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Abstract Auditory sensory outer hair cells are thought to amplify sound-induced basilar

membrane vibration through a feedback mechanism to enhance hearing sensitivity. For optimal

amplification, the outer hair cell-generated force must act on the basilar membrane at an

appropriate time at every cycle. However, the temporal relationship between the outer hair cell-

driven reticular lamina vibration and the basilar membrane vibration remains unclear. By measuring

sub-nanometer vibrations directly from outer hair cells using a custom-built heterodyne low-

coherence interferometer, we demonstrate in living gerbil cochleae that the reticular lamina

vibration occurs after, not before, the basilar membrane vibration. Both tone- and click-induced

responses indicate that the reticular lamina and basilar membrane vibrate in opposite directions at

the cochlear base and they oscillate in phase near the best-frequency location. Our results suggest

that outer hair cells enhance hearing sensitivity through a global hydromechanical mechanism,

rather than through a local mechanical feedback as commonly supposed.

DOI: https://doi.org/10.7554/eLife.37625.001

Introduction
The exceptional sensitivity of mammalian hearing has been attributed to a micromechanical feed-

back system inside the cochlea, also called ‘the cochlear amplifier’ or ‘cochlear active process’

(Dallos et al., 2008; Davis, 1983; Fettiplace and Hackney, 2006; Hudspeth, 2014; Robles and

Ruggero, 2001; Russell et al., 2007). When sound-induced basilar membrane vibrations deflect hair

bundles of the outer hair cells, mechanoelectrical transduction of these cells generates the receptor

potential (Dallos et al., 1982; Russell and Sellick, 1983). In response to the membrane potential

change, mammalian outer hair cells change their length and generate force primarily through the

somatic motility driven by the motor protein, prestin (Ashmore, 2008; Brownell et al., 1985;

Liberman et al., 2002; Mammano and Ashmore, 1993; Mellado Lagarde et al., 2008; Ren et al.,

2016a; Santos-Sacchi, 1989; Zheng et al., 2000). This cellular force is thought to be directly

applied to the basilar membrane at its generation location on a cycle-by-cycle basis, consequently

amplifying the sound-induced basilar membrane vibration and boosting hearing sensitivity

(Dallos et al., 2008; de Boer, 1995b; Dong and Olson, 2013; Hudspeth, 2014; Liu and Neely,

2009; Reichenbach and Hudspeth, 2014).

For optimal amplification, the cellular force must act on the basilar membrane at an appropriate

time at every vibration cycle (Dallos et al., 2008; Nilsen and Russell, 1999). Therefore, timing of

the cochlear feedback has been a central research topic in the field of auditory neuroscience since

the cochlear amplifier was proposed (Ashmore, 2008; Davis, 1983; Gold, 1948; Gummer et al.,

1996). Because cochlear amplification depends on normal cochlear metabolism and the integrity of

cochlear mechanical properties (Cooper and Rhode, 1992; Fisher et al., 2012; Lee et al., 2015;
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Lee et al., 2016; Nuttall et al., 1991; Ren and Nuttall, 2001; Rhode, 1971; Robles and Ruggero,

2001; Ruggero and Rich, 1991; van der Heijden and Versteegh, 2015), the cochlear feedback has

to be investigated ultimately in living cochleae. Timing of cochlear feedback was studied in vivo by

measuring basilar membrane vibrations at different locations across the width of the basilar mem-

brane in guinea pig (Nilsen and Russell, 1999). Based on their observation, the authors suggest that

forces generated by the outer hair cells directly drive the region of the basilar membrane beneath

the Deiters’ cells. The temporal relationship between the reticular lamina and basilar membrane

vibration was previously observed in guinea pigs using a time-domain optical coherence tomography

system as a homodyne interferometer (Chen et al., 2011). It was reported that the phase of the

reticular lamina vibration led the phase of the basilar membrane vibration at the best frequency (Fig-

ure 5, Chen et al., 2011). This phase lead has been thought to ensure the right timing of the outer

hair cell force for cochlear amplification. However, the mouse micromechanical data measured using

a heterodyne low-coherence interferometer showed no significant phase difference between the

reticular lamina and basilar membrane vibration at the best frequency (Ren et al., 2016b). This dis-

crepancy may have been caused by the animal species and technical differences, that is mouse ver-

sus guinea pig and homodyne interferometry versus heterodyne interferometry. Although a number

of studies have been conducted recently to measure micromechanical responses in living cochleae

(Gao et al., 2014; Lee et al., 2016; Ramamoorthy et al., 2016; Recio-Spinoso and Oghalai,

2017; Cooper et al., 2018) the timing of the cochlear feedback remains unclear. Since the apical

end of outer hair cells is directly connected to the reticular lamina, the reticular lamina vibration can

reflect the movement of the outer hair cell under physiological conditions. Therefore, the timing of

the cochlear feedback was determined in this study by measuring the latency difference between

the reticular lamina and basilar membrane vibration using a custom-built heterodyne low-coherence

interferometer (Hong and Freeman, 2006; Ren et al., 2016a; Ren et al., 2016b). The present data

collected from the gerbil, one of the most commonly used animals for auditory research, demon-

strate for the first time that the reticular lamina vibrates after, not before, the basilar membrane

vibration.

eLife digest What is the quietest sound the ear can detect? All sounds begin as vibrating air

molecules, which enter the ear and cause the eardrum to vibrate. We can detect vibrations that

move the eardrum by a distance of less than one picometer. That’s one thousandth of a nanometer,

or about 100 times smaller than a hydrogen atom. But how does the ear achieve this level of

sensitivity?

