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Metabolic dysregulation, including abnormal glucose utilization and insulin resistance or deficiency, occurs at an early stage of AD
independent of type II diabetes mellitus (T2DM). Thus, AD has been considered as type 3 diabetes. T2DM is a risk factor for AD;
the coexistence of these two diseases in a society with an increasing mean age is a significant issue. Recently, research has focused
on shared molecular mechanisms in these two diseases with the goal of determining whether treating T2DM can lessen the severity
of AD. The progress in this field lends strong support to several mechanisms that could affect these two diseases, including insulin
resistance and signaling, vascular injuries, inflammation, and the receptor for advanced glycation endproducts and their ligands.
In this paper, we focus on inflammation-based mechanisms in both diseases and discuss potential synergism in these mechanisms
when these two diseases coexist in the same patient.

1. Introduction

Alzheimer’s disease (AD) and type 2 diabetes mellitus
(T2DM) are diseases prevalent in the elderly population.
T2DM can increase the risk for developing dementia
by 1.5- to 2-fold, and it is considered an important risk
factor for AD [1–8]. As the prevalence rate of T2DM is
the highest in the age group 65 and older (26.8% in year
2010 according to Center for Disease Controls and Preven-
tion; http://www.cdc.gov/diabetes/pubs/estimates07.htm), it
is a serious concern how T2DM might impact the prevalence
rate of AD, and how it might affect the treatment of AD
patients. As the mean population age is increasing, both
of these two diseases could become much more significant
issues. The issue could be further compounded by the
epidemic-like phenomenon of obesity that is spreading
across all ages [9–11]. At the current annual increase of
0.3–0.6%, there could be 75% of adults that are overweight
or obese by 2015 [11]. Obesity is a major risk factor for
developing T2DM [2, 12]. Moreover, obesity in middle-age

subjects is a negative modifier of T2DM [13]. It has been
shown recently that insulin resistance, which is also a risk
factor for AD, is associated with lower brain volume and
executive function in a large, relatively healthy, middle-aged,
community-based cohort [14]. A lack of comprehensive
preventive and intervention strategies for these interlinked
diseases could lead to a more severe crisis for the healthcare
system and the health of the public [15].

There has been promising progress made in identifying
links between T2DM and dementia in the last decade.
Special research attention has been directed towards the
mechanisms by which T2DM may affect cognitive func-
tion and pathogenesis of AD, and towards determining
whether treating T2DM might be effective in reducing
incidence of AD by modifying AD pathogenesis. The major
mechanisms through which T2DM may influence AD
include insulin resistance, impaired insulin receptor (IR),
and insulin growth factor (IGF) signaling, glucose toxicity,
advanced glycation endproducts (AGEs) and the receptor for
advanced glycation endproducts (RAGEs), cerebrovascular
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injury, vascular inflammation, and others [5, 16–20]. There
are a number of comprehensive reviews available on insulin
resistance and growth factor signaling as molecular mech-
anisms linking AD and T2DM [8, 16, 17, 21]. Additional
discussion focusing on whether there is a causal relationship
between AD and T2DM from the studies of epidemiology,
clinical trials, and imaging can be found in a review article
published in the March issue of Journal of Alzheimer’s
Disease [18].

The goal of this paper is to focus on a less studied
topic: how inflammation-based mechanisms in T2DM might
affect AD neuroinflammation and microglial activation.
As T2DM and AD both have significant inflammatory
components, it is important to assess whether inflammation
is synergized when these two diseases coexist. As there has
been little research conducted on this aspect, we will review
inflammatory mechanisms with respect to each disease and
discuss the possibility for these mechanisms to converge.

2. Inflammation and Diabetes

An association of inflammation with T2DM can possibly be
demonstrated before clinical diagnosis. This is based on sev-
eral epidemiological studies that demonstrated greater white
blood cell counts or higher levels of inflammatory markers,
including C-reactive protein (CRP) and interleukin-6 (IL-6)
in healthy middle-aged subjects who later developed T2DM
[22–24]. However, not only is chronic inflammation a risk
factor for developing T2DM, but it is also an important
contributor to the pathogenic mechanisms.

