillary acid protein (dilution 1:800,
GB12096; Servicebio) overnight at 4°C. After being washed in
PBS, secondary antibody (488)–conjugated goat anti-rabbit
IgG (1:400, GB25303; Servicebio) and CY3-conjugated goat
anti-mouse IgG (1:300, GB21301; Servicebio) were incubated.
Immunofluorescence images were observed under a
fluorescent microscope, and areas of interest were captured
and analyzed by ImageJ software.

Neurotransmitter Measurement by
HPLC-MS
The distal colon tissues were collected following previous methods
(Li et al., 2019). Striatal DA and colonic DA, 5-HT, 5-
hydroxyindoleacetic (5-HIAA) were determined by high-
performance liquid chromatography–mass spectrometry (HPLC-
MS). The chromatogram collection and integration of each analyte
were processed by software Xcalibur 4.0 (Thermo Fisher), and
linear regression was performed with weighting coefficients.

16S rRNA Sequencing
The fresh feces from mice were collected in sterile tubes and
immediately flash-frozen in liquid nitrogen and stored at −80°C
until analysis, as previously described (Jiang et al., 2019). The feces
samples were transported to OE Biotech Co., Ltd (Shanghai,
China) and analyzed on the Illumina MiSeq PE300. After the
sequencing data are preprocessed to generate high-quality
sequences, Vsearch software is used to classify the sequences
into multiple OTUs based on the similarity of the sequences.
Then, QIIME software was used to select the representative
sequence of each OTU and compare all representative
sequences with the Greengenes or Silva database (v. 123)
database. Species comparison annotation uses an RDP classifier,
and the confidence threshold was 70%.

Measurement of Cytokines in Serum and
Colon
Blood was collected via the orbital venous plexus with
anticoagulant-free tubes. Blood was centrifuged at 4500 g for
10 min at 15°C, and serum was isolated and stored at −80°C until
it was used. The contents of tumor necrosis factor-alpha (TNF-α)
and interleukin 6 (IL-6) in serum and the colon were measured
using ELISA kits (Proteintech, Wuhan, China) according to
the protocol of the manufacturer. The contents of

lipopolysaccharides (LPSs) in serum were measured with
commercial kits (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China) according to the manufacturer’s instructions.

Periodic Acid–Schiff (PAS) Staining
The colon was fixed in 4% paraformaldehyde, embedded, and cut
to 3-μm-thick sections. The sections of the colon were stained
with periodic acid–Schiff (PAS) according to a standard
procedure. The colonic goblet cells/crypts were analyzed using
ImageJ software.

Western Blot
Colon samples were collected and stored at −80°C. RIPA and
PMSF buffer (Solarbio, Beijing, China) was added to extract the
protein in the tissue. Protein concentrations were determined
using a BCA kit (Solarbio, Beijing, China). Primary antibodies
against NF-lB (Cell Signaling Technology, 8242S, 1:1000
dilution), GAPDH (Proteintech, 60004-1-lg, 1:20000 dilution)
were incubated at 4°C overnight. The membranes were incubated
with horseradish peroxidase (HRP)–conjugated secondary
antibodies (Abcam, ab205718, 1:2000 dilution; Proteintech,
SA00001-1, 1:2000 dilution) for 1.5 h. The protein bands were
visualized by a chemiluminescent substrate (EpiZyme, shanghai,
China) and quantitated using ImageJ software.

Statistical Analyses
Statistical analysis was performed using SPSS 26 software (IBM,
United States), and the data were presented as mean ± standard
error. Statistical significance between four groups was determined
by one-way analysis of variance (ANOVA) with the LSD assay.
Bacteria relative abundance differences were performed by
Tukey’s honest significant difference (HSD) tests. A p < 0.05
was considered statistically significant.