Vibrations of the eardrum cause three small bones within the middle ear to vibrate. The

vibrations then spread to the cochlea, a fluid-filled spiral structure in the inner ear. Tiny hair cells

lining the cochlea move as a result of the vibrations. There are two types of hair cells: inner and

outer. Outer hair cells amplify the vibrations. It is this amplification that enables us to detect such

small movements of the eardrum. Inner hair cells then convert the amplified vibrations into electrical

signals, which travel via the auditory nerve to the brain.

The bases of outer hair cells are connected to a structure called the basilar membrane, while their

tops are anchored to a structure called the reticular lamina. It was generally assumed that outer hair

cells amplify vibrations of the basilar membrane via a local positive feedback mechanism that

requires the hair cells to vibrate first. But by comparing the timing of reticular lamina and basilar

membrane vibrations in gerbils, He et al. show that this is not the case. Outer hair cells vibrate after

the basilar membrane, not before. This indicates that outer hair cells use a mechanism other than

commonly assumed local feedback to amplify sounds.

The results presented by He et al. change our understanding of how the cochlea works, and may

help bioengineers to design better hearing aids and cochlea implants. Millions of patients worldwide

who suffer from hearing loss may ultimately stand to benefit.

DOI: https://doi.org/10.7554/eLife.37625.002
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Results

Reticular lamina and basilar membrane vibrations in sensitive gerbil
cochleae
A representative data set from one of twenty-three sensitive cochleae is presented in Figure 1. The

displacement of the reticular lamina response to 30 dB SPL tones (0 dB SPL = 20 mPa) increased and

then decreased with frequency, forming a sharp peak at ~26 kHz (best frequency, BF) (Figure 1A).

While displacements increased proportionally with sound level at frequencies < 15 kHz, they

increased at a much smaller rate near the best frequency. The response peak became broader and

shifted toward low frequencies as the sound level increased. In contrast to sharp tuning at 30 dB

SPL, the displacement curve at 80 dB SPL showed no response peak. Displacements of the basilar

membrane at 30 and 40 dB SPL were ~10 fold smaller than those of the reticular lamina not only

near the best frequency but also at lower frequencies (Figure 1B). Basilar membrane response also

reached the maximum at ~26 kHz as did the reticular lamina. For ~333 fold sound level increase

Figure 1. The reticular lamina and basilar membrane vibration in a sensitive gerbil cochlea. (A, B) Displacements

of the reticular lamina (RL) and basilar membrane (BM) as a function of frequency at different sound levels. The

noise floor is indicated by the black dotted line in panel A. (C, D) Ratios of RL and BM displacements to stapes

displacements at different sound levels. (E, F) RL and BM phase as a function of frequency. (G) The ratios of the RL

displacement to the BM displacement as a function of frequency at different sound levels. (H) Phase difference

between the RL and BM vibration. Line types and colors in this panel are the same as those in plot (G). The slope

of the linear regression line (thick black dotted) indicates that the latency of the RL vibration is ~20 ms greater than

that of the BM vibration at 70 dB SPL.
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from 30 to 80 dB SPL, the displacement of the basilar membrane at ~26 kHz increased by ~23 fold

compared with only ~3.3 fold increase of the reticular lamina displacement at the same frequency.

These differences were confirmed by the displacement ratios of the reticular lamina (Figure 1C) and

basilar membrane (Figure 1D) vibration to the stapes vibration. The reticular lamina showed ~40 dB

nonlinear compression near the best frequency, which is ~17 dB greater than that of the basilar

membrane (~23 dB). Phase responses of the reticular lamina (Figure 1E) are similar to those of the

basilar membrane (Figure 1F) except for a slightly steeper phase slope at frequencies < 15 kHz.

Thus, highly sensitive, sharply tuned nonlinear responses of the reticular lamina and basilar mem-

brane in the gerbil (Figure 1A–D) are similar to those measured from the basal turn of mouse

cochleae under sensitive conditions (Ren et al., 2016b).

The magnitude relationship between the reticular lamina and basilar membrane vibration is pre-

sented in Figure 1G by the ratio of the reticular lamina displacement to the basilar membrane dis-

placement as a function of frequency. All displacement ratios are greater than one, indicating that

reticular lamina vibrations were greater than those of the basilar membrane at different frequencies

and sound levels. Near the best frequency (~26 kHz), the displacement ratio was ~10 at 30 dB SPL,

decreasing with sound level and becoming ~1.5 at 80 dB SPL. In contrast to well documented

sharply tuned basilar membrane vibration at the best frequency (Robles and Ruggero, 2001), the

greatest displacement ratios were observed at frequencies far below the best frequency and at high

sound levels.

