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Fall detection is an emergent problem in pattern recognition. In this paper, a novel approach which enables to identify a type of a
fall and reconstruct its characteristics is presented. The features detected include the position previous to a fall, the direction and
velocity of a fall, and the postfall inactivity. Video sequences containing a possible fall are analysed image by image using the lateral
inhibition in accumulative computation method. With this aim, the region of interest of human figures is examined in each image,
and geometrical and kinematic characteristics for the sequence are calculated.The approach is valid in colour and in infrared video.

1. Introduction

Human posture recognition is one of the core problems in
pattern recognition for computer vision, as it has become
an essential basic component of a greater part of application
problems such as ambient intelligence, surveillance, action
recognition, human-computer interaction, elderly health
care, and others [1–3]. One of the particular tasks for human
posture recognition is fall detection. Correct and rapid recog-
nition of a fall carries an important meaning for applications
in assisted living, for example, of elderly people [4]. As many
falls occur during the night, when low illumination or its
absence is one of the factors that facilitate falls, infrared video
cameras are used.

There are variousmethods of fall detection, which include
usage of wearing devices, sensor-based approaches (smart
rooms, sensible floors), andmethods of visual data processing
[5]. The first group of methods suppose that a person
wears a miniaturized device, which enables recollection of
parameters and launches an alarm in case a fall is detected. A
wide type of accelerometers or movement/vibration sensors
belongs to this group [6]. Although the usage of wearable

devices has many positive characteristics, some authors point
out the shortcomings of this approach such as reluctance
and negligence to wear sensors, and the tendency of wearing
devices to produce false alarms [7]. The second group
includes various solutions to detect a fallen person, which
imply sensors placed in the usual place surrounding the
person. It includes solutions based on floor vibration and
acoustic sensing [8], through the installation of sensitive
floor tiles [9]. As these sensors are fixed or integrated into
a given environment, they cannot be moved easily when a
person changes position. In general, acoustic and vibration
sensors are expensive and fragile as well as may request
special conditions for correct functionality. The visual data
processing methods are free from the limitations of the pre-
viously described groups of methods. This group combines
various solutions, such as headmotion analysis, shapemotion
analysis, and inactivity detection [10].

In this paper we present an approach for human fall
recognition which is based on fuzzy patterns for various fall
types. We introduce a method for posture recognition and
fall detection given an output of infrared video sequence.
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The presented method is based on the lateral inhibition in
accumulative computation approach for colour and infrared
video segmentation and on fuzzy fall detection mechanism,
which creates a fuzzy model of fall patterns as function of
geometrical, temporal, and kinematic parameters of a video
sequence [11–13]. Indeed, lateral inhibition in accumulative
computation (LIAC) has proved to be an efficient method
formoving object segmentation in grey-level video sequences
[14–16] and has been implemented in real-time [17]. Due to
its versatility, the LIACmethod has been applied successfully
to dynamic visual attention [18] in surveillance applications
[19] in order to monitor human activities. Also some works
have provided enhancements through the inclusion of genetic
algorithms [20] and stereoscopy [21, 22].

The rest of the paper is structured as described next.
Section 2.1 introduces the LIACmethod in the motion detec-
tion task in colour and infrared video. Section 2.2 explains
the fuzzy fall detection module. Then, Section 3 introduces
a couple of examples which show the effectiveness of the
approach. Lastly, in Section 4 themost important conclusions
are offered.

2. Materials and Methods

2.1. Lateral Inhibition in Accumulative Computation. The
problem we are stating by means of lateral inhibition in
accumulative computation is the discrimination of moving
objects capable of holding our attention in a scene. Motion
allows gradually obtaining allmoving objects’ shapes through
a mechanism called accumulative computation. Then, the
algorithm fuses spots obtained bymeans of neurally-inspired
lateral inhibition (LI) and thresholding. The complete LIAC
architecture is shown in Figure 1, where the reader may have
a first contact with the modules of the method.

The adaptation of the LIAC algorithm to colour video
requires expanding from one unique grey-level component
to three colour components of the colour space used. For
infrared video, there is no need for adaptation. Next, each one
of themodules is described in detail. Also, the influence of the
most important parameters of the LIAC algorithm are briefly
explained. A more detailed explanation of the parameters is
available in a previous work [23].