2.1. IL-1β and Its Receptor. The beta cells from T2DM
subjects contain elevated levels of IL-1β, a potent pro-
inflammatory cytokine, and reduced levels of IL-1 receptor
antagonist (IL-1ra) [25]. IL-1ra is a naturally produced
molecule that inhibits IL-1β activity on its receptor, IL-
1 receptor [26]. In vitro studies demonstrated that IL-
1β increased release of insulin by pancreatic islet cells in
the presence of high glucose concentration and promoted
glucose oxidation [27]. Islet beta cells can be damaged by
exposure to IL-1β, in a dose- and time-dependent manner
[28]. High glucose concentration induced IL-1β expression,
but reduced expression of IL-1ra, resulting in an imbalance
between IL-1β and IL-1ra, which impaired insulin secretion
and cell proliferation and increased apoptosis [29]. A study
in T2DM GK rats has shown that IL-1ra treatment at high
dose improved glucose sensitivity, insulin processing, and
suppressed inflammation and infiltration of immune cells
[30]. The GK rats developed T2DM at a young age and
the pancreatic tissues expressed elevated levels of IL-1β, and
IL-1β-driven inflammatory cytokines and chemokines such
as tumor necrosis factor-alpha (TNF-α), monocyte chemo-
tactic protein-1 (MCP-1), and macrophage inflammatory
protein-1alpha (MIP-1α), along with abnormal infiltration
of macrophages and granulocytes [30]. This study supported
that an imbalance between IL-1β and IL-1ra leads to
pancreatic islet inflammation and release of insulin. Clinical
trials using anakinra, a recombinant human IL-1ra, or
inhibition of IL-1 receptor signaling has shown effectiveness

in correcting beta cells dysfunction and reduced systemic
inflammation in T2DM [31, 32]. In fact, IL-1ra is the only
anti-inflammatory treatment approved by Food and Drug
Administration for T2DM [33].

2.2. RAGE and the Ligands. The receptor for advanced gly-
cation endproducts (RAGE), a pattern-recognition receptor,
interacts with its ligands resulting in persistent inflammatory
responses at sites where the ligands concentrate. These
mechanisms have been shown to play a pivotal role in
propagation of vascular injuries, a major complication of
diabetes [34–37]. The major RAGE ligands in diabetes
are advanced glycation endproducts (AGEs), which are
derivatives of lipids, proteins, and ribonucleic acids. These
are modified by nonenzymatic glycosylation, followed by
rearrangement, dehydration, and eventually becoming irre-
versible cross-linked macromolecules [38, 39]. The amount
of these heterogeneous products increases with age, but is
further enhanced by diabetes or hyperglycemic conditions
[40–42]. Circulating neutrophils can play a role in enhanc-
ing the formation of AGE in response to inflammatory
activation of the myeloperoxidase system [43]. Diabetes-
associated RAGE-AGE interactions induced reactive oxygen
species-mediated inflammatory responses in vascular cells
(endothelial cells, smooth muscle cells, and pericytes) and
mononuclear phagocytes; all of these cells are critically
involved in diabetes-associated atherosclerosis, nephropathy,
and retinopathy [37, 44–48].

Recent evidence also demonstrated that RAGE is involved
in inflammation-based mechanisms of islet cell death. Acti-
vation of RAGE by S100B and high mobility group box
1 (HMG1) caused apoptotic death of pancreatic beta cells
through an NADPH oxidase-mediated mechanism [49]. The
interaction of AGE with RAGE induced apoptosis of islet beta
cell and impaired the function of secreting insulin in an in
vitro study [50]. Inhibition of AGE formation and blockade
of RAGE-mediated chronic inflammatory mechanisms are
currently considered to be therapeutic strategies for diabetes
and diabetes-associated macro- and microvascular compli-
cations [51–54].

Human vascular cells express a novel splice variant of
the RAGE gene that encodes for a soluble RAGE protein,
named endogenous secretory RAGE (esRAGE). The esRAGE
protein neutralizes the action of AGE on vascular cells, thus
preventing AGE from activating cell-surface (or full-length)
RAGE signaling [55]. There is another form of soluble RAGE
(sRAGE) that is not generated by alternative splicing; instead,
it is a product of catalytic cleavage of membrane bound
full-length RAGE by enzymes such as a disintegrin and
metalloprotease 10 [56–58]. There was a negative correlation
between the expression levels of full-length membrane RAGE
and sRAGE expression in monocytes from T2DM [59].
Enhancing sRAGE-associated protective mechanisms are
also molecular targets in developing T2DM therapeutics
[60].