The temporal relationship between the reticular lamina and basilar membrane vibration was

determined by phase difference as a function of frequency and is presented in Figure 1H. At fre-

quencies < 10 kHz, reticular lamina phase led basilar membrane phase by up to 180 degrees. This

phase lead decreased with frequency and the phase difference became slightly negative at the best

frequency. The slope of the linear regression line (thick black dotted) of the phase difference curve

at 70 dB SPL indicates that the latency of the reticular lamina is ~20 ms greater than that of the basi-

lar membrane.

Reticular lamina and basilar membrane vibrations in insensitive gerbil
cochleae
Compared to sensitive responses (red lines in Figure 2A), displacements of the reticular lamina

vibration decreased dramatically at all frequencies under postmortem conditions (blue lines in

Figure 2A), while the basilar membrane vibration decreased only near the best frequency (blues

lines in Figure 2B). In contrast to the sharp peak of 30 dB SPL sensitive responses at ~26 kHz, the

broad peaks of reticular lamina and basilar membrane postmortem responses shifted toward low fre-

quencies (blue lines in Figure 2A,B). Although the basilar membrane vibration at frequencies < 20

kHz did not decrease significantly, the reticular lamina vibration decreased by >10 fold over the

same frequency range. This is unexpected since cochlear amplification has been believed to be

effective only near the best frequency (Robles and Ruggero, 2001). The overlapping blue curves in

Figure 2C,D and the equally separated blue curves in Figure 2A,B indicate linear growth for post-

mortem responses. In contrast to the lack of significant change in basilar membrane phase

(Figure 2F), the reticular lamina phase decreased by up to 180 degrees at frequencies < 10 kHz

(Figure 2E). The displacement ratio of the reticular lamina to basilar membrane vibration decreased

dramatically at all frequencies (compare blue to red lines in Figure 2G). The frequency-dependent

phase lead (red lines in Figure 2H) was absent under postmortem conditions (blue lines in

Figure 2H). Thus, postmortem data in Figure 2 demonstrate that the magnitude and phase differen-

ces between the reticular lamina and basilar membrane vibration depend on normal cochlear metab-

olism. While the reticular lamina and basilar membrane vibration in the gerbil (Figure 1) are

qualitatively similar to those in the mouse (Figure 1C–J, Ren et al., 2016b), there are the following

quantitatively differences. Although the measurements were taken from similar longitudinal locations

in the basal turn of the cochlea in both species, the best frequencies of the reticular lamina and basi-

lar membrane vibration in the gerbil are significantly lower than those in the mouse. Compared to

the mouse postmortem data (Figure 2G and H, Ren et al., 2016b), the basilar membrane vibrated

more than the reticular lamina in postmortem gerbil cochleae (Figure 2).
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Latency difference between the tone-induced reticular lamina and
basilar membrane vibration
To determine the latency difference, the phase and magnitude differences between the reticular

lamina and basilar membrane vibration were measured as a function of frequency at different sound

levels in seven sensitive gerbil cochleae (Figure 3). For statistical analysis, frequency axes were nor-

malized to the best frequency for each animal. The displacement ratio of the reticular lamina vibra-

tion to the basilar membrane vibration was the largest at the low-frequency end and decreased with

frequency reaching the lowest level near the best frequency (Figure 3A,C,E,G). The averaged phase

data show that the reticular lamina phase led the basilar membrane phase by >135 degrees at low

frequencies. This phase lead decreased with frequency and approached zero near the best fre-

quency (Figure 3B,D,F,H). While the magnitude ratio decreased with the sound level near the best

frequency (Figure 3I), the phase difference showed no significant change at the same frequency

(Figure 3J). Consequently, the latency differences derived from the slope of the phase difference

Figure 2. Postmortem changes in reticular lamina and basilar membrane vibrations. (A) Postmortem reticular

lamina (RL) displacements (blue lines) are significantly smaller than those under sensitive conditions (red lines) at

all frequencies. (B) Basilar membrane (BM) displacements deceased only near the best frequency (~26 kHz) under

postmortem conditions (blue lines). (C, D) Sensitive (red lines) and insensitive (blue lines) RL and BM magnitude

transfer functions. (E) RL phase decreased by up to 180 degrees at low frequencies under postmortem conditions.

(F) No significant difference between sensitive and insensitive BM phase curves. (G) The ratio of RL displacement

to BM displacement decreased dramatically at all frequencies under postmortem conditions (blue lines). (H) The

phase difference (~180 degrees) at low frequencies (red lines) is absent in the postmortem cochlea (blue curves).