2.1.1. Spatial Quantization. The module covers the need to
segment the input image into a preestablished group of bands
(𝑁) (vector quantization [24]). A high value of 𝑁 usually
enables us to better discriminate the whole shapes of the
moving nonrigid objects. Nevertheless, a too high value of
this parameter may include some image background into the
shapes. This may even lead to fuse more than one different
shape into one single silhouette.

2.1.2. Temporal Motion Detection. Now, a charge or discharge
due to motion detection is performed. This module has been
designed to obtain the accumulated charge on a quantization
basis in 3 layers (colour components) or 1 layer (infrared
component), and each one of them will memorize the value
of the accumulative computation present at time scale 𝑡 for
each pixel.
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Figure 1: LIAC architecture for colour video sequences (for RGB in
this case).

At each pixel (𝑥, 𝑦) we are in front of three possibilities:

(1) the charge value at pixel (𝑥, 𝑦) is discharged down to
the minimum allowed charge value when no motion
information may be detected at a given band. No
motion information is available as pixel (𝑥, 𝑦) does
not correspond to that band;

(2) the charge value at pixel (𝑥, 𝑦) is saturated to the
maximum charge value when motion is detected at 𝑡.
Motion is detected as image pixel now belongs to this
band at time instant 𝑡, and it did not correspond to the
band at the previous instant 𝑡 − Δ𝑡, or vice versa;

(3) the charge value at pixel (𝑥, 𝑦) is decremented by a
given value when motion goes on being detected in
consecutive intervals 𝑡 and 𝑡 − Δ𝑡. Of course, the
permanence value cannot get off a minimum value.
Notice that the discharge of a pixel by a quantity is
the way to stop maintaining attention to a pixel of
the image that did capture our interest in the past.
As it will be seen later on, if a pixel is not directly
or indirectly bound by means of lateral inhibition
mechanisms to a maximally charged pixel, it goes
down to the total discharge with time. The influence
of the discharge value is as follows. Different values
of the discharge value due to motion detection offer
different trails of the movement in the consecutive
output images. When lowering the discharge value,
more information of the history of the movement is
obtained through the offered trail.
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2.1.3. Spatio-Temporal Recharging. Lateral inhibition is
thought here to reactivate the accumulated charge with an
extra recharge of those pixels which are partially loaded and
directly or indirectly connected to maximally charged pixels.
Spatio-temporal recharging occurs in steps after t and before
the next frame.

In order to explain the notion of this step, we will say
that the activation toward the lateral modular structures (up,
down, right, and left) is based on the following basic ideas:

(1) all modular structures with maximum accumulated
charge value output the charge toward the neigh-
bours;

(2) all modular structures with a nonsaturated charge
value allow passing this information through them if
activated by some neighbour (they behave as trans-
parent structures to the charge passing);

(3) the modular structures with minimum permanence
value stop the passing of the charge information
toward the neighbours (they behave as opaque struc-
tures). Therefore, we are in front of an explosion of
lateral activation which begins at the structures with
accumulated charge and spreads lineally toward all
directions, until a structure appears in the pathway
with a complete discharge. One important issue is that
the recharge at each pixel takes place at most once.

Notice that the recharge has a secondary effect, recovering
part of the history ofmotion.The accumulated charge of each
pixel will be offered to the following module as output.

2.1.4. Spatio-Temporal Homogenization. In this module the
charge is distributed among all the connected neighbours
holding a minimum charge, once again by means of lat-
eral inhibition mechanisms. The explanation of this data
clustering-based method is as follows. Starting from the
values of the accumulated charge values in each pixel on a
band basis, we will see how it is possible to obtain all the parts
of a moving object. A part of an object is just the union of
pixels that are together and in a same band.

The charge is homogenized among all the pixels that
pertain to the same band and that are directly or indirectly
united to each other. This way, a double objective will be
obtained: (1) diluting the charge due to the false image
backgroundmotion along the other pixels of the background;
so, there should be no presence of themotion characteristic of
the background, but we will rather keepmotion of the objects
present in the scene and (2) obtaining a parameter common
to all the pixels of the part of the object in a surrounding
window with a same band.

2.1.5. Spatial Fusion. During this step, we take the maximum
value of all outputs of all bands to show the detected blobs
associated with a moving object as obtained for each colour
component.

2.1.6. Spatial Band Fusion. In the RGB colour space the final
output segmentation result is obtained as a logical AND of
the three partial outputs.