RESULTS

Identification of Human Umbilical Cord
Mesenchymal Stem Cells (UC-MSCs)
We were able to successfully isolate and culture UC-MSCs from the
fresh umbilical cord (Zheng et al., 2020; Yang et al., 2021). The UC-
MSCs displayed as spindle-shaped cells crawled out of the tissue pieces
when the tissue blocks adhered to the bottomof the cultureflaskwithin
the medium for 7–10 days (Figure 2A). After culture for 10–14 days,
the UC-MSCs were harvested for subculturing. As shown in the third
passage, the cell cluster resembled a shoal and small balls in themiddle
of the cells can be seen in the division phase (Figure 2B). The growth
curve indicated that the UC-MSCs grew in an S-shaped curve
(Figure 2C), and they continued to proliferate without being
influenced by change medium, indicating that UC-MSCs had
strong proliferation and self-renewal capabilities. UC-MSCs were
identified by harvesting cells at the third passage and analyzed by
flow cytometry. These MSCs were positive for CD73, CD105, and
CD90 but negative for CD34, CD45, and HLA-DR (Figure 2D).
Through induced differentiation of UC-MSCs, massive oil red
O-positive lipid droplets and Alizarin Red-stained calcium nodules
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were formed. Alcian Blue staining shows acid mucopolysaccharides in
cartilage tissue (Figure 2E).

UC-MSCs ImproveMotor Function, Restore
Dopaminergic Neurons, and Mitigate
Microglia-Mediated Neuroinflammation in
PD Mice
To assess the effects of UC-MSCs on motor function in
MPTP-induced PD mice, we used the pole test to

determine bradykinesia by measuring the total descent
time (Figure 3A) and the traction test to evaluate the
muscle strength and equilibrium by measuring the
traction scores (Figure 3B). Compared with saline-treated
mice, MPTP-treated mice exhibited prolonged pole descent
time (9.19 ± 0.32) and lower scores (2.08 ± 0.08) in the
traction test. MPTP-treated mice that received UC-MSC
treatment had shortened pole descent time (6.11 ± 0.16)
in the pole test and increased traction test scores (3.08 ±
0.23). Intriguingly, there was no obvious difference in

FIGURE 2 | Isolation and production of UC-MSCs. (A) Primary cultured UC-MSCs; (B) morphological feature and (C) growth curve of UC-MSCs at the third
passage; (D) surface antigen labels of UC-MSCs; (E) induced differentiation of UC-MSCs was stained by oil red O, Alizarin Red, and Alcian Blue.
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FIGURE 3 | UC-MSCs improved motor function, protected dopaminergic neurons in the substantia nigra and striatum, and alleviated microglia-mediated
neuroinflammation in MPTP-induced PDmice. (A) Pole test; (B) traction test; (C) Immunohistostaining for tyrosine hydroxylase (TH) in the SN; (D) quantitative analysis of
the number of TH-positive cells in the SN; (E) content of dopamine was measured by HPLC-MS in the ST. Data of (A,B) (n � 12 per group) are expressed as mean ± SE.
Data of (C,D) (n � 3–4 per group) are expressed as mean ± SE. Scale bar: 100 μm (SN). (F) Double immunofluorescence staining for TH (green), GFAP (red), and
Iba-1 (red) in the SN; (G)Quantitative analysis of the number of GFAP positive cells in each group; (H)Quantitative analysis of the number of microglia in each group; Data
of (F–H) (n � 4 per group) are expressed as mean ± SE. Scale bar: 100 μm (SN). *p < 0.05, **p < 0.01, ***p < 0.001 compared with NS-PBS group, ##p < 0.01, ###p <
0.001 compared with MPTP-PBS group by one-way ANOVA.
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motor performance between UC-MSC-treated and PBS-
treated mice. Therefore, UC-MSC treatment appears to
selectively prevent motor dysfunction in PD mice.

To determine the effects of UC-MSCs on the survival of
dopaminergic neurons in the SN and DA levels in the ST, we

characterized TH expression by immunohistochemistry staining in
the SN and HPLC-MS detection in the ST. Immunohistochemistry
staining in the tyrosine hydroxylase revealed a significant loss of TH-
positive cells in MPTP-PBS mice compared with NS-PBS mice
(70.58 ± 2.56 vs 134.46 ± 4.28, p < 0.001). MPTP-treated mice