DOI: https://doi.org/10.7554/eLife.37625.004
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curves show no significant change across stimulus levels (ANOVA test: F = 0.037, p=0.990). This

allows us to calculate the latency difference between the reticular lamina and basilar membrane

vibration across animals and sound levels. The grouped data from seven gerbils at four different

sound levels demonstrate that the latency of the reticular lamina vibration is ~17.9 ms greater than

that of the basilar membrane (17.9 ± 0.6 ms, n = 28) (Figure 3J). To compare this result with that in

mice, the latency difference in sensitive mouse cochleae was derived from recently published phase

data (Figure 3F, Ren et al., 2016b) using the same experimental procedures as those in the current

study. The latency difference between the reticular lamina and basilar membrane vibration in mice

(12.1 ± 0.6 ms, n = 5) is significantly smaller than that in gerbils (17.9 ± 0.6 ms, n = 28) (t = 7.775,

p<0.01, n = 33). The smaller latency difference in mice likely results from higher best frequencies.

Figure 3. Phase and latency differences between the reticular lamina and basilar membrane vibration across animals. (A, C, E, G) Means and standard

errors of the displacement ratio of the reticular lamina (RL) to basilar membrane (BM) at 50, 60, 70, and 80 dB SPL. (B, D, F, H) Phase differences

between the RL and BM vibration. Latency (Dt) was calculated from the phase slope and presented next to phase difference curves. (I) The magnitude

ratio decreases with sound level near the best frequency. (J) Phase difference as a function of frequency shows no significant change with sound level.

Data in panels (A–H) are presented as mean ± SEM.

DOI: https://doi.org/10.7554/eLife.37625.005
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Latency difference between the click-induced reticular lamina and
basilar membrane vibration
To confirm latency difference revealed by phase data in Figure 3, the reticular lamina and basilar

membrane response to clicks were measured by recording instantaneous displacement as a function

of time at different sound levels. In the sensitive living cochlea, a 10-ms rarefaction click caused a

large displacement of the reticular lamina toward the scala tympani indicated by the first negative

peak (red curves in Figure 4A) at ~0.40 ms, while the basilar membrane moved toward the scala ves-

tibuli (indicated by the first positive peak of blue curves in Figure 4A). In addition to the opposite

directions, the peak magnitude of the reticular lamina displacement is ~eight fold larger than that of

the basilar membrane vibration, which increased proportionally with the sound level. Following the

initial opposite movements, both the reticular lamina and basilar membrane oscillated periodically

and the vibration magnitudes decreased gradually approaching to their equilibrium positions. To

clearly show the temporal relationship, the displacements of the reticular lamina and basilar mem-

brane vibration at 90 dB-p (0 dB-p = 20 mPa of peak sound pressure) were plotted as a function of

time with different magnitude scales in Figure 4C. Since the initial peaks indicate the maximum dis-

placements of the reticular lamina and basilar membrane vibration, which effectively stimulate the

cochlea, the initial peak times TA and TB (Figure 4C) are used to present the latencies of the basilar

membrane and reticular lamina response respectively, and the latency difference was determined by

TB-TA. Latency difference measured at 90 dB-p in ten sensitive cochleae (32.6 ± 1.5 ms, n = 10) dem-

onstrates that the outer hair cell-driven reticular lamina vibration occurs after the basilar membrane

vibration. This latency difference is greater than that derived from the phase data in Figure 3, likely

due to the stimulus difference, that is tone verse click. Despite their initial opposite movements, the

reticular lamina and basilar membrane moved synchronously in the same direction at ~0.51 ms (TC)

(Figure 4C), because the phase change of the reticular lamina vibration with time is slower than that

of the basilar membrane. Similarly, the first period of the reticular lamina (TRL) is greater than that of

the basilar membrane (TBM) (the low panel in Figure 4A) indicating that the starting frequency of the

reticular lamina is lower than that of the basilar membrane vibration. The magnitude of the reticular

lamina vibration decreased dramatically under postmortem conditions and became comparable to

that of the basilar membrane (Figure 4B,D). Moreover, the direction of the first peak of the reticular

lamina displacement changed from negative to positive, that is from toward the scala tympani to

toward the scala vestibuli, which became consistent with the direction of the basilar membrane

vibration. These changes indicate that the reticular lamina moves passively following the basilar

membrane vibration under postmortem conditions. The data at sound levels below 70 dB SPL were

not shown because the initial peak of the basilar membrane vibration was too small to be reliably

detected. Thus, the time-domain data in Figure 4 confirm that the reticular lamina vibrates after, not

before, the basilar membrane vibration. Moreover, the initially opposite displacements and following

synchronous movements of the reticular lamina and the basilar membrane in Figure 4A and C are

consistent with the ~180˚ phase difference at low frequencies and in-phase vibrations at the best fre-

quency in Figure 3.