2.1.7. Spatial Postprocessing. This module performs a binari-
sation with a given threshold. Values over threshold are set
to max (255) and below threshold are set to min (0). Once
the image is binarised, some morphologic operations leading
to eliminate image noise are performed. Firstly, erosion is
performed in order to eliminate isolated and small spots.
And, secondly, a dilation operation is computed to enhance
the remaining spots. Finally, spots are filtered based on their
features, such as height, width, and compactness. For this
purpose, minimum and maximum values are established.

2.2. Fall Pattern Recognition. The proposed fuzzy model
detects a fall and a fall pattern from the following list: falls
from a “standing” position, falls from a “sitting” position,
and falls from a “lying” position; and indicates the direction
(lateral right, lateral left, backward, and forward) and velocity
of a fall. The system does not require any offline training, it
calibrates a person and then launches the fall detectionmode,
analysing video frames every 1 to 3 seconds (“fall time”) [25].
Once a fall is detected and recognized, the system changes
to inactivity monitoring mode, and, if a person does not
stand up during the following 30 seconds, an alarm signal
is generated. Below are the following fall patterns that are
recognized so far.

(1) Static and dynamic falls.
(2) Falls from the most usual human positions, namely,

“standing,” “sitting,” and “lying.”
(3) Forward, backward, and lateral falls (to the left and to

the right).
(4) False fallswhich correspond to other humanpositions

such as “kneeling,” “crouching,” and “squatting.”

2.2.1. Determination of Fall Indicators. A fall is determined
as dropping or coming down freely under the influence of
gravity and can be described by several parameters, which
describe spatial and temporal positions of the person in
a sequence of video images. For the 𝑛 consecutive ROIs
corresponding to a same human, we consider the following
spatial parameters.

(i) “Width to Height ratio” parameter is calculated for
each ROI. In the case of a standing person it is usually
less than a “0”. As a person started to loose erect
position, falling down, or bending, this parameter
increases. Our experiments have shown that its value
for a lying person belongs to interval ∈ [1.5 ⋅ ⋅ ⋅ 7.0].

(ii) “Height change” parameter is calculated for the first
and the last images in a sequence of images stored for
a given fall time. It is a relation of the height of the
ROI of the last image to the ROI of the first image.

(iii) “Fall direction” parameter is calculated for the first
and the last images in a sequence of images stored
for a given fall time. It returns a sign of the difference
between the upper left corner of the ROI from the first
image and the corresponding coordinate of the ROI
from the last image. In case of a negative value, the
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fall direction is “to the left,” and in case of a positive
value, it is “to the right;”

(iv) “Position change” parameter indicates, first, if the
upper left corner of the ROI of the last image of the
sequence is higher than the corresponding ROI of
the first image. “Position change” is equal to “1” in
case these statements are true and to “0” otherwise.
This parameter was specially introduced in order to
facilitate detection of the fall from a bed, or, in other
words, falls from a “lying” position.

We also consider the following kinetic parameters, which
are calculated between theROIs of the first and the last images
in a sequence of images stored for a fall time.

(i) “Horizontal velocity of a fall” describes a ratio
between the real horizontal velocity (equal to the
factual height change between the first and the last
images, ROIs) and the maximum possible horizontal
velocity (equal to the height of the ROI from the first
image).

(ii) “Vertical velocity of a fall” describes a ratio between
the real vertical velocity (equal to the factual width
change between the first and the last images ROIs)
and the maximum possible vertical velocity (equal to
the width of the ROI from the first image).

2.2.2. Fuzzy System Design. After the previous parameters
have been calculated, fuzzy logic [26] is used in the proposed
fall detection subsystem to determine the ranges for the fall
indicators and to classify one of the possible fall patterns.
Fuzzy logic eases the problem of fall detection, on the one
hand, and facilitates recognition of fall patterns, on the other
hand. Figure 2 gives a schematic view on our fuzzy inference
system, which executes as follows.

Initially, input crisp variables are transformed into fuzzy
sets within the “Fuzzification block.” Next, the “Fuzzy infer-
ence engine” simulates the reasoning process by making
fuzzy inference on the inputs and fuzzy “IF-THEN” rules,
which are storedwithin the “Knowledge base,”which includes
fuzzy rules and cases from “Fuzzy database.” Lastly, the fuzzy
set obtains the crisp values corresponding to the output
variables.

