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Recently, significant improvements have been made in artificial intelligence. The artificial neural network was introduced in the 1950s. 
However, because of the low computing power and insufficient datasets available at that time, artificial neural networks suffered 
from overfitting and vanishing gradient problems for training deep networks. This concept has become more promising owing to 
the enhanced big data processing capability, improvement in computing power with parallel processing units, and new algorithms 
for deep neural networks, which are becoming increasingly successful and attracting interest in many domains, including computer 
vision, speech recognition, and natural language processing. Recent studies in this technology augur well for medical and healthcare 
applications, especially in endoscopic imaging. This paper provides perspectives on the history, development, applications, and 
challenges of deep-learning technology. clin endosc  2020;53:117-126
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INTroduCTIoN

Artificial intelligence (AI) is the software or systems that 
mimic the intellectual tasks performed by the human brain, 
using computers to understand the natural language used by 
humans, make logical inferences, and learn from past expe-
rience. The terminology “AI” was first used at the Dartmouth 
Conference in 1955, where the participants included computer 
pioneers, scientists, and cognitive psychologists. The proposal 
for this conference included an assertion: “every aspect of 
learning or any other feature of intelligence can be so precisely 
described that a machine can be made to simulate it”. 1 Today, 
almost six decades later, AI is characterized by its perception 

and cognitive ability in computer vision, including object clas-
sification, detection, segmentation, and generation (Fig. 1). All 
these methods have been studied for practical applications, 
which were intended for use in different fields.

Classification refers to classifying discrete input values into 
multiple predefined classes. The role of the most common 
classification is to classify the elements of a given set into 
two groups. Others are multi-class and are able to categorize 
an item into one of the multiple categories. Classification 
algorithms are applied to email spam filtering, document 
categorization, image recognition, handwriting recognition, 
and speech-to-text translation.2-7 Object detection involves 
recognizing the boundary of instances from a particular class 
in an image, which has a wide range of applications in a vari-
ety of areas, including medical image analysis, robotics, sur-
veillance, and human-computer interaction. Current methods 
have succeeded in the computer vision field but have several 
limitations when the problem is too complex or large. Image 
segmentation has become an increasingly critical process in 
computer vision.8-14 Segmentation refers to identifying parts 
of the image and understanding which object they belong 
to, pixel by pixel. This involves dividing the visual input into 
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various partitions with similar imaging or semantic image 
properties.15-21 Segmentation depends on object detection and 
classification. In addition, there has been remarkable progress 
in image generation with the emergence of generative adver-
sarial networks (GANs).22

With an exceptional advance in AI, almost every kind of 
conventional computer vision task has been addressed or 
replaced. Therefore, deep learning (DL) has attracted great 
attention in the medical imaging science and engineering 
communities as a promising solution for full automation, fast, 
and accurate image analysis. Convolutional neural networks 
(CNNs) and their variants with DL models have become the 
most preferred and widely used methods in medical image 
analysis. 

In the main text of this paper, we started presenting the 
history and the state-of-the-art techniques intended for appli-
cation in endoscopic imaging using DL. The rest of this paper 
is structured as follows. First, we summarize the history of 
machine learning (ML), DL, and technological advances in 
AI-based medical imaging. Next, we review the technological 

advances of AI in endoscopic imaging such as classification, 
detection, segmentation, and generation. Lastly, we discuss the 
perspective and limitations of AI in endoscopic imaging in 
more detail. This discussion includes a brief overview of med-
ical imaging with AI, general facts and figures, and a detailed 
review of the proposed methods found in the literature.