2.3. Other Pattern-Recognition Receptors. Toll-like receptors
(TLRs) are pattern-recognition receptors consisting of 12
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family members in humans. They are crucial for innate
immune functions. Evidence has emerged that some of
the TLR members are involved in mediating inflammatory
responses in metabolic disorders. TLR2 and TLR4 expres-
sions were elevated in the cell surface of monocytes, derived
from patients with metabolic syndrome, and released higher
levels of IL-1β, IL-6, and Il-8 following lipopolysaccharide
stimulation [61, 62]. High glucose increases the expression of
TLR2 and TLR4, which can be accentuated by the presence
of free fatty acids [63, 64]. These effects were mediated via
protein kinase C (PKC)-α/PKC-δ by stimulation of NADPH
oxidase [63]. The inflammatory responses induced by TLR2
and TLR4 are mediated through the activation of NF-κB
[65]. TLR4 is upregulated in pancreatic islet cells and a
chemokine ligand, interferon-inducible protein (IP)-10 (or
CXCL10), was identified to activate this receptor leading to
islet cell death [66]. IP-10 can be induced by high glucose
through TLR2 and TLR4 [67].

CD36 (oxidized low-density lipoprotein receptor, oxLDL
receptor, or scavenger receptor B, MSR-B) is also a pat-
tern recognition receptor which serves as a co-receptor
for TLR2 and TLR6 heterodimers, as well as TLR4 and
TLR6 heterodimers [68]. High glucose, oxLDL, free fatty
acids, and low high density lipoprotein receptors (HDLs)
cholesterol concentrations were shown to increase the
expression of CD36 in monocytes/macrophages, resulting
in vascular oxidative injury, increased leukocyte adhesion,
and promoting atherogenesis [69]. Deficiency of CD36 in
transgenic mice improves insulin signaling, inflammation,
and atherogenesis [70, 71].

3. Diabetes and Alzheimer’s Disease Pathology

There have been several studies investigating whether T2DM
worsens the hallmark pathology of AD, namely, neuritic
plaques and neurofibrillary tangles. In a study involving 143
diabetic and 567 nondiabetic AD patients, no differences
were observed between these two groups in Aβ load, neuritic
plaque, and neurofibrillary tangle scores [72]. In another
study, the presence of diabetes has even been shown to be
negatively associated with the abundance of neuritic plaques
and neurofibrillary tangles [73]. In line with this finding,
Nelson and colleagues observed that although AD patients
with diabetes had significantly more infarcts and vascular
damage, the plaque scores, as measured by Consortium to
Establish a Registry for Alzheimer Disease criteria, were
significantly lower [74]. Using biochemical and histological
approaches, Sonnen et al. found inconsistent results between
biochemical and neuropathological results [75]. Using
formic acid to extract detergent-insoluble Aβ from amyloid
deposits in superior and medial temporal samples, they
found that the concentrations of Aβ42 in formic-acid extract
were significantly higher in AD patients without T2DM than
in AD patients with T2DM. This was regardless of neuritic
plaque scores and neurofibrillary tangle distribution that
did not differ between AD cases with and those without
T2DM. The same study also investigated whether T2DM
leads to more oxidative reactivity and neuroinflammation.

The results showed that AD cases without T2DM had
significantly higher levels of free-radicals as measured by F2-
isoprostanes, whereas AD cases with T2DM had significantly
greater IL-6 concentrations in cortical tissues than AD
without T2DM. It is worth noting that IL-6 is one of three
key acute phase proteins shown to be significantly elevated
in temporal cortical samples of AD subjects [51]. Neurons in
the brain of T2DM patients could be more vulnerable to the
toxicity of Aβ due to the defective insulin receptor signaling
[76]. Conversely, the defect in insulin receptor signaling
could lead to increased production of Aβ and Aβ-induced
oxidative damage of the mitochondria [17]. These are among
the mechanisms that increase the neuronal degeneration in
association with the condition of T2DM.