We used the fuzzy logic library Fuzzylite (see
http://code.google.com/p/fuzzy-lite/), which provides a set of
classes and methods for fuzzy interference system creation
and manipulation. The fuzzy system is coded in agreement
with the Fuzzy Control Language, which is a standard
for Fuzzy Control Programming published by the
International Electrotechnical Commission (IEC) (see
http://www.ansi.org/). Linguistic variables describe spatial
and kinetic properties of ROIs, which correspond to
humans. Our fuzzy model for fall detection includes six
input linguistic variables described previously, that is,
“HeightChange,” “HorizontalVelocity,” “VerticalVelocity,”
“WidthToHeightRatio,” “PositionChange,” and “FallDirec-
tion,” and two output linguistic variables called “Fall” and
“FallPattern.”

The fuzzy sets for the input linguistic variables
“HeightChange,” “HorizontalVelocity,” “VerticalVelocity,”
and “WidthToHeightRatio” include three fuzzy terms,
namely, LOW, MEDIUM, and HIGH.

Variable “HeightChange” is calculated as the relation of
the initial height to the final height of the ROI. As stated in
[27], the width of a human’s body is around 25% of his/her
height. Taking into account different human builds, we have
experimentally decided to set up a value of 30% of an ROI’s
height as the higher boundary for theHIGH termof linguistic
variable “HeightChange.” Variables “VerticalVelocity” and
“HorizontalVelocity” are calculated as the relation of the real
velocity to the maximum possible velocity. Thus, in case of a
very quick fall with velocity equal or close to the maximum,
horizontal, and vertical velocity, ≈1.25 is gotten. On the con-
trary, the change of velocity is minimal when velocity is ≈0.0.
The terms for these linguistic variables have the following
ranges: LOW ∈ [0 ⋅ ⋅ ⋅ 0.35], MEDIUM ∈ [0.25 ⋅ ⋅ ⋅ 0.65], and
HIGH ∈ [0.6 ⋅ ⋅ ⋅ 1.25]. The “WidthToHeightRatio” variable
ranges from 0.0 to 6.0. Since an ROI corresponding to a
person in a strengthened position is longer in height than in
width, the term LOW ∈ [0 ⋅ ⋅ ⋅ 0.8] and the term MEDIUM
∈ [0.7 ⋅ ⋅ ⋅ 2.5] stand for an situation where an ROI belongs to
a fallen person, or, alternatively, to a sitting or prone person.
Finally, the term HIGH ∈ [2.1 ⋅ ⋅ ⋅ 6.0] describes an ROI of
a lying person. The “PositionChange” and “FallDirection”
variables are represented with crisp sets “0” and “1” for each
variable.

The output linguistic variable “Fall” is represented with
fuzzy terms “NO” ∈ [0 ⋅ ⋅ ⋅ 45.0] and “YES” ∈ [35.0 ⋅ ⋅ ⋅ 100].
The “FallPattern” linguistic variable includes the set of seven
crisp values which correspond to the following fall patterns.

(1) Falling backward or forward from a “standing” posi-
tion.

(2) Falling to the right from a “standing” position.
(3) Falling to the left from a “standing” position.
(4) Falling backward or forward from a “sitting” position.
(5) Falling to the right from a “sitting” position.
(6) Falling to the left from a “sitting” position.
(7) Falling backward or forward from a “lying” position.

The fuzzy system reasons about the state of person and
the first output variable, “Fall,” contain the resulting response
of the system with two membership values corresponding to
the confidence of a fall or bring upright. The second output
variable, “FallPattern,” generates a crisp value ranged from 1
to 7, which indicates a pattern.

3. Results and Discussion

The following experiments were set up to validate the pro-
posed approach. The experiments were carried out on an
Intel Core i7 computer with 3GB of RAM under Windows
XP operating system. The infrared video sequences were
recordedwith a FLIRA320 camera at a resolution of 720×480
pixels, whereas, colour sequences were captured by a Sony

http://code.google.com/p/fuzzy-lite/
http://www.ansi.org/
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Figure 2: Fuzzy inference system for fall patterns recognition.

Table 1: Results of fall detection and fall pattern recognition from a “standing” position in infrared and colour.