MAChINE LEArNINg ANd dEEp 
LEArNINg

rise of AI
ML and DL are two subsets of AI that have recently gar-

nered substantial attention worldwide. ML is a set of algo-
rithms that learn a predictive model from data that enables 
predictions to be made without explicit programmed instruc-
tions for the task. DL is a specialized ML method and refers to 
algorithms inspired by the structure and function of a brain, 
called artificial neural networks (ANNs).23,24 DL is currently 
gaining considerable attention for its usefulness with big data 
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Fig. 1. Artificial intelligence in computer vision can be categorized as classification, detection, segmentation, and generation.
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in healthcare. The concept of ANNs was first introduced in 
the 1950s; however, there were critical limitations that need-
ed to be overcome over the following 50 years to cope with 
real-world problems. From the concept of the perceptron to 
CNNs, AI researchers have had several breakthrough mo-
ments during those 50 years (Fig. 2). In 1957, Rosenblatt, a 
psychologist, proposed the concept of the perceptron.25 This is 
a one-layer neural network with a very simple configuration, 
but at the time, a room full of punch-card-type computers 
were required to realize it. Rosenblatt’s perceptrons were first 
simulated on an IBM 704 computer at the Cornell Aeronau-
tical Laboratory.26 In 1960, Widrow and Hoff suggested the 
stochastic gradient descent method from the output error in 
a two-layer neural network without a hidden layer, under the 
name of the Widrow–Hoff delta rule method.27 In 1967, Ama-
ri developed a neural network with three or more layers with 
a hidden layer.28 In 1969, Minsky et al. published a paper on 
the limitations of neural networks.29 Ironically, owing to their 
reputation, the study of neural networks had suffered. How-
ever, LeCun et al. developed a neural network architecture for 
recognizing hand-written digits using CNNs.30 This was a ba-
sic cornerstone in the field which has been essential in making 
DL more efficient. They proposed the concept of learning 
the convolution kernel coefficients using a back-propagation 
algorithm directly from images of hand-written numbers.30 

In this way, learning became fully automated and performed 
better than with a manual parameter design. Subsequently, 
its feasibility was proved for a broader range of image recog-
nition problems. In 2006, Hinton et al. published a paper on 
how to efficiently train multi-layer neural networks.31 This 
method, the auto-encoder, became the basis for explosive re-
search in DL. In 2011, Microsoft began to use neural networks 
for language recognition. Since then, language recognition 
and machine translation, as well as image recognition, have 
become application fields of DL. In July 2012, Google Brain 
was initially established by Jeff Dean and Andrew Ng. Their 
main interest was neural network research for recognizing 
cats and making use of it for language recognition. In October 
of the same year, two students of Hinton won the ImageNet 
challenge, defeating the runners-up by a significant mar-
gin, by using a DL method.5 In December 2015, a Microsoft 
Corporation team outperformed humans in the ImageNet 
contest, and in March 2016,32 AlphaGo defeated Sedol Lee, 
the Go World Champion.33 With conceptual and engineering 
breakthroughs including big data, large computing power, and 
new algorithms that have made deep neural networks (DNNs) 
a critical component of computing, DL is now a common 
technology in computer science, robot vision, autonomous 
driving, and medical imaging.

Fig. 2. Brief history of artificial intelligence. AI, artificial Intelligence; CNN, convolutional neural network; CUDA, compute unified device architecture; GAN, generative 
adversarial network; LSTM, long short term memory; SVM, support vector machine.
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deep neural network
DNNs are a special case of ANN, constructed by stacking 

layers of neural networks.34 DNNs have recently been shown 
to have learning capabilities in a wide range of applications. 
ML researchers are expanding their DL horizons by inves-
tigating future applications in a variety of other areas. Deep 
networks require large amounts of annotated data for training. 
Since the 1980s, several ML algorithms for classification tasks 
have been developed for a variety of implementations, math-
ematical bases, and logical models. A DNN is an ANN with 
multiple layers (called hidden layers) between the input and 
output layers. This is an advantage when working with com-

plex data modeling with fewer nodes. In 2012, Google tried 
to create a human brain using a network of 16,000 computers 
based on the concept of a DNN. The network performed 
well with 84% accuracy, 10% higher than that achieved in the 
previous year in the ImageNet Large Scale Visual Recognition 
Challenge 2012. However, for image data CNNs are more 
accurate with less computation power required compared to 
DNNs.

