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LETTER TO EDITOR

Proteomic profiling of lung diffusion impairment in the
recovery stage of SARS-CoV-2–induced ARDS

Dear Editor,
In survivors of acute respiratory distress syndrome (ARDS)
secondary to SARS-CoV-2 infection, lung diffusion impair-
ment is consistently associated with a characteristic
plasma proteome. The mechanistic pathways linked to
the proteomic pattern provide novel evidence on multiple
biological domains relevant to the postacute pulmonary
sequelae.
Based on the increasing number of COVID-19 survivors

affected by pulmonary abnormalities and the limited
understanding of the pathophysiology of the sequelae,1
we analysed the systemic proteomic determinants of lung
diffusion impairment in SARS-CoV-2–induced ARDS
survivors.
This is a substudy of a 3-month prospective cohort study

including survivors of severe COVID-19 (n = 88).2 Patients
admitted to the Hospital Universitari Arnau de Vilanova-
Santa María (Lleida, Spain) between March and August
2020 were included if they fulfilled the following crite-
ria: aged over 18, developed ARDS during hospital stay
and attended a ‘post-COVID’ evaluation 3 months after
hospital discharge. The study received approval from the
medical ethics committee (CEIC/2273) and was performed
in full compliance with the Declaration of Helsinki. The
patients received written information about the study and
signed an informed consent form. A complete pulmonary
evaluation was performed as previously detailed.2
Blood samples were collected in EDTA tubes (BD, NJ,

USA) and processed using standardised operating pro-
cedures with support by IRBLleida Biobank (B.0000682)
and ‘Plataforma Biobancos PT20/00021’. Plasma pro-
teomic profiling was performed using the PEA technol-
ogy (Olink, Uppsala, Sweden). Four panels were anal-
ysed: organ damage, immune response, inflammation
and metabolism. Additional details can be consulted
at https://www.olink.com/resources-support/document-
download-center/. A total of 364 proteins were measured.
One hundred forty-five proteins were excluded from sub-
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sequent studies due to undetectable levels in more than
50% of the samples (Table S1). SARS-CoV-2 RNA was
detected as previously described.3 STRING,4 Reactome,5
GTEX (https://www.gtexportal.org/home/) and Drug–
Gene Interaction6 databases were used for bioinformatic
analyses. All statistical analyses were performed using R
software, version 4.0.2.
The study flowchart is displayed in Figure S1. The

most relevant demographic and clinical characteristics
during the acute phase are shown in Table 1. The median
(P25;P75) age was 60.0 years (53.0;65.5), and the preva-
lent sex was male (69.0%). At the 3-month follow-up,
30% of patients presented moderate-to-severe pulmonary
diffusion impairment (DLCO < 60%) (Table 2). Using lin-
ear models for arrays, we found 15 differentially detected
proteins (FDR < 0.05) in this study group (Figure 1A,
Table S2). The 15 proteins separated the patients accord-
ing to the grade of lung dysfunction (Figure 1B,C). All
proteins showed higher concentrations in patients with
DLCO < 60% (Figure 1D). Proteins showed a dose–response
relationship with DLCO in unadjusted generalized addi-
tive models (GAM) models (Figure S2). Renal function
at follow-up was associated with both diffusion impair-
ment and several proteins (rho≥0.3) (Table 2, Figure S3).
Therefore, glomerular filtration was considered a con-
founder, together with age, sex, previous chronic pul-
monary disease, smoking history and the use of corticoids
after hospital discharge. No impact of these confound-
ing factors was observed (Figure 1E). Except for KIM1
(rho≥0.3 and rpb≥0.3), there was no correlation between
protein levels and disease severity (Figure S4). KIM1,
LAMP3 and PGF correlated with the presence of fibrotic
lesions (rpb≥0.3) (Figure S5). Specific correlations were
observed between protein levels and laboratory parameters
(rho≥0.3) (Figure S3).
The sparse partial least-squares discriminant analy-

sis (sPLS-DA) generated a signature of 20 proteins that
allowed optimal discrimination between study groups
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TABLE 1 Characteristics of study sample