Discussion
This paper reports the first in vivo measurement of the latency difference between the outer hair

cell-driven reticular lamina vibration and the basilar membrane vibration. The present data demon-

strate that the latency of the reticular lamina vibration is greater than that of the basilar membrane

vibration, and there is no significant phase difference between the two structures near the best fre-

quencies. This result is consistent with the mouse data measured using heterodyne interferometry

(Ren et al., 2016b) but inconsistent with the guinea pig data, which showed that the phase of the

reticular lamina vibration leads the phase of the basilar membrane vibration by ~90˚ at the best fre-

quency and the phase lead decreases with sound pressure level (Chen et al., 2011). The current

result also confirms recent studies in the mouse (Ren et al., 2016b) and in the guinea pig (Recio-

Spinoso and Oghalai, 2017) that the physiologically vulnerable reticular lamina vibration is signifi-

cantly greater than the basilar membrane vibration not only at the best frequency but also at low fre-

quencies. Since an ~90˚ phase lead of the reticular lamina vibration is thought to be required for

cochlear feedback to amplify basilar membrane vibration (Chen et al., 2011; Gummer et al., 1996;

Nilsen and Russell, 1999; Robles and Ruggero, 2001; Russell and Nilsen, 1997), and since
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cochlear amplification has been predicted to work only near the best frequency location (de Boer,

1995a; Dong and Olson, 2013; Liu et al., 2017; Liu and Neely, 2009; Meaud and Grosh, 2012;

Motallebzadeh et al., 2018; Ni et al., 2016132016; Ramamoorthy et al., 2007; Wang et al.,

2016), the current result is inconsistent with the local cochlear feedback hypothesis. Instead, the

latency difference between the reticular lamina and basilar membrane vibration found in this study

supports the global hydromechanical mechanism for cochlear amplification (Ren et al., 2016b),

which is discussed below.

Figure 4. Time waveforms of the reticular lamina and basilar membrane vibration. (A) Displacements of the

reticular lamina (red) and basilar membrane (blue) vibration in response to 10-ms rarefaction clicks as a function of

time at 70, 80, and 90 dB-p (0 dB-p = 20 mPa of the peak sound pressure). (B) The reticular lamina and basilar

membrane response to clicks measured under postmortem conditions. (C) To show the temporal relationship, the

reticular lamina and basilar membrane response at 90 dB-p are plotted with different magnitude scales. (D)

Postmortem responses of the reticular lamina and basilar membrane at 90 dB-p. TA, the arriving time of the first

peak of the basilar membrane vibration; TB, the arriving time of the first peak of the reticular lamina vibration; TC,

the time when the reticular lamina and basilar membrane vibration become in phase; TBM and TRL, the first periods

of the basilar membrane and reticular lamina vibration.

DOI: https://doi.org/10.7554/eLife.37625.006
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The longitudinal patterns of the reticular lamina and basilar membrane vibrations at the best-fre-

quency (26 kHz) are presented by plotting displacements and phases (Figure 1A,B,E,F) as a function

of the location along the cochlear length (blue and red lines in Figure 5A–D), which was derived

from the stimulus frequency according to the cochlear frequency-location function (Müller, 1996).

While a 30 dB SPL tone-induced response occurred at a < 0.2 mm region at the best-frequency loca-

tion (Figure 5A,C), a 70 dB SPL tone-induced vibration extended from the best-frequency location

to the base (Figure 5B,D). The overlapping phase curves near the 2.05 mm location (blue and red

lines in Figure 5C,D) indicate that the reticular lamina and basilar membrane vibrated approximately

in the same direction at the best-frequency location. The ~180 degree separation between the blue

and red lines near the cochlear base (Figure 5D) indicates opposite vibrations of the reticular lamina

and basilar membrane.

The outer hair cell-driven active movement was estimated by vector subtraction of the basilar

membrane vibration from the measured reticular lamina vibration and is presented by green lines in

Figure 5A–D. The overlapping blue and green lines in Figure 5A and C indicate that, at low sound

levels, reticular lamina vibration is dominated by outer hair cell-driven movement. At 70 dB SPL, the

outer hair cell-driven responses saturated near the best-frequency location, indicated by the

diverged blue and green lines near the response peak (Figure 5B).

Time waveforms of the outer hair cell-driven reticular lamina vibrations (green) and the basilar

membrane vibrations (red) in Figure 5E,F were derived from magnitude and phase in Figure 5A–D

at two sequential times. The time difference between solid and dotted green curves is ~6 ms, equiva-

lent to ~57 degree phase difference at 26 kHz. For clearer comparison, basilar membrane time wave-

forms (red curves) were shifted down by 4 nm in Figure 5E and by 50 nm in Figure 5F respectively.

When the basilar membrane moves upward to the scala vestibuli near the cochlear base (red arrow

Figure 5. Longitudinal patterns of reticular lamina and basilar membrane vibrations. (A) The longitudinal patterns of the reticular lamina (RL) and basilar

membrane (BM) vibrations at 30 dB SPL. RL and BM vibrations occurred within a 0.2 mm region centered at the best-frequency location. (B) At 70 dB

SPL, both RL and BM vibrations extended from the best-frequency location to the cochlear base. (C, D) RL and BM phase as a function of the

longitudinal location at 30 and 70 dB SPL. (E, F) Time waveforms of the BM (red) and outer hair cell-driven RL movement (green). For clearer

comparison, BM time waveforms were shifted down by 4 nm in panel E and by 50 nm in panel F. The time difference between solid and dotted curves

is ~6 ms, equivalent to ~57 degree phase difference at 26 kHz. The outer hair cell-driven active RL vibration (green lines) was obtained by vector

subtraction of the BM vibration from the measured RL vibration. DBM: basilar membrane displacement; DOHC: outer hair cell-driven reticular lamina

displacement. (G) Diagrams of time waveforms of the BM and RL vibration at an intermediate sound pressure level at 26 kHz.