Convolutional neural network
A CNN is used for analyzing images. Convolutional layers 

convolve the input and pass its result to the next layer. This 

Fig. 3. Concept diagrams of deep learning (DL) and convolutional neural networks. (A) Typical DL neural network with three deep layers between input and output 
layers. (B) Typical artificial neural network with one layer between input and output layers. (C) Convolution method. (D) Max and average pooling methods. (E) The 
workflow of a convolutional neural network with one convolutional layer and one max pooling layer. Each pixel (red rectangle) of a region of interest (ROI, blue rectan-
gle) extracted from an image are input to the neural network with the two classes of a circle and a triangle. Moving ROIs in the image were pooled with the maximum 
value (solid red rectangle).
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was inspired by the response of a neuron in the human visual 
cortex to a specific stimulus.35 A well-trained CNN consists of 
a hierarchy of information such as an edge, a corner, a part of 
an object, and a structure of an object in image classification.36 
A single CNN architecture consists of a series of convolutional 
layers, pooling layers, followed by a fully connected layer. The 
main purpose of a convolutional layer is to extract learnable 
features such as characteristic local motifs from images. The 
parameters of a special filter operator, called a convolution, 
are trained, and the mathematical operation takes two inputs, 
such as an image matrix and a kernel. By learning consequen-
tial kernels, the visual features can be effectively extracted. 
This is like the mechanism of a visual cortex. With the use of 
a filter bank, where each filter is a squared mesh that moves 
over the original image, the convolutional process can be 
performed. The moving grid image (pixel value) is summed 
using the filter weights, and multiple filters in convolution-
al layers are applied to generate multiple functional maps. 
Convolution, an important component of CNN, is essential 
to the success of image processing tasks. Pooling layers with 
the maximum or average are used to effectively reduce the 
functional map size. They also preserve the object shapes and 
location of the semantic features detected in the image. There-
fore, pooling makes the convolutional layer less susceptible to 
small shifts or distortions of the object. In most cases, max-
imum pooling is used empirically. Inserting a pooling layer 
periodically between successive convolutional layers of the 
CNN architecture is common. After several convolutional and 
pooling layers, the high-level inference of the neural network 
takes place through fully connected layers, and all functional 
responses are integrated from the entire image to generate the 
final result.

Recently, deep CNN architectures (Fig. 3A) have been de-
veloped and compared to the traditional ANN (Fig. 3B). The 
parameters of a convolution are learned, which represents the 
multiplication of the local neighborhood of each pixel by a 
small array of learned parameters (kernels) (Fig. 3C). By pool-
ing pixels together to capture an increasingly large field of view, 
the functional map is progressively reduced spatially (Fig. 3D).  
A simple task to determine whether a written figure is a circle 

or triangle with a CNN is shown in Fig. 3E. The figure shows 
the black part of the edge of the circle passes as input. A small 
area called a filter (4ⅹ4 area in the red rectangle) is extracted 
from the image; this is compressed as a single feature by pool-
ing, and the process is repeated while sliding the area. As a 
result, an input image of a fully connected layer is created.

CNNs generated significantly better classification in large 
image repositories, such as ImageNet, than traditional ANNs. 
As a deep CNN architecture typically includes many neural 
network layers, there can be a tremendous number of hyper-
parameters to estimate. Training and tuning the models re-
quires many data samples. For example, in the ImageNet data-
set, training a DL architecture from scratch in a class requires 
more than 1,000 cases per class. Generally, the minimum data 
size requirements depend on the intended use and informa-
tion of the medical image, which must be investigated indi-
vidually. However, there are other ways to circumvent data 
size standards, including the reuse of pre-trained networks 
with transfer learning and data augmentation techniques, 
which deliver reasonable results with approximately 100 cases 
for each class.37

The biggest drawback of a CNN is the length of training 
time needed in addition to the complex implementation be-
cause training a CNN is computationally intensive and data 
intensive. Training with large datasets can take days or even 
weeks. Due to the large number of floating-point operations 
and the relatively low rate of data transfer in all of the training 
steps, this task can only be done with a graphics process-
ing unit (GPU). GPUs are a major technical advance in the 
computer industry that work with big data and enhanced 
computing power. The main advantage of a GPU over a cen-
tral processing unit (CPU) is the relatively low cost and high 
computational throughput achieved by the large-scale parallel 
architecture. This reduces training time, speeds recruitment, 
and increases efficiency.

Computer-aided detection/diagnosis
Several computer-aided detection (CAD) and diagnosis 

systems in radiology were developed and introduced into 
clinical workflows in the early 2000s. Unlike initial expec-

Fig. 4. Examples of polyp detection with convolutional neural network in colonoscopy.
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tations, some shortcomings of the CAD systems have been 
revealed through several studies.38,39 Key among these was that 
the CAD systems performed poorly compared to expert ra-
diologists, resulting in longer evaluation times and additional 
biopsies. Therefore, there was little or no net profit from using 
CAD. Modern DL technology can help increase productivity 
by overcoming the technical difficulties of the early CAD sys-
tems, increasing detection accuracy, and enabling physicians 
to use AI for mediocre repetitive tasks. DL is recognized as 
the most suitable method for analyzing big data to extract 
meaningful information in healthcare. AI has now emerged 
as a promising technique for differential diagnosis, automatic 
lesion detection, and the generation of preliminary reports.