Width to
height ratio

Height
change

Horizontal
velocity

Vertical
velocity

Fall
direction

Position
change Fall Fall

pattern
Static fall
Standing position
Falling backward, Figure 3(a)

1.14
1.44
1.75

1.31
1.25
1.40

0.055
0.071
0.087

0.583
0.571
0.610

0
0
0

0
1
0

67.5
67.5
67.5

1

Static fall
Standing position
Falling forward, Figure 3(b)

1.19
1.32
1.43
1.53
1.68

1.02
1.21
1.12
1.12
1.07

0.215
0.000
0.000
0.037
0.560

0.914
0.177
0.322
0.560
0.560

0
1
0
0
0

0
0
1
1
0

65.4
38.6
39.5
35.8
67.5

1

Static fall
Standing position
Falling to the left, Figure 3(c)

1.50
2.54
2.95
3.27
2.93
3.31
3.38
4.53

1.73
1.16
1.18
1.08
1.34
1.46
1.62
1.00

0.024
0.544
0.550
0.847
0.544
0.544
0.544
0.000

0.332
0.072
0.084
0.096
0.151
0.163
0.181
0.000

0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0

67.5
66.4
67.5
53.6
67.5
67.5
67.5
67.5

3

Dynamic fall
Standing position
Falling forward, Figure 3(d)

1.12
1.21
1.97
2.4

1.63
1.95
1.23
1.67

0.130
0.134
0.000
0.000

0.130
0.134
0.000
0.215

0
0
0
0

0
0
1
0

51.3
67.5
67.5
67.5

1

Dynamic fall
Standing position
Falling to the left, Figure 3(e)

1.33
2.06
2.73
2.71
2.72
2.72

1.42
1.97
1.83
1.83
1.81
1.81

0.281
0.391
0.407
0.317
0.328
0.340

0.187
0.391
0.407
0.317
0.328
0.340

0
0
0
0
0
0

0
0
0
0
0
0

43.5
67.5
67.5
67.5
67.5
67.5

3

Static fall
Standing position
Falling backward, Figure 4(b)

1.16
1.55
1.78

1.21
1.21
1.44

0.049
0.081
0.078

0.565
0.600
0.625

0
0
0

0
1
0

63.5
67.5
67.5

1

Static fall
Standing position
Falling backward, Figure 4(c)

1.30
1.85
1.88

1.40
1.90
1.49

0.222
0.335
0.152

0.177
0.401
0.656

0
0
0

0
0
0

48.5
62.7
67.5

3

Dynamic fall
Standing position
Falling to the right, Figure 4(d)

1.11
1.33
2.03
2.15

1.60
1.95
1.30
1.58

0.131
0.134
0
0

0.125
0.134
0

0.185

0
0
0
0

0
0
1
0

50.7
67.5
67.5
67.5

2

Dynamic fall
Standing position
Falling forward, Figure 4(e)

1.18
1.45
1.88

1.58
1.79
1.60

0.125
0.140
0.125

0.127
0.134
0.098

0
0
0

0
0
1

53.5
67.5
67.5

1
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 3: True and false falls recorded with an infrared camera. Static falls from a “standing” position: (a) falling backward, (b) falling forward
and (c) falling to the left. Dynamic falls from a “standing” position: (d) falling forward and (e) falling to the left. Falls from a “sitting” position:
(f) falling backward and (g) falling to the right. (h) Falling from the “lying” position. (i) False fall: “kneeling.”
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Table 2: Results of fall detection and fall pattern recognition from a “sitting” position in infrared and colour.

Width to
height ratio

Height
change

Horizontal
velocity

Vertical
velocity

Fall
direction

Position
change Fall Fall

pattern

Fall
Sitting position
Falling backward, Figure 3(f)

2.99
3.00
2.84
2.63
3.89
4.89

1.04
1.05
1.00
0.95
0.97
1.15

0.000
0.000
0.000
0.015
0.016
0.022

0.000
0.000
0.012
0.015
0.016
0.029

0
0
0
0
0
0

0
0
0
0
0
0

58.0
58.5
56.4
54.5
55.8
64.2

4

Fall
Sitting position
Falling to the right, Figure 3(g)