When determining whether T2DM affects the types
and development of amyloid plaques, a significant increase
in Aβ40-immunoreactive dense plaques, but not in cored
plaques, was observed [77]. Dense plaques are consid-
ered to be at an earlier stage of maturation, and more
toxic than core-only plaques (or burnt-out plaques). Using
RAGE immunoreactivity as a marker for oxidatively stressed
cells, the authors detected a significant increase in RAGE-
immunoreactive cells in the hilus of dentate gyrus in AD
cases with T2DM than in AD cases without T2DM [77].
It is intriguing how T2DM might affect the maturation
of amyloid plaques. Could this be mediated through its
effects on microglial activation? The authors noticed a looser
association of activated microglia with dense plaques in
AD subjects with T2DM when compared to AD subjects
without T2DM. There could be several possible interpre-
tations for this finding. It could suggest that there was
an enhanced microglial phagocytic function in AD with
T2DM, thus facilitating the removal of amyloid surrounding
the amyloid core. This could also be due to the modifi-
cation of microglia activation state by additional stimuli
in AD with T2DM. Previous research has shown the
association of primed, enlarged, or phagocytic microglia
with amyloid plaques of different maturation stages [78].
When IL-1α used as a marker for microglial activation,
a greater number of IL-1α-immunoreactive microglia were
associated with diffuse neuritic amyloid plaques, but they
did not associate with nonneuritic dense core plaques
[78, 79]. A more detailed analysis is necessary to eluci-
date whether co-existence of T2DM with AD alters the
development of amyloid plaques, as well as the pheno-
typic and functional characteristics of microglia activa-
tion. This would require utilization of various microglial
activation markers along with antibodies that can detect
Aβ40- or Aβ42-predominant amyloid plaques, and anti-
bodies that can detect neuritic components within the
plaques. The potential effects of T2DM on microglia
activation during development of AD are proposed in
Figure 1.

4. RAGE-Mediated Inflammation in AD Brain

RAGE-mediated mechanisms play crucial roles in the patho-
genesis of T2DM and associated vascular complications, but
RAGE is also an important cell-signaling receptor involved
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Figure 1: Potential effects of type 2 diabetes mellitus on microglial activation in Alzheimer’s disease. Type 2 diabetes mellitus (T2DM)
affects the brain with chronic impairment of insulin production and glycaemic control in the periphery. T2DM also causes macro- and
microvascular diseases in which inflammation plays a pivotal role. Cerebral microvascular diseases developed from T2DM complications lead
to compromised blood-brain barrier function and endothelial cell activation. Microglia can respond to vascular injury and inflammation.
Microglial activation is a process of functional and morphological transformation. We propose here that they can be staged as surveillance,
proinflammatory, inflammatory, phagocytic, and degenerative states; the transformation depends on the type, distance, potency, and
duration of stimulation. We propose that T2DM might promote the activation of microglia through vascular inflammation and the effects
on neuronal metabolic dysfunction.

in various aspects of AD. RAGE is expressed in the brain in
neurons, microglia, and astrocytes [80–82]. Aβ is a specific
ligand for RAGE, which interacts with the N-terminal
domain of RAGE [83]. RAGE expression was elevated in AD
pathology-enriched brain regions, including hippocampus
and inferior frontal cortex, when compared to cerebellum
where AD pathology is limited. RAGE expression was also
increased in neurons and microglia in the hippocampus [80,
82]. The interaction of Aβ with neuronal RAGE leads to reac-
tive oxygen species-mediated cellular stress and activation
of the transcription faction NF-κB, resulting in increased
inflammatory gene and protein expression. For example, ele-
vated secretion of macrophage colony-stimulating factor (M-
CSF) and tumor necrosis factor alpha (TNF-α) by microglia
and BV-2 cells was observed [80, 84]. In experiments
using cultures of postmortem human microglia and an in
vitro Aβ plaque model, Aβ-induced directional migration
of microglia was shown to be RAGE-dependent. This was
shown by the inhibition of microglial migratory responses
to Aβ when RAGE was blocked by anti-RAGE (Fab′)2 [80].
The involvement of RAGE-mediated microglial activation in
exacerbation of synaptic degeneration, neuroinflammation,
and Aβ levels has been illustrated in a study that compared
human amyloid precursor protein (APP) single-transgenic