All
DLCO ≥ 60%
predicted

DLCO < 60%
predicted

N = 87 N = 61 N = 26 p-value N
Sociodemographic characteristics
Age (years) 60.0 [53.0;65.5] 56.0 [50.0;63.0] 63.5 [60.0;68.8] 0.009 87
Sex 0.193 87
Male 60 (69.0%) 39 (63.9%) 21 (80.8%)
Female 27 (31.0%) 22 (36.1%) 5 (19.2%)

BMI (kg/m2) 29.2 [25.6;33.1] 28.7 [25.8;33.2] 29.2 [25.1;31.8] 0.781 87
Smoking history 0.403 87
Former 45 (51.7%) 29 (47.5%) 16 (61.5%)
Non-smoker 36 (41.4%) 28 (45.9%) 8 (30.8%)
Current 6 (6.90%) 4 (6.56%) 2 (7.69%)

Clinical characteristics
Hypertension 37 (42.5%) 22 (36.1%) 15 (57.7%) 0.103 87
Type II Diabetes Mellitus 15 (17.2%) 11 (18.0%) 4 (15.4%) 1.000 87
Obesity 36 (41.4%) 25 (41.0%) 11 (42.3%) 1.000 87
Cardiovascular disease 7 (8.05%) 3 (4.92%) 4 (15.4%) 0.190 87
Chronic lung disease 7 (8.05%) 5 (8.20%) 2 (7.69%) 1.000 87
Asthma 7 (8.05%) 5 (8.20%) 2 (7.69%) 1.000 87
Chronic kidney disease 1 (1.15%) 1 (1.64%) 0 (0.00%) 1.000 87
Chronic liver disease 3 (3.45%) 2 (3.28%) 1 (3.85%) 1.000 87
Baseline characteristics in hospital
admission

Time since first symptoms to
hospital admission (days)

7.00 [5.00;8.00] 7.00 [5.00;8.00] 7.00 [7.00;8.00] 0.022 87

Oxygen saturation (%) 92.0 [90.0;94.0] 92.0 [90.0;95.0] 92.0 [89.0;93.0] 0.133 79
FiO2 (%) 28.0 [21.0;44.5] 28.0 [21.0;44.0] 24.5 [21.0;47.5] 0.937 87
PaO2 (mmHg) 62.0 [50.8;73.2] 64.0 [51.0;74.5] 62.0 [49.0;72.0] 0.716 80
PaCO2 (mmHg) 34.0 [31.0;38.0] 33.5 [30.2;37.0] 35.0 [31.0;39.0] 0.200 79
PaO2/FiO2 (mmHg) 229 [155;285] 233 [156;271] 214 [155;286] 0.697 80
Glucose (mg/dL) 120 [108;146] 119 [107;144] 120 [109;147] 0.559 87
Creatinine (mg/dL) 0.82 [0.70;0.96] 0.81 [0.67;0.94] 0.86 [0.73;0.99] 0.393 87
C-reactive protein (mg/L) 107 [65.3;172] 107 [67.3;173] 114 [28.6;165] 0.445 84
Leukocyte count (x109/L) 6.24 [5.06;9.38] 6.24 [5.05;9.06] 6.26 [5.24;9.48] 0.857 87
Neutrophil count (x109/L) 5.08 [3.72;7.56] 5.08 [3.68;7.54] 4.98 [3.93;7.41] 0.893 87
Lymphocyte count (x109/L) 0.83 [0.64;1.08] 0.86 [0.68;1.09] 0.80 [0.57;1.03] 0.266 87
Monocyte count (x109/L) 0.32 [0.23;0.47] 0.31 [0.23;0.47] 0.35 [0.21;0.60] 0.806 87
Platelet count (x109/L) 193 [152;252] 197 [161;251] 178 [143;258] 0.704 87
Urea (mg/dL) 33.0 [28.0;44.5] 31.0 [26.0;41.0] 40.0 [31.8;57.2] 0.006 87
Hospital stay
Worst PaO2/FiO2 (mmHg) 134 [94.5;188] 134 [95.0;181] 132 [95.2;189] 1.000 87
PaO2/FiO2 categories 0.790 87
PaO2/FiO2 201–300 mmHg 20 (23.0%) 15 (24.6%) 5 (19.2%)
PaO2/FiO2 101–200 mmHg 39 (44.8%) 26 (42.6%) 13 (50.0%)
PaO2/FiO2 ≤100 mmHg 28 (32.2%) 20 (32.8%) 8 (30.8%)