DOI: https://doi.org/10.7554/eLife.37625.007
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at 0.8 mm in Figure 5F), depolarized outer hair cells shorten and induce a large downward reticular

lamina displacement (green arrow at 0.8 mm in Figure 5F). While this movement creates a positive

fluid pressure between the reticular lamina and basilar membrane at the cochlear base (0.7–1.2 mm

in Figure 5F,G), the reticular lamina at locations ~ 1.2–1.8 mm, however, moves upward (green

arrows near 1.6 mm in Figure 5F), resulting in a negative fluid pressure inside the cochlear partition.

This pressure gradient from the base to an apical location likely results in fluid movement in the api-

cal direction inside the cochlear partition (blue arrows in Figure 5F,G) as demonstrated in vitro by

electrically stimulating the organ of Corti (Karavitaki and Mountain, 2007; Zagadou and Mountain,

2012). Since the organ of Corti sits on the basilar membrane, the longitudinal fluid movement can

travel forward to the best-frequency location as a result of the basilar membrane traveling wave.

Thus, a large population of outer hair cells from a broad cochlear area can change the fluid space

between the reticular lamina and basilar membrane at the best frequency location on a cycle-by-

cycle basis, consequently enhancing the reticular lamina vibration. In addition, in-phase vibrations of

the reticular lamina and basilar membrane result in constructive interference near the best-frequency

location (Figure 5E,F,G), which further enhances reticular lamina vibration at the apical end of outer

hair cells. The magnitude of the resulting constructive interference decreases as phase differences

move into destructive interference regimes at frequencies below and above the best frequency.

While this frequency dependent interference may consequently enhance the tuning of the reticular

lamina vibration, its effects probably is relatively small due to the large magnitude difference

between the reticular lamina and basilar membrane vibration. The interaction between the reticular

lamina and basilar membrane at low frequencies may also be involved in two-tone suppression of

the auditory nerve or basilar membrane response (Delgutte, 1990; Ruggero et al., 1992). It has

been shown that the proposed global hydromechanical mechansm is consistent with the observation

that auditory nerve activities can be suppressed by stimulating medial olivocochlear efferents or by a

low-frequency bias tone not only at the best frequency but also at tail (low) frequencies (Nam and

Guinan, 2017; Stankovic and Guinan, 1999).

Since the stereocilia bundles of both the inner and outer hair cells are anchored in the hair cell

cuticular plates which make up a portion of the reticular lamina, the outer hair cell-driven reticular

lamina vibration likely results in fluid movement in the subtectorial space and consequently stimu-

lates inner hair cells. It has been shown in vitro that electrical stimulation of outer hair cells of guinea

pig cochleae resulted in a counterphasic motion of the tectorial membrane and inner hair cells at fre-

quencies below 3 kHz (Nowotny and Gummer, 2006). This result was believed to indicate direct

fluid coupling between outer hair cells and inner hair cells through a pulsatile fluid motion. It has

also been demonstrated in vitro that outer hair cell stereocilia not only move sideways but also

change length in response to sound stimulation (Hakizimana et al., 2012). The large bundle deflec-

tion was observed when the length change was small, indicating that hair cells are maximally stimu-

lated when the stereocilia length change is minimal. Considering the firm connection of the tallest

stereocilia to the tectorial membrane, the stereocilia length change also suggests the interaction

between the reticular lamina vibration and the tectorial membrane vibration. Thus, outer hair cells

may also play a role in the traveling wave on the tectorial membrane, which has been demonstrated

in vitro (Ghaffari et al., 2007; Ghaffari et al., 2010) and in vivo (Dong and Cooper, 2006;

Lee et al., 2015; Lee et al., 2016; Recio-Spinoso and Oghalai, 2017; Rhode and Cooper, 1996).

The interaction between the reticular lamina and tectorial membrane vibration may enhance the

stimulus to the inner hair cells and boost hearing sensitivity. Specific mechanisms on how the outer

hair cell-driven reticular lamina vibration stimulates inner hair cells, however, remain to be deter-

mined experimentally until in vivo micromechanical measurements with cellular spatial resolution

become available.