mice to double-transgenic mice over expressing the human
RAGE gene in microglia along with mutated APP transgene
[85, 86]. Enhanced IL-1β and TNF-α production, increased
infiltration of microglia and astrocytes in amyloid plaques,
increased levels of Aβ40 and Aβ42, reduced acetylcholine
esterase (AChE) activity, and accelerated deterioration of
spatial learning/memory were observed in the double-
transgenic mice when compared to single transgenic APP
or RAGE mice [85]. The involvement of microglial RAGE
in driving these consequences was further elucidated in the
same study by using signal transduction-defective mutant
RAGE [dominant negative (DN)-RAGE] to microglia. The
DN-RAGE gene in APP transgenic mice prevented the loss
of AChE activity, reduced plaque load, and improved spatial
and memory functions [85]. These findings demonstrated
that RAGE signaling in microglia played a critical role
in promoting inflammatory responses that could lead to
increase in Aβ levels and synaptic dysfunction.

Increased association of AGEs, a RAGE ligand, has
been observed in amyloid deposits, and in astrocytes and
microglia. This correlated with increased inducible nitric
oxide synthase in AD pathology-rich area [87]. The nitric
oxide-mediated oxidative mechanisms can mediate the cyto-
toxicity of AGE [88]. Other RAGE ligands upregulated in
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Figure 2: RAGE-driven inflammatory synergy in Alzheimer’s disease with type 2 diabetes mellitus. Receptor for advanced glycation
endproducts- (RAGEs) mediated inflammatory responses play an important roles in pathogenesis of Alzheimer’s disease (AD) and type
2 diabetes mellitus (T2DM). In AD, Aβ is the most prominent ligand that interacts with RAGE leading to inflammatory signaling.
The interaction also leads to microglia secretion of M-CSF which can further upregulate the expression of RAGE in microglia. Other
inflammatory cytokines and chemokines are also produced upon the activation of RAGE, including IL-1β, IL-6, TNF-α, and MCP-1. Several
of these inflammatory mediators also can modulate the expression of RAGE and its ligands. A number of other ligands are also expressed at
elevated levels in the AD brain including AGE, S100A8, S100A9, S100A12, S100B, and HMG1. In T2DM, advanced glycation endproducts
(AGEs) are the major ligand. Interaction with RAGE, AGE induces production of other RAGE ligands and inflammatory cytokines and
chemokines, which is the major mechanism for propagation of vascular inflammatory injury in T2DM-associated vascular diseases. Thus,
RAGE-mediated inflammatory responses might be accentuated when these two diseases coexist in the same patient.

AD brains include S100B, S100A9, S100A12, and HMG1
[89, 90]. Although S100B and S100A8 are known as inflam-
matory cytokines of myeloid phagocytes, their expression by
human microglia can be induced by chronic exposure to
Aβ1-42 [91].

Increases in formation of AGE could also result in upreg-
ulation of macrophage scavenger receptor CD36. Elevated
expression of CD36 correlated with the presence of amyloid
deposits, but not the clinical diagnosis of AD. The expression
of CD36 by microglia promotes adhesion to fibrillar Aβ,
increases oxidative stress and proinflammatory responses,
and affects microglial uptake of Aβ [92].

5. RAGE, Ligands, and Cytokine Cascade

One feature that makes RAGE a critical inflammatory recep-
tor is that its expression is increased by its ligands; this creates
a positive feedback mechanism that can perpetuate inflam-
mation once it sets off [37, 46, 93, 94]. The amplification
of inflammatory consequences can also be further fueled by
additional cytokines. For example, in monocytic lineage cells,
preexposure to AGE followed by treatment of IL-6 or TNF-α
can induce release of the RAGE ligands, S100A8 and S100A9
[95]. Preexposure of endothelial cells to AGE has also been
shown to increase IL-6, intercellular adhesion molecule-1,

vascular adhesion molecule-1, and MCP-1 upon stimulation
with S100A8/A9 heterodimers [93]. These findings illustrate
how RAGE and its ligands can combine with cytokine-
mediated inflammation to exacerbate chronic inflammatory
diseases such as AD and T2DM.

As in T2DM, there is a deficiency in the anti-
inflammatory function of sRAGE in AD due to a gradual
decline in the circulating levels of sRAGE [57, 96, 97]. With
this protective function being compromised and with several
RAGE ligands elevated, it is possible that the coexistence of
AD and T2DM would result in accentuated inflammatory
responses, both in the periphery and in the brain. Small
molecules that can block RAGE activation or enhance the
protective function of sRAGE are a strategy which may be
beneficial to both AD and T2DM [98, 99].