Hospital stay (days) 21.0 [12.5;35.5] 18.0 [11.0;35.0] 26.5 [14.0;36.2] 0.288 87
ICU admission 75 (86.2%) 53 (86.9%) 22 (84.6%) 0.746 87

(Continues)
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TABLE 1 (Continued)

All
DLCO ≥ 60%
predicted

DLCO < 60%
predicted

N = 87 N = 61 N = 26 p-value N
ICU stay (days) 13.0 [5.00;25.5] 13.0 [5.00;24.0] 14.0 [6.25;30.0] 0.474 75
High-flow nasal cannula 47 (54.0%) 34 (55.7%) 13 (50.0%) 0.798 87
Invasive mechanical ventilation 43 (49.4%) 29 (47.5%) 14 (53.8%) 0.761 87
Invasive mechanical ventilation
duration (days)

17.0 [11.0;24.0] 16.0 [11.0;21.0] 18.0 [11.5;25.8] 0.467 43

Non-invasive mechanical
ventilation

45 (51.7%) 30 (49.2%) 15 (57.7%) 0.622 87

Non-invasive mechanical
ventilation duration (days)

2.50 [1.75;4.00] 2.00 [1.00;4.00] 3.00 [2.00;7.00] 0.216 44

Prone positioning 41 (47.1%) 26 (42.6%) 15 (57.7%) 0.292 87
Prone positioning duration
(hours)

34.5 [19.2;62.8] 40.0 [24.0;72.0] 28.0 [8.50;47.0] 0.124 40

Antibiotics 80 (92.0%) 59 (96.7%) 21 (80.8%) 0.023 87
Hydroxychloroquine 66 (75.9%) 47 (77.0%) 19 (73.1%) 0.902 87
Tocilizumab 34 (39.1%) 25 (41.0%) 9 (34.6%) 0.751 87
Corticoids 66 (75.9%) 46 (75.4%) 20 (76.9%) 1.000 87
Remdesivir 13 (14.9%) 9 (14.8%) 4 (15.4%) 1.000 87
Lopinavir/ritonavir 64 (73.6%) 45 (73.8%) 19 (73.1%) 1.000 87
Corticoids at hospital discharge 12 (14.6%) 9 (15.5%) 3 (12.5%) 1.000 82

Abbreviations: BMI: bodymass index;DLCO: carbonmonoxide diffusing capacity; FiO2: fraction of inspired oxygen; ICU: intensive care unit; IMV: invasivemechan-
ical ventilation; PaCO2: carbon dioxide partial pressure; PaO2: oxygen partial pressure; SaO2: arterial oxygen saturation.
aContinuous variables are expressed as median [P25;P75].
bCategorical variables are expressed as n (%).

TABLE 2 Pulmonary evaluation and laboratory tests at the 3-month follow-up

All
DLCO ≥ 60%
predicted

DLCO < 60%
predicted

N = 87 N = 61 N = 26 p-value N
Pulmonary function
DLCO (% predicted) 66.1 [57.1;73.9] 71.4 [65.6;77.0] 52.8 [47.1;55.9] <0.001 87
DLCO <0.001 87

< 60% predicted 26 (29.9%) 0 (0.00%) 26 (100%)
< 80% predicted 50 (57.5%) 50 (82.0%) 0 (0.00%)
≥80% predicted 11 (12.6%) 11 (18.0%) 0 (0.00%)