TEChNoLogICAL AdvANCEs oF AI IN 
ENdosCopIC IMAgINg

AI-based classification in endoscopy
Recently, CNNs have been widely studied in the field of 

endoscopy with promising results, including esophagogastro-
duodenoscopy, colonoscopy, and wireless capsule endoscopy 
(WCE). The initial study of classification in endoscopic imag-
ing reported that the classification of the mucosal pit patterns 
by magnifying the endoscopy not only corresponded to the 
transition from a gastric to an intestinal phenotype in Barrett’s 
epithelium but was also associated with an increase in cell 
cycles.40 With the initial success in endoscopy, the classifica-
tion of features has proved to be useful for the endoscopic 
diagnosis of Barrett’s esophagus. In addition, finding events 
such as entering the next digestive organs and detecting active 
bleeding is of major interest to the endoscopists reviewing 
WCE videos. To reduce the long review time, an algorithm 
for event boundary detection in WCE videos was proposed.41 
An energy-based extraction of the proposed event detection 
feature showed a recall of 76% and a precision of 51%. The 
performance of diagnosis methods for early gastric cancers 
was investigated based on mucosal surface pattern classifi-
cation in enhanced-magnification endoscopy by comparing 
them with conventional magnification endoscopy (magni-
fication chromoendoscopy). In their study, mucosal surface 
patterns were classified into five types. The study indicated 
that the classification of types IV–V was strongly correlated 
with the presence of early gastric cancer (sensitivity of 100% 
and specificity of 89.7%).42 Stehle et al. proposed a multi-stage 
system for the classification of colon polyps.43 They achieved 
a correct classification rate of 90% using their datasets, in-
cluding 56 polyps with histologically confirmed ground truth, 
which corresponds to a sensitivity of 91.9% and a specificity 
of 84.2%. Recently, we reported that our DL model classify-

ing the mucosal surface patterns of colon polyps achieved 
an overall diagnostic accuracy of 81.3%–82.4% in real-time 
histological diagnosis of colon polyps, which was comparable 
with that of expert endoscopists (82.4%–87.3%) and higher 
than that of trainee endoscopists (63.8%–71.8%) (Fig. 4).44 The 
transfer of learning in CNNs showed great potential for celiac 
disease classification based on endoscopic images.45 The au-
thors used four CNNs that were pre-trained on the ImageNet 
database. Three different transfer learning strategies were ex-
plored to classify the endoscopic images of the celiac disease. 
Full fine-tuning of the CNNs achieved the highest classifica-
tion accuracies, although the small amount of training data 
available led to overfitting. As a result, the VGG-F network (an 
eight-layer deep CNN) showed the best performance for ce-
liac disease classification. The fully fine-tuned VGG network 
outperformed the four state-of-the-art image representations. 
Transfer learning for low-level CNN features from various 
non-medical source tasks using deep CNN representations 
showed good performance for the automatic detection and 
classification of colorectal polyps.44,46,47 The proposed diagnos-
tic model, which minimized the time-consuming pre-process-
ing, outperformed the previous state-of-the-art methods.

AI-based detection in endoscopy
Screening colonoscopy is one of the most explored domains 

in the AI-based detection field, as the detection of colorectal 
polyps without missing any is of paramount importance in 
colorectal cancer screening. A previous study showed that 
the risk of interval colorectal cancer decreased by 3.0% as 
the adenoma detection rate increased by 1.0%.48 Despite the 
importance of polyp detection, the missing rate for polyps is 
still high (6%–27%).49 There were several recent studies that 
suggested a DL approach to decrease the adenoma miss rate.50-