6. Conclusion

There is strong evidence supporting inflammation as key
feature in the brain of AD and in the pancreas of T2DM
as summarized in Table 1. A wide range of inflammatory
mediators and receptors are involved in these two diseases,
although complement activation is a prominent feature in
AD, but not in T2DM [100]. The presence of infiltrated
lymphocytes is controversial in AD [76, 101]. Therefore,
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Table 1: Inflammatory responses detected in the brain of Alzheimer’s disease and the pancreas of diabetes mellitus.

Disease-affected brain regions in Alzheimer’s
disease patients

Pancreas in T2DM patients

Elevated inflammatory markers

Cytokines (e.g., IL-1α, IL-1β, IL-6, TNF-α),
chemokines (e.g., IL-8, MCP-1), acute phase
proteins (e.g., ACT-1, Serum amyloid P), acti-
vated complement proteins (e.g., C3, C5a, C5b-
9), and S100B

Cytokines (e.g., IL-1β, IL-6, TNF-α),
chemokines (e.g., IL-8, IP-1, MCP-1,
MIP-1α), growth factor (G-CSF), S100B,
and HMGB1

Immune cell infiltration Rare presence of lymphocytes or macrophages
Increased macrophages, T-lymphocytes,
and granulocytes

Involvement of pattern recognition
receptors and major ligands

MSR-A, MSR-B, RAGE, TLR2, TLR4; amyloid
beta, AGE

MSR-A, MSR-B, RAGE, TLR2, TLR4:
amylin, AGE, IP-10

current research findings support the inflammation-based
pathogenic mechanisms in both diseases. Although research
investigating that T2DM may alter brain inflammation
in AD is limited, there is a great possibility that T2DM
could accentuate microglial activation, neuroinflammation,
and vascular inflammatory/oxidative injury in AD brains
through mechanisms mediated by RAGE and other pattern-
recognition receptors, and the cascade of cytokine and
chemokines. Figure 2 illustrates the potential of RAGE-
centric mechanisms in the central and peripheral systems
when both diseases coexist. As microglia play a central role in
initiation and propagation of neuroinflammation, and anti-
inflammation is one of the preventive and disease modifying
strategies for AD, more studies will be needed to characterize
the patterns of microglial activation in AD patients with
T2DM and AD patients without T2DM.

Abbreviations

AD: Alzheimer’s disease
AChE: Acetylcholine esterase
(ACT-1): Anti-chymotrypsin-1
AGE: Advanced glycation endproducts
APP: Amyloid precursor protein
CRP: C-reactive protein
DN: dominant negative
esRAGE: endogenous secretory receptor for advanced

glycation endproducts
G-CSF: Granulocyte-colony stimulating factor
HMG1: High mobility group box
IGF: Insulin growth factor
IR: Insulin receptor
IL: Interleukin
(IL-1ra): Interleukin-1 receptor antagonist
IP-10: Interferon-inducible protein-10
MCP-1: Monocyte chemotactic protein-1
M-CSF: Macrophage colony stimulating factor
(MIP-1): Macrophage inflammatory protein-1
MSR: macrophage scavenger receptor
HDL: High density lipoprotein
(ox-LDL): oxidized low density lipoprotein
PKD: Protein kinase
RAGE: Receptor for advanced glycation

endproducts

sRAGE: Soluble RAGE
TLR: Toll-like receptor
TNF-α: Tumor necrosis factor-alpha
T2DM: Type 2 diabetes mellitus.

Acknowledgments

The authors would like to thank Alzheimer’s Association
(IIRG-09-91996) and Arizona Alzheimer’s Research Consor-
tium for the funding.

References

[1] S. Ahtiluoto, T. Polvikoski, M. Peltonen et al., “Diabetes,
Alzheimer disease, and vascular dementia: a population-
based neuropathologic study,” Neurology, vol. 75, no. 13, pp.
1195–1202, 2010.

[2] C. C. Lee, S. G. Glickman, D. R. Dengel, M. D. Brown, and M.
A. Supiano, “Abdominal adiposity assessed by dual energy x-
ray absorptiometry provides a sex-independent predictor of
insulin sensitivity in older adults,” Journals of Gerontology A,
vol. 60, no. 7, pp. 872–877, 2005.