FIGURE4 |UC-MSCsmodulated the composition of gut microbiota inMPTP-induced PDmice. (A)Rarefaction curves of samples; (B) alpha diversity presented by
Chao-1 index; (C) PCoA analysis of samples; (D) histogram based on relative abundance at phylum level; (E) average relative abundance of the microbial community for
each group at the genus level. (F,G) Comparison of gut microbiota using LES among the NS-PBS, NS-MSC, MPTP-PBS, and MPTP-MSC groups at the OUT level.
Cladogram (F) and histogram (G) of bacterial taxa that significantly differed among the three groups (LDA >4.0 and p < 0.05). Blue, green, red, or shading in the
cladogram depicts bacterial taxa that were significantly higher in the NS-PBS, MPTP-PBS, or MPTP-MSC groups, n � 12 per group. *p < 0.05, **p < 0.01 compared with
the MPTP-PBS group.
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received UC-MSCs displayed more TH-positive cells than MPTP-
mice received PBS in the SN (70.58 ± 2.56 vs 93.08 ± 2.41, p < 0.001).
TH-positive cells in the SN did not differ between PBS-treated mice
and UC-MSC-treated mice (134.46 ± 4.28 vs 141.71 ± 4.02, p < 0.001,
Figures 3C,D). HPLC-MS detection showed that the DA levels in the
STdramatically decreased inMPTP-PBSmice comparedwithNS-PBS
mice (1.05 ± 0.02 vs 2.04 ± 0.12, p < 0.001). MPTP-treated mice
received UC-MSC treatment displayed higher DA levels than MPTP-
treatedmice thhat received PBS (1.56±0.14 vs 1.05±0.02, Figure 3E).
These data confirmed the loss of dopaminergic neurons in the SN and
decreased DA levels in the ST induced by MPTP and rescued by UC-
MSCs.

To explore the effects of UC-MSCs on microglial phenotype, we
analyzed microglia marker Iba-1 and GFAP by immunofluorescence.
Double immunofluorescence staining for TH (dopaminergic neuron
marker) and GFAP (astrocyte marker) revealed the presence of a
higher number of astrocytes inMPTP-PBSmice thanNS-PBSmice in
the SN (66.67 ± 1.33 vs 8.33 ± 0.80, p < 0.001). UC-MSCs significantly
decreased the number of astrocytes around dopaminergic neurons
compared with MPTP-PBS mice (50.44 ± 0.84 vs 66.67 ± 1.33, p <
0.001, Figures 3F,G). Similarly, co-expression of TH with Iba-1
(microglia marker) showed that the microglia number in the SN
increased in MPTP-PBS mice compared with NS-PBS mice (61.56 ±
2.08 vs 17.11 ± 1.05, p < 0.001), and in MPTP-MSC mice, the
microglia number decreased by compared with MPTP-PBS mice
(45.67 ± 1.47 vs 61.56 ± 2.08, p < 0.001, Figures 3F,H).

UC-MSCs Modulate Gut Microbiota in PD
Mice
To identify the intestinal microbe phenotypes in responding to UC-
MSC treatment, we analyzed the species complexity and difference of
bacterial community between groups based on the OTUs and species
annotation results. A flat curve was observed as the sequencing
quantity increased based on the rarefaction curve, indicating that the
sequencing was sufficient for data analysis (Figure 4A). The Chao-1
index, which illustrates the alpha diversity, was closer to the normal
level in theMPTP-MSC group compared with theMPTP-PBS group
(Figure 4B). The PCoA revealed distinct microbiota composition
clustering among NS-PBS, NS-MSC, MPTP-PBS, and MPTP-MSC
groups (p < 0.001), indicating that MPTP altered the gut microbiota,
and UC-MSC administration influences the microbiota composition
significantly (Figure 4C). As shown in the histogram at the phylum
level, proteobacteria in the MPTP-PBS group were more abundant
than the other three groups (Figure 4D). Differential abundance
analyses at the genus level revealed that the relative abundance of
Escherichia-Shigella was significantly increased in the MPTP-PBS
group, and the trend was significantly reversed by UC-MSCs
treatment (Figure 4E). Furthermore, LEfSe analyses were
performed to identify the bacterial taxa that significantly differed
after UC-MSC treatment. A significant shift in the microbiota based
on relative abundance is shown in the cladogram (Figure 4F). These
LEfSe comparisons identified 20 taxa (three phyla, four class, four
order, five families, four genera) that were differentially abundant
among the three groups (Figure 4F). Significant enrichments in class
Gammaproteobacteria, order Enterobacteriales, families
Ruminococcaceae and Enterobacteriaceae, and genera