The observed additional delay of the reticular lamina vibration was likely caused by mechanoelec-

trical (Corey and Hudspeth, 1979) and electromechanical (Brownell et al., 1985) transduction of

outer hair cells and mechanical coupling inside the cochlear partition. Although delays for prestin-

associated currents in vitro (Santos-Sacchi and Tan, 2018) are longer than the latency difference

between the reticular lamina and basilar membrane vibration in vivo, they vary with the membrane

voltage of outer hair cells. Voltage excitation away from the resting membrane potential has been

shown to have a faster response. Moreover, the depolarized resting potential can minimize the outer

hair cell time constant and expanding the bandwidth of the membrane filter by activating voltage-

dependent K + conductance (Johnson et al., 2011). Mechanical loads on the outer hair cells, such
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as in vivo condition, could further improve the cell’s frequency response (Iwasa, 2017). Since Dei-

ters’ cells are located between the outer hair cells and the basilar membrane, the acoustical and cel-

lular forces to and from the outer hair cells have to be transmitted through Deiters’ cells. The soft

Deiter’s cell soma likely induces delays, which can contribute to the delay difference between the

reticular lamina and basilar membrane vibration. This apparently is supported by the postmortem

magnitude and phase difference between the reticular lamina and basilar membrane vibration (Fig-

ure 2). When the outer hair cell-generated force is absent under postmortem conditions, the reticu-

lar lamina should move passively following the basilar membrane travelling wave with equal

magnitude and phase, if the connection between the two structures is rigid. The larger postmortem

magnitude and phase difference in gerbils (Figure 2) than those in mice (Figure 2G and H,

Ren et al., 2016b) indicate that the mechanical coupling between the reticular lamina and basilar

membrane in the gerbil may not be as tight as that in the mouse.

Compared to a large time period (T) at a low frequency (f) (T = 1/f) (such as T = 2,000 ms, where

f = 500 Hz), a 17.9-ms latency difference (Figure 3J) is negligible and results in an insignificant phase

difference. Thus, the ~180 degree phase difference between the reticular lamina and basilar mem-

brane vibration at a low frequency mainly reflects the opposite movements of both ends of outer

hair cells (Brownell et al., 1985). The same latency difference, however, can result in ~180 degree

phase difference at the best frequency, due to the small period (such as T = 38 ms, where f = 26

kHz). This latency-induced phase lag of the reticular lamina vibration, compensating for the ~180

degree phase difference observed at low frequencies, accounts for in-phase vibrations of the reticu-

lar lamina and basilar membrane at the best frequency. Therefore, the present in vivo results do not

conflict with the in vitro observation that both ends of the cylindrical outer hair cells move in oppo-

site directions at low frequencies (Brownell et al., 1985; Santos-Sacchi, 1989).

In summary, heterodyne low-coherence interferometry demonstrates in vivo that the outer hair

cell-driven reticular lamina vibration occurs after, not before, the basilar membrane vibration. The

reticular lamina and basilar membrane move in opposite directions at low frequencies and in phase

near the best frequency. This experimental finding conflicts with commonly accepted cochlear local

feedback theory and suggests that outer hair cells enhance hearing sensitivity through a global

hydromechanical mechanism.

Materials and methods
Twenty-three young healthy Mongolian gerbils of both sexes at age of 4 to 8 weeks (40–80 g) were

used in this study.

Heterodyne low-coherence interferometer
A scanning low-coherence heterodyne interferometer was built based on a scanning laser hetero-

dyne interferometer (Ren, 2002; Ren, 2004; Ren et al., 2011) by replacing the helium-neon laser

with a modified superluminescent diode with related optical and electronic components (Ren et al.,

2016a; Ren et al., 2016b). Because of the small coherence length, the low-coherence interferometer

can measure vibrations with a high axial resolution (Chen et al., 2011; Hong and Freeman, 2006;

Lee et al., 2015). The use of low-coherence light and an objective lens with numerical aperture 0.42

provides adequate spatial selectivity for measuring the reticular lamina and basilar membrane vibra-

tions in the living cochlea. In addition to its unprecedented sensitivity, this interferometer has a

broad dynamic range, high temporal resolution, and low phase noise, due to the use of a 40-MHz

carrier for heterodyne detection. In contrast to homodyne interferometers, a heterodyne interferom-

eter can detect vibration directions without 180-degree phase uncertainty (Hong and Freeman,

2006; Khanna et al., 1986; Lukashkin et al., 2005), which ensured the reliability of the phase meas-

urements in this study.

Measurement of reticular lamina and basilar membrane vibrations
Animal anesthesia and surgical procedures were the same as described previously (Ren, 2002;

Ren et al., 2011; Ren and Nuttall, 2001). Briefly, after about one third of the round window mem-

brane was removed and the opened round window was partially covered with a glass coverslip, the

object light from the interferometer was focused on the center of the outer hair cell region of the

cochlear partition at the basal turn (Figure 6A). The transverse locations of the basilar membrane

He et al. eLife 2018;7:e37625. DOI: https://doi.org/10.7554/eLife.37625 11 of 17

Research article Neuroscience

https://doi.org/10.7554/eLife.37625


and reticular lamina were determined by measuring the backscattered light (carrier) level as a func-

tion of the transverse location. The locations of the basilar membrane and reticular lamina were indi-

cated by the two peaks of the backscattered light level (Figure 6B) and confirmed by the distinct

magnitude and phase of the cochlear partition vibrations at the two locations (Figure 6C,D).