52 They showed that it is possible to detect polyps in real-time 
with reasonable accuracy. For instance, Zhang et al. achieved 
an 84% F1-score at speeds of 50 frames-per-second with a 
modified Single Shot MultiBox Detector.12,53 In addition, a 
study by Urban et al.51 suggested that a CNN is capable of de-
tecting polyps regardless of their morphological type (polypoid 
or nonpolypoid): in general, a nonpolypoid polyp is chal-
lenging to detect because of its shape. Zheng et al. proposed 
a real-time polyp detector based on You-Only-Look-Once in 
endoscopic images.52

Another promising area for CNN technology applications is 
WCE.54 It is more comfortable and less invasive than conven-
tional endoscopy with a light tube.55 However, analyzing the 
video from WCE is challenging because of the long review 
time and the low quality of the images. Therefore, an automat-
ed detection and classification system is required, and CNNs 
can be a solution. Fan et al.56 explored this possibility and they 
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developed a system that detected small intestinal ulcers and 
erosion in WCE images.57 They made use of the popular CNN 
architecture, AlexNet,5 and achieved a high accuracy of ap-
proximately 95%.

AI-based segmentation in endoscopy 
Polyp segmentation had been considered a relatively simple 

task, as the automatic algorithm only needed to analyze cer-
tain polyp frames to find and localize the existing polyps. An 
earlier study on segmentation in endoscopic imaging in 2000 
was initiated through automatic segmentation of the colon for 
virtual colonoscopy.58 It was not an AI-based study but was 
meaningful as a computer vision method for automatic seg-
mentation. The algorithm was designed to segment the colon 
from computer tomography volumes based on the features 
of colon geometry. A decade later, polyp segmentation in 
narrow band imaging colonoscopy was proposed in 2009.59 At 
this stage, the segmentation task for endoscopic imaging was 
still dependent on conventional edge detection methods such 
as the canny edge detector. Therefore, noise reduction was 
always the greatest concern among researchers, and the first 
trial for polyp segmentation in WCE videos was proposed. In 
2010, Hwang et al. proposed a geometric feature-based meth-
od for WCE images.60 Gabor texture features and k-means 
clustering were adapted in watershed segmentation with an 
initial marker selection.60 In 2010, Arnold et al. presented a 
method for the segmentation of specular highlights based on 
color-image-thresholding, nonlinear filtering, and an efficient 
inpainting method; a visually favorable result was obtained by 
altering the specular regions using their algorithm.61 The seg-
mented regions were characterized using a curvature-based 
geometric feature to determine the final polyp candidates. 
Preliminary experiments demonstrated that the proposed 
method can detect polyps with 100% sensitivity and over 81% 
specificity. Subsequently, a similar method was attempted by 
other research groups.62-64 The first DL-based method was 
presented in 2018,65 and the study focused on polyp segmen-
tation in colonoscopy. Three models with fully convolutional 
architectures were trained for three epochs by using 342 color 
images of a colon polyp. All images were obtained from the 
CVC–Colon database (Machine Vision Group, Computer 
Vision Centre, Barcelona, Spain) and validated using 38 im-
ages from the same database. A low dice score may occur 
when there is a heavy class imbalance, such as in this dataset, 
where ~1% of pixels are in the polyp class compared to ~99% 
in the background class. A similar approach was reported by 
Brandao et al.66 They obtained a relatively high segmentation 
accuracy and a detection precision and recall of 73.61% and 
86.31%, respectively. Consequently, polyp segmentation in en-
doscopy using DL remains a challenging issue.

generative model for endoscopy
Many applications using CNNs have been introduced in 