Lachnoclostridium and Escherichia-Shigella were identified in
MPTP-PBS mice, while the phylum Bacteroidetes, class
Bacteroidia, order Bacteroidales, and families Muribaculaceae were
significantly more abundant in fecal samples from NS-PBS mice.
Phylum Firmicutes and Deferribacteres, class Clostridia and
Deferribacteres, order Clostridiales and Deferribacterales, families
Lachnospiraceae and Deferribacteraceae, and genera Mucispirillum
and Lachnospiraceae_UCG_001 were significantly enriched
following UC-MSC treatment (Figure 4G).

UC-MSC Treatment Affects the Abundance
of Certain Bacteria in MPTP-Induced PD
Mice
Further analysis was performed to compare the relative abundance of
certain bacteria in these four groups. At the phylum and class levels,
MPTP-PBS significantly increased the relative abundance of
Proteobacteria and Gammaproteobacteria compared with the NS-
PBS group, and UC-MSC treatment decreased the relative abundance
of Proteobacteria and Gammaproteobacteria in MPTP-PBS mice. At
the order and family levels, the relative abundance of
Enterobacteriales, Lactobacillales, Enterobacteriaceae, and
Lactobacillaceae was significantly increased in the MPTP-PBS
group compared with the NS-PBS group. UC-MSC treatment
decreased the relative abundance of Enterobacteriales and
Enterobacteriaceae while did not change significantly in the relative
abundance of Lactobacillales and Lactobacillaceae inMPTP-PBSmice.
At the genus level, the relative abundance of Escherichia-Shigella,
Alistipes, Lachnoclostridium, and Prevotella 9 significantly increased
in theMPTP-PBS group compared with theNS-PBS group. UC-MSC
treatment decreased the relative abundance of Escherichia-Shigella and
Prevotella 9, while did not alter the relative abundance of Alistipes and
Lachnoclostridium in MPTP-PBS mice (Table 1).

UC-MSCs Modulate the Function of Gut
Microbiota in MPTP-Induced PD Mice
We analyzed the correlation between the neurobehavioral
parameters and relative abundance of gut microbiota by
Spearman’s correlation. Gammaproteobacteria,
Enterobacteriaceae, Lactobacillaceae, Enterobacteriales,
Lactobacillales, Escherichia-Shigella, Alistipes, Lachnoclostridium,
and Prevotella 9 were negatively associated with the traction test
scores. Proteobacteria, Gammaproteobacteria, Enterobacteriaceae,
Lactobacillaceae, Enterobacterales, Lactobacillales, Escherichia-
Shigella, and Prevotella_9 were positively associated with descent
time (Figure 5A). PIRCUSt analysis indicated that the MPTP-PBS
group had lower heatmap scores in colorectal cancer, influenza A,
lysosome, small-cell lung cancer, toxoplasmosis, viral myocarditis,
and p53 signaling pathway and higher scores in arachidonic acid
metabolism, bacterial invasion of epithelial cells, basal transcription
factors, biosynthesis of siderophore group non-ribosomal peptides,
caprolactam degradation, carbohydrate digestion and absorption,
circadian rhythm plant, drug metabolism-cytochrome P450, ether
lipid metabolism, fluorobenzoate degradation, geraniol degradation,
metabolism of xenobiotics by cytochrome P450, non-homologous
end-joining, pathogenic Escherichia coli infection, Staphylococcus
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TABLE 1 | Top 10 bacteria at differential levels in the four groups.