Cochlear partition vibrations were measured as a function of the transverse location at the best fre-

quency (30 kHz) and at different sound levels (0–80 dB SPL).

When the object beam of the interferometer was focused on the basilar membrane or the reticu-

lar lamina, acoustical tones at different frequencies and levels were delivered to the ear canal. The

tone frequency was changed from 1.8 to 40.0 kHz by ~0.2 kHz per step. The magnitude and phase

of the cochlear partition vibration were measured using a lock-in amplifier (SR830, Stanford Research

System, Inc. Sunnyvale, CA) and recorded on a computer. The best frequency was determined by

the peak of the basilar membrane displacement as a function of frequency at 30 dB SPL. For record-

ing time waveforms of the reticular lamina and basilar membrane vibration, a 10-ms electrical pulse

was generated by a dynamic signal analyzer (PXI-4461, National Instruments, Austin, TX) and used to

drive an electrostatic speaker (EC1, Tucker-Davis Technologies, Alachua, FL). Displacements of the

reticular lamina and basilar membrane vibrations were digitized at the rate of 200,000 samples per

second and averaged synchronously with stimuli for 100 times. Time waveforms from the same time

window were plotted to show the temporal relationship between the reticular lamina and basilar

Figure 6. Diagram of a cross section of the organ of Corti and the cochlear partition vibration as a function of the

transverse location. (A) Diagram of a cross section of the organ of Corti. TM, tectorial membrane; OHCs, outer hair

cells; RL, reticular lamina; IHC, inner hair cell; BM, basilar membrane; DCs, Deiters’ cells. SLHI, scanning low-

coherence heterodyne interferometer. Red arrowed lines indicate incident and backscattered low-coherence

lights. (B) The backscattered light level (carrier) as a function of the transverse location shows two peaks at

locations on the BM and RL. (C) Displacement as a function of the transverse location at different sound levels.

Displacements at the RL location are greater and show more compressive growth with sound level than those at

the BM location. Line types and colors in this plot are the same as those in panel D. (D) Phase decreased slightly

at the RL location. Data were collected from a sensitive gerbil cochlea from the basal turn with best frequency 30

kHz. Due to the extremely low reflectivity of perilymph, the noise level outside the cochlear partition is higher than

low-level tone-induced vibrations at the RL and BM location in panel C.

DOI: https://doi.org/10.7554/eLife.37625.008
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membrane vibration (Figure 4). The reticular lamina and basilar membrane vibration were measured

in a random order.

Cochlear sensitivity was monitored by continuously recording distortion product otoacoustic

emission (DPOAE). The DPOAE at 16 kHz was evoked by two 60 dB SPL tones at 20 and 24 kHz. A

cochlea with <5 dB DPOAE decrease was considered sensitive. Postmortem data were collected 10

to 30 min after the animal’s death from anesthetic overdose. Stapes vibration was recorded under

the same conditions as for the cochlear mechanical measurement.

Data analysis and statistics
Igor Pro (Version 7.0.5.2, WaveMetrics, Lake Oswego, OR) was used for analyzing data. The fre-

quency responses of the reticular lamina and basilar membrane were presented by displacement

and phase as a function of frequency. The transfer functions were estimated by the displacement

ratio of the reticular lamina or the basilar membrane to the stapes at different frequencies. Since the

phase lag of the cochlear partition vibration (f) is a function of latency (t) (f = 2pft, where f is fre-

quency), the time relationship between the basilar membrane and reticular lamina vibration were

presented by the phase difference (Df) (Df=fRL-fBM), where fRL is the reticular lamina phase and

fBM is the basilar membrane phase at different frequencies. The latency difference (Dt) was derived

from the slope of the linear regression line of the phase difference as a function of frequency (Df/Df)

(Dt=Df/2pDf).

The latency difference (Dt) was also determined based on the time waveform of the reticular lam-

ina and basilar membrane response to clicks. Despite the sharp onset of the electrical pulse, the

onsets of the reticular lamina and basilar membrane response were distorted due to frequency

bandwidth limits of the speaker, the middle ear, and the cochlea, and cannot been measured pre-

cisely. Because the first displacement peak of the time waveform indicates the arriving time of the

maximum stimulation to the reticular lamina and the basilar membrane, Dt was determined by the

time difference between the first peak of the reticular lamina (TB) and that of the basilar membrane

(TA), (Dt = TB �TA) (Figure 4C). The longitudinal patterns of the reticular lamina and basilar mem-

brane vibrations were presented by plotting displacement and phase as a function of the longitudi-

nal location. The longitudinal location was derived from the stimulus frequency according to the

frequency-location function in gerbil cochleae (Müller, 1996). The grouped results were presented

by mean and standard error calculated across animals. Sound level-dependent latency changes were

tested at 50, 60, 70, and 80 dB SPL using one-way ANOVA and p<0.05 was considered significantly

different.
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