6-min walking test
Distance (m) 400 [365;430] 410 [390;448] 378 [305;404] 0.001 84
Oxygen saturation average (%) 96.0 [94.0;97.0] 96.0 [95.0;97.0] 95.0 [94.0;96.0] 0.009 85
Oxygen saturation initial (%) 97.0 [96.0;97.0] 97.0 [96.0;97.0] 96.0 [95.2;97.0] 0.005 85
Oxygen saturation final (%) 96.0 [95.0;97.0] 96.0 [95.0;97.0] 96.0 [94.0;96.0] 0.003 85
Oxygen saturation minimal (%) 95.0 [93.0;96.0] 95.0 [93.0;96.0] 94.0 [92.0;95.0] 0.017 85
Chest CT
Lesions
Reticular 42 (48.8%) 29 (48.3%) 13 (50.0%) 1.000 86
Fibrotic 20 (23.3%) 10 (16.7%) 10 (38.5%) 0.055 86

TSS score 5.00 [2.00;7.00] 2.50 [1.00;7.00] 8.00 [5.00;11.8] <0.001 86
(Continues)
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TABLE 2 (Continued)

All
DLCO ≥ 60%
predicted

DLCO < 60%
predicted

N = 87 N = 61 N = 26 p-value N
Laboratory tests
Creatinine (mg/dl) 0.82 [0.72;0.95] 0.81 [0.71;0.91] 0.90 [0.74;1.03] 0.126 87
Glomerular filtrate
(ml/min/1.73m2)

90.0 [83.3;90.0] 90.0 [89.4;90.0] 88.2 [74.7;90.0] 0.011 87

C-reactive protein (mg/L) 2.40 [2.00;4.55] 2.50 [2.00;4.70] 2.20 [2.00;4.20] 0.602 87
Leucocyte count (x109/l) 6.49 [5.60;7.56] 6.44 [5.73;7.36] 7.11 [5.44;8.35] 0.756 87
Neutrophil count (x109/L) 3.40 [2.60;4.00] 3.53 [2.59;3.94] 3.22 [2.66;4.67] 0.770 87
Lymphocyte count (x109/L) 2.12 [1.79;2.79] 2.26 [1.81;2.76] 2.08 [1.71;2.88] 0.610 87
Monocyte count (x109/L) 0.54 [0.45;0.68] 0.51 [0.45;0.65] 0.59 [0.48;0.70] 0.161 87
Platelet count (x109/L) 241 [210;277] 243 [217;277] 240 [197;272] 0.433 87
Urea (mg/dL) 38.0 [33.0;45.0] 37.0 [33.0;44.0] 39.0 [35.0;49.5] 0.188 87

Abbreviations: DLCO: carbon monoxide diffusing capacity; TSS: total severity score.
aContinuous variables are expressed as median [P25;P75].
bCategorical variables are expressed as n (%).

(AUC= 0.872) (Figure 2A–C). Based on the variable impor-
tance of component 1, the top five relevant contribu-
tors were PTN, KIM1, CALCA, CLEC7A and ENTPD6
(Figure 2A). The feature selection procedure based on ran-
dom forest supported these results (Figure S6A). In addi-
tion, sPLS was used to determine the protein profile that
best explained the DLCO levels (as a continuous variable)
(Figures 2D,E,F). The analysis identified a signature of 35
proteins. PTN, PGF, NPDC1 and METRNL were the most
weighted factors for defining component 1 (Figure 2D).
The proteomic profile generated using random forest was
in concordance with these findings (Figure S6B). IFN-γ,
which participates in the response to infection,7 was asso-
ciated with diffusion capacity. Therefore, we analysed viral
load in plasma samples from a subset of 50 patients. Only
one patient was positive for the presence of SARS-CoV-2
RNA.
The signature including the higher number of pro-

teins (n = 35) was used for bioinformatic analyses. An
enrichment in pathways associated with cell proliferation
and differentiation, tissue remodelling, inflammation and
immune response, angiogenesis, coagulation and fibrosis
was observed (Figure S7A, Tables S3 and S4). Three inde-
pendent protein networks were identified (Figure S8). A
generalized expression of the signature was observed in
the lung but also in other tissues (Figure S7B). The pro-
teomic pattern was enriched in lung epithelial, endothe-
lial and immune cells (Figure S7C). The drug–gene inter-
action analysis identified several FDA-approved drugs that
can target the proteins (Table S5).
Postinfection long-term lung dysfunction has become