1.04
1.36
1.43
1.71
2.10
2.26
2.31

1.01
1.08
0.90
1.14
1.79
1.83
1.78

0.086
0.077
0.000
0.025
0.226
0.177
0.135

0.021
0.077
0.045
0.051
0.226
0.249
0.226

1
1
1
1
1
1
1

0
0
0
0
0
0
0

42.1
60.0
53.6
63.1
67.5
67.5
67.5

5

Fall
Sitting position
Falling backward, Figure 4(a)

1.85
2.00
2.15
2.16

1.11
1.05
1.25
1.43

0.027
0.021
0.058
0.154

0.011
0.010
0.047
0.221

0
0
0
0

0
0
0
0

58.05
57.57
55.41
55.33

4

FCB-EX780BP colour camera. Nine series of a single person
for the infrared camera and five series of a single person
for the colour camera were used to test if the algorithms
presented achieve the desired results.

The results of possible fall types are introduced in the
following subsections and their corresponding tables. The
results include fall situations detected both from infrared
and colour camera. These are exactly the falls which were
simulated: static and dynamic falls from “standing” and
“sitting” positions, fall from “lying” position, and a false fall.
The capture of the videos was done with an interval of 200
milliseconds; the fall time was set to 1.2 seconds. Thus, every
six consecutive frames were tested for fall detection.

The columns of result tables contain values of the input
and the output variables of the fuzzy system for each time
period of a possible fall.The column “Fall” shows the response
of the model in the form of the fuzzy value, and the
“FallPattern” column contains the number of a recognized
pattern. Figures 3 and 4 show images with moments of falls
(in infrared and colour video, resp.) which were used in the
experiment. There are red and blue bounding boxes on the
images. The red bounding box sets borders of the blob at the
beginning of the fall time and the blue bounding box retains
the borders corresponded to the first blob.Thus, we calculate
fall indicators using the red and the blue boxes.

3.1. Detection of Static and Dynamic Falls from a “Standing”
Position. Static falls include falling from the standing posi-
tion and dynamic falls occur when a person moves before
fall. Falls from the standing position are characterized with
high horizontal velocity and height change. Width to height
ratio changes significantly, too. We used a dynamic fall from
a walking position to test the algorithms. This type of fall
has the same characteristics as a static fall from the standing
position, though velocity values are higher than in the case of
static falls.

Figures 3(a), 3(b), and 3(c) show fall moments for three
static falls: for a person falling backward, falling forward,
and falling to the left. The fall was detected with a highest
value 67.5, which corresponds to the “YES” fuzzy term of the
“Fall” linguistic variable. “FallPattern” is recognized correctly
as “1,” which corresponds to “Falling backward or forward
from the “standing” position.” The second fall is recognized
as “1”—“Falling backward or forward from the “standing”
position,” although the fuzzy response for the variable “Fall”
changed from 65.44 to 35.81 and finally, has stabilized in
“YES” fuzzy term (67.5). The fall to the left was also detected
and recognized correctly (as marked “3” for the “FallPattern”
variable). Figure 3(d) shows frames with a moment of fall for
a walking person who is falling forward.The fall was detected
correctly with the “Medium” values for “velocity” and “width
to height ratio” parameters as given in Table 1. Dynamic fall to
the left is correctly classified as “3”—“Falling to the left from
the “standing” position” (see Figure 3(e)).

The falls shown in Figures 4(b) and 4(c) were correctly
recognized as “1”—“Falling backward or forward from the
“standing” position,” having given a fuzzy response “YES”
(67.5), and as “3”—“Falling to the left from a “standing”
position.” Dynamic falls given in Figures 4(d) and 4(e) were
also correctly detected and related to the patterns “1” and “2.”

3.2. Fall Detection from a “Sitting” Position. Falls from a
sitting position are given in Figures 3(f) and 3(g) in infrared.
The first fall is characterized with rapid increase of horizontal
and vertical velocities. The fall to the right was classified
correctly as having value “1” for “Fall direction” variable (see
Table 2). Fall characteristics for the case of a pruning position
are similar to ones of the sitting position, as acceleration of
velocity is more important here than height change. A fall
from a pruning position is given in Figure 4(e) and the results
are offered in Table 2.

3.3. Fall Detection from a “Lying” Position. This fall (see
Figure 3(h)) was recognized as “7”—“Falling to the left from
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Table 3: Result of fall detection and fall pattern recognition from a “lying” position and results of a false fall detection in infrared.