[3] J. A. Luchsinger, C. Reitz, B. Patel, M. X. Tang, J. J. Manly,
and R. Mayeux, “Relation of diabetes to mild cognitive
impairment,” Archives of Neurology, vol. 64, no. 4, pp. 570–
575, 2007.

[4] A. Ott, R. P. Stolk, F. van Harskamp, H. A. Pols, A. Hofman,
and M. M. Breteler, “Diabetes mellitus and the risk of
dementia: the Rotterdam study,” Neurology, vol. 53, no. 9, pp.
1937–1942, 1999.

[5] G. Razay, A. Vreugdenhil, and G. Wilcock, “The metabolic
syndrome and Alzheimer disease,” Archives of Neurology, vol.
64, no. 1, pp. 93–96, 2007.

[6] E. M. Schrijvers, J. C. Witteman, E. J. Sijbrands, A. Hofman,
P. J. Koudstaal, and M. M. B. Breteler, “Insulin metabolism
and the risk of Alzheimer disease: the Rotterdam study,”
Neurology, vol. 75, no. 22, pp. 1982–1987, 2010.

[7] R. Stewart and D. Liolitsa, “Type 2 diabetes mellitus,
cognitive impairment and dementia,” Diabetic Medicine, vol.
16, no. 2, pp. 93–112, 1999.

[8] M. W. Strachan, R. M. Reynolds, R. E. Marioni, and J. F. Price,
“Cognitive function, dementia and type 2 diabetes mellitus in
the elderly,” Nature Reviews Endocrinology, vol. 7, no. 2, pp.
108–114, 2011.

[9] M. L. Baskin, J. Ard, F. Franklin, and D. B. Allison,
“Prevalence of obesity in the United States,” Obesity Reviews,
vol. 6, no. 1, pp. 5–7, 2005.



International Journal of Alzheimer’s Disease 7

[10] E. S. Ford, C. Li, G. Zhao, and J. Tsai, “Trends in obesity and
abdominal obesity among adults in the United States from
1999-2008,” International Journal of Obesity, vol. 35, no. 5,
pp. 736–743, 2011.

[11] Y. Wang and M. A. Beydoun, “The obesity epidemic in
the United States—gender, age, socioeconomic, racial/ethnic,
and geographic characteristics: a systematic review and meta-
regression analysis,” Epidemiologic Reviews, vol. 29, no. 1, pp.
6–28, 2007.

[12] W. T. Cefalu, Z. Q. Wang, S. Werbel et al., “Contribution
of visceral fat mass to the insulin resistance of aging,”
Metabolism, vol. 44, no. 7, pp. 954–959, 1995.

[13] H. Bruehl, O. T. Wolf, V. Sweat, A. Tirsi, S. Richardson, and A.
Convit, “Modifiers of cognitive function and brain structure
in middle-aged and elderly individuals with type 2 diabetes
mellitus,” Brain Research, vol. 1280, no. C, pp. 186–194, 2009.

[14] Z. S. Tan, A. S. Beiser, C. S. Fox et al., “Association of
metabolic dysregulation with volumetric brain magnetic
resonance imaging and cognitive markers of subclinical
brain aging in middle-aged adults: the framingham offspring
study,” Diabetes Care, vol. 34, no. 8, pp. 1766–1770, 2011.

[15] J. G. Ryan, “Cost and policy implications from the increas-
ing prevalence of obesity and diabetes mellitus,” Gender
Medicine, vol. 6, supplement 1, pp. 86–108, 2009.

[16] B. Cholerton, L. D. Baker, and S. Craft, “Insulin resistance
and pathological brain ageing,” Diabetic Medicine, vol. 28, no.
12, pp. 1463–1475, 2011.

[17] S. M. de la Monte, “Contributions of brain insulin resistance
and deficiency in amyloid-related neurodegeneration in
Alzheimer’s diseas,” Drugs, vol. 72, no. 1, pp. 49–66, 2012.

[18] J. A. Luchsinger, “Type 2 diabetes andcognitive impairment:
linking mechanisms,” Journal of Alzheimer’s Disease. In press.

[19] P. A. Maher and D. R. Schubert, “Metabolic links between
diabetes and Alzheimer’s disease,” Expert Review of Neu-
rotherapeutics, vol. 9, no. 5, pp. 617–630, 2009.
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