Relative abundance (%) Group p-value

NP NM MP MM NP vs MP MP vs MM

p_proteobacteria 1.91 ± 0.20 2.08 ± 0.24 4.51 ± 1.20 2.40 ± 0.43 0.007 0.027
c_Gammaproteobacteria 0.69 ± 0.14 0.69 ± 0.22 3.29 ± 1.15 0.95 ± 0.39 0.005 0.011
o_Enterobacteriales 0.19 ± 0.05 0.27 ± 0.19 2.87 ± 1.14 0.64 ± 0.35 0.003 0.013
o_Lactobacillales 0.46 ± 0.49 0.38 ± 0.35 0.76 ± 0.57 0.71 ± 0.12 0.005 0.654
f_Enterobacteriaceae 0.19 ± 0.05 0.27 ± 0.19 2.87 ± 1.14 0.64 ± 0.35 0.003 0.013
f_Lactobacillaceae 0.37 ± 0.03 0.35 ± 0.03 0.66 ± 0.04 0.63 ± 0.10 0.001 0.689
g_Escherichia-Shigella 0.10 ± 0.03 0.12 ± 0.07 2.42 ± 1.07 0.39 ± 0.17 0.004 0.012
g_Alistipes 4.85 ± 0.68 7.05 ± 0.86 8.55 ± 0.81 6.48 ± 0.89 0.002 0.080
g_Lachnoclostridum 1.15 ± 0.12 3.36 ± 0.42 3.73 ± 0.61 2.83 ± 0.42 0.000 0.146
g_Prevotella_9 0.64 ± 0.03 0.41 ± 0.06 1.64 ± 0.11 1.06 ± 0.06 0.000 0.000

Significant changes of bacteria relative abundance in the four groups. “NP” represents the NS-PBS group, “NM” represents the NS-MSC group, “MP” represents the MPTP-PBS group,
and “MM” represents the MPTP-MSC group. Statistical comparison by one-way ANOVA with post hoc comparisons of LSD. Data represent the mean ± SE, n � 12.

FIGURE 5 | UC-MSCs regulated the effects of gut microbiota in MPTP-induced PD mice. (A) The motor function score and relative abundance of gut microbiota
were analyzed by Spearman correlation analyses. The association coefficient was performed on the legend of the heatmap. *, **, *** represent the correlation significant
(p < 0.05, p < 0.01, p < 0.001, respectively); (B) PICRUSt analyses between the four groups. n � 12.
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aureus infection, steroid biosynthesis, stilbenoid, diarylheptanoid,
and gingerol biosynthesis compared withmice in the NS-PBS group.
UC-MSC treatment altered the bacterial invasion of epithelial cells,
fluorobenzoate degradation, and pathogenic Escherichia coli
infection compared with the MPTP-PBS group (Figure 5B).

Effects of UC-MSCs on Pro-Inflammatory
Cytokines in Serum and Colon
The serum and colon levels of pro-inflammatory cytokines are
shown in Figure 6. Serum TNF-α, IL-6, and LPS levels were
similar between NS-PBS and NS-MSC groups, but PD model
mice had higher serum levels of all pro-inflammatory cytokines.
After treatment with UC-MSCs, the status of pro-inflammatory was
lower than that of the MPTP-PBS group and similar to that of the
NS-PBS group (Figures 6A–C). In addition, the effects of UC-MSCs
on MPTP-induced pro-inflammatory cytokines in the colon were
next explored. Compared with NS-PBS mice, the level of TNF-α and
IL-6 in the colon was upregulated in MPTP-induced mice, while the
mice treated with UC-MSCs showed lower levels of TNF-α and IL-6
(Figures 6D,E). Generally, UC-MSCs alleviated the levels of pro-
inflammatory cytokines in serum and the colon in PD mice.

Effects of UC-MSC Transplantation on the
Level of Neurotransmitter, the Number of
Goblet Cells, and the Expression of NF-lB in
Colon
We used HPLC-MS to detect the DA, 5-HT, and 5-HIAA in the
colon of each group of mice. The content of DA, 5-HT, and 5-
HIAA in the MPTP-PBS group was reduced compared to that in
the NS-PBS group, and the intervention of UC-MSCs increased the
content of 5-HT and 5-HIAA in the colon of PDmice. There is also
a growing trend toward the content of DA in the MPTP-MSC
group, although it has not reached statistical significance (Figures
7A–D). The goblet cells of the colon are closely related to the
function of the intestine. Next, the goblet cells of the colon in every
groupwere detected. As shown in Figures 7E,F, compared with the
NS-PBS group, the goblet cells in the MPTP-PBS group were
decreased, while UC-MSC treatment significantly attenuated these
reductions in MPTP-injury mice, as compared to the MPTP-PBS
group. There was no significant difference in the number of colonic
goblet cells between the NS-PBS group and the NS-MSC group.
Therefore, UC-MSC transplantation can repair the goblet cells in
the colon of PD mice. To explore the pathway between the