medical imaging, but it is often difficult to obtain high-quality, 
balanced datasets in the medical domain.67 To overcome this 
problem, several studies have used GANs to create high-qual-
ity synthetic medical images.68,69 The GAN has excellent 
strengths in synthesis showing very impressive results asso-
ciated with generated content and realistic visual content. In 
addition, it can generate information that we lack. There are 
several applications that apply these two advantages of GANs 
to endoscopies, such as image augmentation, domain adapta-
tion, and 3D reconstruction, to help diagnose the endoscope. 
Previous studies have shown that the synthesis of lesion imag-
es can significantly improve the detection accuracy in endo-
scopic and capsule endoscopic images.70-72 The gastric cancer 
detection model was significantly improved when a portion of 
the synthesized images with realistic lesions was added to the 
training dataset. In addition, the variation autoencoder-GAN 
model was used to overcome the imbalance of positive and 
negative datasets.73 The style transfer with cycle-GAN can 
improve the performance of detection generalization per-
formance.74 As there is no depth information in endoscopy 
images or videos, there have been many studies on domain 
adaptation to actual endoscopy images by learning the depth 
map through virtual endoscopy. Intra-operative medical 
data to gather realistic virtual endoscopy has been explored 
using an in-depth learning approach to transfer the content 
preserving style of intra-operative medical data.75 Specifically, 
it has been proven that the generation model outperforms 
while predicting depth from colonoscopy images in terms of 
accuracy and robustness to domain changes.76 However, the 
endoscope does not have many applications, because the per-
formance of generating endoscopic images is poor, relative to 
other medical modalities. In addition, as endoscopic images 
do not have a formal protocol or structure, the generation of 
endoscopic images using GAN in an endoscope is a difficult 
task. Nevertheless, improved GAN models will be used as 
tools to produce more realistic endoscopic images that can de-
ceive the endoscopist, thereby helping to aid in computer-aid-
ed diagnosis, CAD, and endoscopy training.

dIsCussIoN 

At present, endoscopists suffer from a heavy workload as 
the number of patients increases. Such a burden makes it dif-
ficult to achieve effective diagnosis and therapy for patients. 
However, the new DL technology is expected to be helpful 
to endoscopists by enabling more accurate lesion detection, 
diagnosis, and prediction by providing quantitative analysis 
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of suspicious lesions. Moreover, it may also shorten times 
for certain clinical tasks such as recognition assistance with 
attention, automated classification, prediction, and automatic 
report generation, which are benefits that AI can provide to 
the clinical workflow. DL has already shown superior perfor-
mance over humans in some audio recognition and computer 
vision tasks including detection and recognition. Endoscope 
manufacturers such as Olympus, Fuji, Pentax, and others have 
begun research on DL applications in endoscopic imaging. 
Through these technological innovations, some major changes 
in endoscopic practices may soon occur. When we consider 
the implementation of AI in endoscopic imaging, however, we 
predict this technological innovation will assist in a reduction 
of the burden and distraction from repetitive and labor-in-
tensive tasks, rather than replacing endoscopists at least in 
the near future, because the use of DL and AI in endoscopy is 
currently in its infancy.

To develop AI and its practical applications in endoscopy 
further, a good mutual understanding and cooperation be-
tween both endoscopists and engineers is important. Addi-
tionally, large and fully annotated databases (e.g., ImageNet) 
are required to facilitate the development of AI in medical 
imaging. This is one of the most important issues in terms 
of training the DL network, as well as for its evaluation. The 
active participation of endoscopists is also indispensable to 
establishing a large medical image dataset for both training 
and meticulous clinical validation of a developed AI system. 
Finally, the ethical, regulatory, and legal issues raised while 
using patient clinical imaging data in the development of AI 
must be carefully considered.

Even with many favorable results from early studies, there 
are several concerns that should be addressed before the im-
plementation of DL methods in endoscopic imaging, some of 
which are listed as follows. First, the dependency on training 
data, especially the quality and amount of it and the over-
fitting issue should be carefully considered. Regarding the 
variations in disease prevalence, medical imaging modalities, 
and practice patterns among hospitals worldwide, we need 
to confirm that the trained networks are generally useful 
through external validation. Second, the black box nature of 
the current DL technique should be highlighted. Even when 
the DL-based method demonstrates excellent results, on 
many occasions, it is difficult or almost impossible to explain 
the technical and logical basis of the system. Additionally, 
legal liability issues would be raised if we were to adopt a DL 
system in daily endoscopy practices. Unlike our expectations, 
however, none of the systems can be perfect, and who or what 
should take responsibility for an error and misinformation 
should be addressed by experts from various fields, such as 
medicine, computer science, ethics, and law.

CoNCLusIoNs

With the rapid advancement of AI technology, medical 
doctors, including endoscopists, must gain technical knowl-
edge to understand the capabilities of AI and how AI can 
change endoscopy practices in the near future. We believe that 
these ML-based analytical tools will eventually be adopted 
in diagnosis practice. Nonetheless, this prediction does not 
directly imply the complete replacement of medical doctors. 
This “selective replacement” is not really the ultimate replace-
ment but a strong complement to irreplaceable and incredible 
human skills; thus, it can boost overall effectiveness.
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