clinically evident in a large percentage of SARS-CoV-

2–induced-ARDS survivors. Systemic molecular profiling
constitutes a promising strategy to decipher the underly-
ing biological mechanisms linked to the pulmonary out-
comes and, consequently, to identify candidates that may
be amenable of therapeutic intervention.8–10 Here, we pro-
vide compelling evidence that (i) a set of plasma proteins
are differentially detected in survivors with moderate-to-
severe diffusion impairment; (ii) diffusion capacity is asso-
ciated with alterations in the proteomic profile, even after
adjustment for confounding factors; (iii) survivors with
the most serious sequelae show higher disturbances in
the protein levels; (iv) sPLS and random forest define pro-
tein signatures highly associated with pulmonary func-
tion; (v) the signatures are composed of heterogeneous
factors implicating multiple biological pathways; (vi) the
signatures constitute a source of targets for candidate
drugs; (vii) plasma proteomic profiles accurately classify
patients with respiratory sequelae; and (viii) no associa-
tion was observed between blood viral load and diffusion
impairment.

CONCLUSION

The plasma proteomic profile linked to lung diffusion
impairment improves our understanding of the phys-
iopathology of postacute pulmonary sequelae in COVID-
19, and, consequently, constitutes a useful resource for the
design of therapeutic strategies and the development of
tools to improve medical decision-making in the “post-
COVID” syndrome. Additional cohorts and functional
analyses are needed to corroborate our findings.
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F IGURE 1 Differentially detected proteins according to the severity of lung diffusion impairment in survivors of ARDS secondary to
SARS-CoV-2 infection. (A) Volcano plot showing the p-value versus the fold change for each detected protein. Blue dots indicate significantly
detected proteins considering a p-value < 0.05. Green dots reflect significantly detected proteins with an FDR < 0.05. The FDR was obtained
using the Benjamini–Hochberg method. (B) Heatmap representing unsupervised hierarchical clustering. Each column represents a survivor.
Each row represents a differentially detected protein. The patient clustering tree is plotted on top. The protein clustering is shown on the left.
Protein levels are represented through a colour scale, with green tones related to increasing levels and pink tones related to decreasing
expression. (C) Principal component analysis using differentially detected proteins. Each point denotes a survivor and is represented with a
specific colour depending on the presence or absence of severe diffusion impairment. (D) Violin plots of differentially detected proteins. Fold
change (FC) and FDR are plotted for each protein. (E) Generalised additive model (GAM) with penalized cubic regression splines for DLCO

(Y axis) and the levels of each of the differentially detected proteins (NPX) (X axis). The association was adjusted by age, sex, previous chronic
pulmonary disease, smoking history, the use of corticoids after hospital discharge and glomerular filtration. All proteins included in the
analysis showed an FDR < 0.05
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F IGURE 2 Plasma proteomic signatures associated with moderate/severe diffusion impairment and DLCO levels in survivors of ARDS
secondary to SARS-CoV-2 infection. (A) Proteins are ranked by their variable importance to component 1. (B) Supervised component analysis
cluster through sparse partial least-squares discriminant analysis (sPLS-DA) discriminating between survivors with moderate/severe
diffusion impairment (DLCO < 60%) and survivors with mild or an absence of alterations in diffusion capacity survivors (DLCO≥60%). Each
point represents a patient. (C) Receiver operating characteristic (ROC) curve for the protein signature. The discriminative power of the
signature is represented as the area under the ROC curve (AUC). (D) Proteins ranked by their variable importance for component 1.
(E) Supervised component analysis cluster through sPLS according to the DLCO levels of the cohort. Each protein represents a survivor.
(F) Generalized additive model (GAM) with penalized cubic regression splines for DLCO (Y axis) and the first component (X axis). The
significance of the association is given by the coefficient of determination (R2)
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