FIGURE 6 | UC-MSCs alleviated serum and colonic inflammatory cytokines in PD mice. Serum levels (pg/ml) of TNF-α (A), IL-6 (B), and LPS (C) in mice; colonic
levels (pg/mg) of TNF-α (D) and IL-6 (E) in mice. Data of (A–E) (n � 5–6 per group) are expressed as mean ± SE. *p < 0.05, **p < 0.01, ***p < 0.001 compared with NS-
PBS group, #p < 0.05, ###p < 0.001 compared with MPTP-PBS group by one-way ANOVA.
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FIGURE 7 | Effects of UC-MSC treatment on the neurotransmitters, goblet cells, and the expression of NF-lB in the colon of MPTP-treated PDmice. (A) Chemical
structures of the neurotransmitters; (B–D)DA, 5-HT, and 5-HIAAwere analyzed by HPLC; (E) PAS staining of the colon (scale bar, 50 μm); (F) goblet cells/crypt of colon;
(G,H)Western blot and quantitation of NF-lB protein expression in the colon. Data of (A–H) (n � 3 per group) are expressed as mean ± SE. *p < 0.05, **p < 0.01, ***p <
0.001 compared with the NS-PBS group, #p < 0.05, ##p < 0.01, ###p < 0.001 compared with the MPTP-PBS group by one-way ANOVA.
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intestinal flora of disbalance and inflammation in the colon, we
performed NF-lB by Western blotting. Our results indicated that
UC-MSC treatment partially inhibited the expression of NF-lB
following MPTP injury (Figures 7G,H).

DISCUSSION

To our knowledge, this is the first study to determine the effect of
UC-MSCs on microbial composition in MPTP-induced PD
mouse model. We found that administration of UC-MSCs
through intranasal instillation ameliorated motor dysfunction
in MPTP-induced PD mice. Furthermore, treatment with UC-
MSCs attenuated degeneration of dopamine neurons by
inhibiting glial cell activation and decreasing pro-inflammatory
cytokine release. In addition, we found that nasal instillation of
UC-MSCs changed gut microbiota components, maintained
moral mucous barrier, and restrained NF-lB expression.
These findings suggest that the brain–gut axis may mediate
the beneficial effect of UC-MSCs on motor dysfunction and
the protective effect on dopaminergic neurons in PD mice.

A previous study has shown that human umbilical cord blood
plasma is beneficial to MPTP-treated rats by reducing pro-
inflammatory cytokines in both the SNpc and intestinal mucosa
and dampening inflammation-associated gut microbiota (Lee et al.,
2019). In addition, altering the composition of the gut microbiota
ameliorates the neurotoxicity in PD animal models (Dong et al.,
2020; Koutzoumis et al., 2020). Our findings in this study provided
proof-of-concept evidence that MPTP-treated mice displayed
intestinal dysbiosis including impaired goblet cells and
subsequently triggered SN neuroinflammation. UC-MSCs
administration markedly inhibited the neuroinflammation in the
SN and normalized gut microbial dysbiosis, indicating that UC-
MSCs play an important role in regulating intestinal disorders in
the PD.

In animal studies, intravenous injection of 5 × 105 UC-MSCs
to a 6-OHDA–induced PD rat model for 3 days causes
significant improvement in motor deficits, and substantia
nigra TH+ cells significantly increased compared to the
vehicle group (p < 0.05) (Chi et al., 2019). Another study has
shown that in intranasal administration of BM-MSCs to
rotenone-induced PD model mice, dopaminergic cellular
density in striatum dramatically increased after 10-day
transplantation (Salama et al., 2017). However, the
therapeutic effect was observed approximately for 5–7 days in
the MPTP-induced PDmodel (Feng et al., 2018; Xu et al., 2019a;
Rinaldi et al., 2019). Therefore, the current study explored the
effect of intranasal transplantation of UC-MSCs for 5 days on
the motor function and dopamine neurons of MPTP-induced
PD model mice. We found that intranasal administration of
UC-MSCs improved behavioral performance and protected the
damaged dopaminergic neurons in the substantia nigra and
striatum of PD model mice.