Width to
height ratio

Height
change

Horizontal
velocity

Vertical
velocity

Fall
direction

Position
change Fall Fall

pattern

Fall
Lying position
Falling backward, Figure 3(h)

3.03
3.02
3.56
4.14
4.15
4.22

1.21
1.12
1.12
1.27
0.98
1.05

0.000
0.000
0.816
1.014
0.000
0.000

0.182
0.317
0.633
0.713
0.013
0.032

1
0
0
0
1
1

1
1
1
1
1
1

38.6
39.5
67.5
67.5
53.0
58.0

7

False fall
Kneeling,
Figure 3(i)

2.10
1.93
1.95
1.97
2.04
2.27
1.92

2.16
2.02
1.00
1.01
1.04
0.78
0.68

1.141
1.117
0.602
0.731
0.731
0.423
0.507

0.439
0.465
0.200
0.285
0.303
0.141
0.282

0
0
0
0
0
1
1

0
0
0
0
0
0
0

32.5
35.9
33.7
22.4
0.0
0.0
0.0

(a)

(b)

(c)

(d)

(e)

Figure 4: True and false falls recorded with a colour camera. Static fall from a “pruning” position: (a) falling backward. Static falls from a
“standing” position: (b) falling forward and (c) falling to the left. Dynamic falls from a “standing” position: (d) falling to the right and (e)
falling to the left.

the “lying” position,” because it has value “1” for “Position
change” variable as well as “HIGH” values for the “WidthTo-
HeightRatio” input variable (see Table 3).

3.4. Detection of False Falls. False falls are represented with
kneeling. In fact, a false fall may be detected as a fall which

lasts more than a fall time as well as having small values for
fall detection parameters given in Table 3. As a rule, in case
of a false fall, linguistic variable “width to height ratio” may
have “LOW” or “MEDIUM” values, and linguistic variable
“velocity change” is rather “LOW.” This fall was not detected
(the variable “Fall” changed from 32.5 to 22.45, which
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corresponds to the “NO” term) neither classified. Figure 3(i)
shows a moment of a false fall. In compliance with the results
given in Table 3, a fall is not detected in this case. Thus, the
algorithms proposed were able to detect falls from false falls.

4. Conclusions

The elderly fall is an emergent problem, which needs fast and
effective solutions. In this paper we have presented a system,
which includes a human detection algorithm based in lateral
inhibition in accumulative computation, and a fuzzy-based
fall detection and inactivity monitoringmodel for colour and
infrared video. The data supplied for the human detection
algorithms are used later by the fuzzy model to detect if
really a fall has occurred. The geometrical characteristics
of the blob corresponding to the detected person, and the
velocity of the change of its bounding box serve as fall
indicators. Additionally, the fuzzy model enables to avoid
certain limitations in parameter evaluation and to make
smoother and more flexible decisions, on the other hand.

The proposed algorithms were incorporated into a fall
detection system for the elderly, and then tested for a wide
number of static and dynamic falls, including a test for
false falls. The system may perform both efficiently at day
time and night time, because of the mutual benefits of
using colour and infrared cameras. The experimental results
which were carried out for static and dynamic falls have
demonstrated that the algorithms proposed are able to detect
these situations and to distinguish real falls from false ones.
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andM. T. López, “Skeleton simplification by key points identifi-
cation,” in Proceedings of the 2ndMexican Conference on Pattern
Recognition, pp. 30–39, 2010.

[14] A. Fernández-Caballero, J. M. Mira, A. E. Delgado, and M.
A. Fernández Graciani, “Lateral interaction in accumulative
computation: a model for motion defection,” Neurocomputing,
vol. 50, pp. 341–364, 2003.

[15] A. Fernández-Caballero, J. Mira, M. A. Fernández, and A. E.
Delgado, “On motion detection through a multi-layer neural
network architecture,” Neural Networks, vol. 16, no. 2, pp. 205–
222, 2003.

[16] J. Mira, A. E. Delgado, A. Fernández-Caballero, and M. A.
Fernández, “Knowledge modelling for the motion detection
task: the algorithmic lateral inhibition method,” Expert Systems
with Applications, vol. 27, no. 2, pp. 169–185, 2004.

[17] A. E. Delgado,M. T. López, and A. Fernández-Caballero, “Real-
time motion detection by lateral inhibition in accumulative
computation,” Engineering Applications of Artificial Intelligence,
vol. 23, no. 1, pp. 129–139, 2010.
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