Dysfunction of astrocytic and microglia is involved in the
pathogenesis and progression of PD because activated microglia
and astrocytes by pathologic α-synuclein (α-Syn) release pro-
inflammatory mediators such as TNF-α and IL-1β to promote

dopaminergic neuron degeneration (Kam et al., 2020). It has been
indicated that MSCs may directly impact glial cells through
paracrine (Gharbi et al., 2020), the release of neurotrophic
factors (Ko et al., 2018), and macrophage polarization (Lu
et al., 2020). Our data showed that intranasal administration
of UC-MSCs retained a normal number of astrocyte and
microglial cells in the substantia nigra and decreased the level
of TNF-α and IL-6 in MPTP-PD mice.

The most salient finding of our study is that UC-MSC
administration decreased the relative abundance of
Proteobacteria in MPTP-induced PD mice. Our results also
demonstrated that gut microbial dysbiosis in PD mice is
characterized as increases in class Gammaproteobacteria, order
Enterobacteriales and Lactobacillales, family Enterobacteriaceae
and Lactobacillaceae, and genus Escherichia_shigella. It is well
known that (Ling et al., 2020) the growth of
Gammaproteobacteria, Enterobacteriales, and
Enterobacteriaceae of Proteobacteria could trigger the secretion
of pro-inflammatory cytokines, which are induced by LPS (Dinh
et al., 2015; Shin et al., 2015), and subsequently contribute to the
disruption of the intestinal barrier (Litvak et al., 2017). Previous
studies have reported that compared with healthy subjects,
bacteria in feces from PD patients were higher in
Lactobacillaceae, Enterobacteriaceae, and Enterococcaceae,
while a reduction in Lachnospiraceae and an increase in
Enterobacteriaceae were correlated with motor impairment
and disease severity (Pietrucci et al., 2019). Another clinical
study has shown that (Xu et al., 2019b) the abundance of
Enterobacteriales and Enterobacteriaceae in patients during
the first week in the neurological intensive care unit increases
the risk of 180-day mortality, whereas a low level of
Lachnospiraceae and the enrichment of Lactobacillaceae were
associated with postural instability and gait disturbances
(Barichella et al., 2019). The facultative anaerobes belonging
to the phylum Proteobacteria, such as Escherichia, have been
reported to be related to colitis (Hu et al., 2020). In addition, we
found that UC-MSC treatment decreased the relative
abundance of Escherichia-Shigella. It has been shown that
Escherichia-Shigella can secrete amyloid protein to activate
microglia (Chen et al., 2020), induce oxidative stress, and
release inflammatory factors such as TNF-α, IL-1β, and IL-6
(Harach et al., 2017; Van Gerven et al., 2018). These
inflammatory factors may increase the permeability of the
intestinal epithelial and blood–brain barrier and subsequently
damage the cell in the brain (Lee and Tesh, 2019). Thus, UC-
MSC treatment improved gut microbial dysbiosis in the PD
mouse model.

The functional pathways involved in the effect of UC-MSCs on
the MPTP-induced PD model were assessed by PICRUSt Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis.
UC-MSC treatment rescued epithelial cells by preventing
bacterial invasion. Interestingly, the number of Escherichia coli
is increased in inflammatory bowel disease (IBD) patients’ fecal
samples as revealed by bacteriological analysis
(Mirsepasi-Lauridsen et al., 2019), and MSC therapy enhances
Escherichia coli clearance in a mice model of bacterial pneumonia
(Gupta et al., 2012). Furthermore, a recent study suggested that
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colonization of Curli-producing Escherichia coli accelerates a-Syn
pathology in the gut and brain. Escherichia coli needs Curli
expression to exacerbate a-Syn–induced intestinal and motor
disorders (Sampson et al., 2020). Our results showed that UC-
MSCs reduced the expression of pathogenic Escherichia coli
infection, indicating that UC-MSCs play a vital role in
intestinal flora modulation. It has been shown that the
fluorobenzoate degradation pathway is related to the severity
of intestinal inflammation (Montassier et al., 2015). Furthermore,
the disappearance of Proteobacteria and the subsequent
decreased level of fluorobenzoate degradation improve
intestinal C. difficile infection (Fujimoto et al., 2021).
Strikingly, we found that UC-MSC administration decreased
lower heatmap scores involved in fluorobenzoate degradation.
This is a promising index to evaluate UC-MSC efficacy.
Previous studies have verified the protective effect of
geraniol on PD animal models by alleviating a-Syn
aggregation, maintaining the mitochondrial function,
enhancing antioxidant, and restoring the generation of
BDNF and GDNF (Rekha et al., 2013a; Rekha et al., 2013b;
Rekha and Inmozhi Sivakamasundari, 2018). Geraniol also
targets systemic and local inflammation, dysbiosis, and
mucosal damage to alleviate the dextran sulfate sodium
(DSS)–induced colitis mouse model. These effects were
speculated to be related to Lactobacillaceae (De Fazio et al.,
2016). We observed that UC-MSC treatment slightly alleviated
geraniol degradation without reaching statistical significance.
Thus, future studies are warranted to assess the effect of UC-
MSCs on geraniol degradation.

Dopamine and serotonin are major neurotransmitters in
the gut in the regulation of nutrient absorption, blood flow,
gut microbiome, local immune system, and overall gut
motility (Mittal et al., 2017). A decrease in dopamine in
mucus in colitis patients is a marker for impaired
intestinal mucosal barrier (Magro et al., 2002; Dorofeyev
et al., 2013). Furthermore, the level of 5-HT is a key
player in regulating mood, sleep, and behavior disorders
and is linked to imbalanced 5-HT in the gut (Delgado
et al., 1990; Berger et al., 2009). We found that UC-MSC
treatment significantly elevated the reduced colonic
dopamine, 5-HT, and 5-HIAA levels in MPTP-treated
mice. Furthermore, the observed effects of UC-MSCs on
colonic neurotransmitters are consistent with the degree of
colonic injury. Consistent with a recent study showing that
MSCs increase goblets, where the mucus is mainly
synthesized, stored, and released in experimental colitis
(Alves et al., 2019), we found that UC-MSCs recovered the
reduced number of goblets in the MPTP-treated mice. It has
been shown that the intestinal microbiota can influence the
properties of the colonic mucus layer, and mice with a
penetrable mucus layer had higher levels of Proteobacteria
in the distal colon mucus (Jakobsson et al., 2015). Thus,
further investigation is needed to elucidate the precise
mechanism through which other bacteria interact with
mucus production.

It has been shown that the expression of α-Syn in the brain
positively correlated with the degree of α-Syn in the intestinal wall

since injection of Lewy bodies into the striatum induces enteric
synucleinopathy in baboon monkeys (Stolzenberg et al., 2017). In
addition, microbial dysbiosis can lead to increased gut mucosal
permeability and inflammation, which in turn trigger α-synuclein
aggregation [77]. Previous studies have shown that MSC
intervention reduces the expression of α-Syn aggregates
through the secretion of metal matrix protease (MMP2) (Oh
et al., 2017) and induction of autophagy (Park et al., 2014). UC-
MSCs may also reduce the increase in Lewy bodies in the brain
and subsequently reduce the abnormal accumulation of α-Syn in
the intestine, which further alleviates the inflammation of the gut.
Microbial dysbiosis can lead to increased gut mucosal
permeability and inflammation, which in turn trigger α-
synuclein aggregation (Dalile et al., 2019). Consistently, we
found that the level of TNF-α and IL-6 and the expression of
NF-lB were decreased in the colon, indicating that UC-MSCs
exert anti-inflammatory effects in the colon in MPTP-
treated mice.

In summary, we found that UC-MSCs modulated microbial
composition in an MPTP-induced PD mouse model. UC-
MSCs ameliorate motor dysfunction and repair
degeneration of dopamine neurons through inhibiting
activated glial cells, decreasing the release of pro-
inflammatory cytokines, maintaining the normal mucous
barrier, and restraining the expression of NF-lB. Our
findings suggest that the brain–gut axis may be a potential
mechanism underlying the beneficial effect of UC-MSCs on
PD mice.
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