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ABSTRACT
Huntington’s Disease (HD) is an autosomal neurodegenerative disease characterized
by motor, cognitive, and psychiatric symptoms. Cognitive impairment develops
gradually in HD patients, progressing later into a severe cognitive dysfunction.
The Montreal Cognitive Assessment (MoCA) is a brief screening test commonly
employed to detect mild cognitive impairment, which has also been useful to assess
cognitive decline in HD patients. However, the relationship between MoCA
performance and brain structural integrity in HD patients remains unclear.
Therefore, to explore this relationship we analyzed if cortical thinning and
subcortical nuclei volume differences correlated with HD patients’ MoCA
performance. Twenty-two HD patients and twenty-two healthy subjects participated
in this study. T1-weighted images were acquired to analyze cortical thickness and
subcortical nuclei volumes. Group comparison analysis showed a significantly lower
score in the MoCA global performance of HD patients. Also, the MoCA total score
correlated with cortical thinning of fronto-parietal and temporo-occipital cortices, as
well as with bilateral caudate volume differences in HD patients. These results
provide new insights into the effectiveness of using the MoCA test to detect cognitive
impairment and the brain atrophy pattern associated with the cognitive status of
prodromal/early HD patients.
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INTRODUCTION
Huntington’s Disease (HD) is an autosomal dominant inherited neurodegenerative disease
(Huntington’s Disease Collaborative Research Group, 1993). The hallmark of the HD
neuropathology is caudate neurodegeneration; although several cortical regions are also
affected (Rosas et al., 2008; Tabrizi et al., 2009; Aylward, 2014). HD clinical manifestations
include motor, cognitive, and psychiatric deficits. Even though HD is classically considered
as a motor disorder, the cognitive decline may occur even before the clinical manifestations
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of the motor symptoms start (Paulsen, 2011). Although it has been suggested that
cognitive deficits are mainly linked to striatal degeneration (Kassubek et al., 2004;
Peinemann et al., 2005; Aylward et al., 2013), the extensive atrophy of the cortical mantle
also contributes considerably to the progression of these alterations (Johnson et al., 2015).

Cognitive assessment in HD patients has been performed using several tests, including
the Cognitive Functioning evaluation of the Unified Huntington’s Disease Rating Scale
(UHDRS) (Mestre et al., 2016). However, the analysis of the possible brain structures
contributing to the cognitive impairment in HD has only been based on correlation
analyses with the UHDRS cognitive component, namely, no other conventional cognitive
assessment instrument has been associated with the structural brain atrophy in HD. One of
the most used cognitive screening tests in research settings and clinical practice is the
Montreal Cognitive Assessment (MoCA). This screening test shows a high sensitivity to
detect mild cognitive impairment (MCI) in the evaluated participant (Nasreddine et al.,
2005). Besides, the MoCA global performance can be used to detect, follow up, and
predict the progression of cognitive impairment in a number of clinical populations
(Julayanont et al., 2014; Sivakumar et al., 2014; Nijsse et al., 2017;Hendershott et al., 2017).
Likewise, the MoCA total score has also shown a relationship with MRI functional markers
associated with cognitive impairment (Cheewakriengkrai et al., 2014; Porges et al.,
2017) and with atrophy of cortical and subcortical nuclei (Ritter et al., 2017; Ogawa et al.,
2019). The aforementioned evidence suggests that the MoCA test is useful not only to
evaluate cognitive performance but also to explore its relationship with functional and
structural brain deterioration.

In HD patients the MoCA test has been evaluated to determine its usefulness and
sensitivity to detect the presence of potential cognitive impairment. Some reports have
demonstrated that the MoCA test presents high sensitivity and specificity to detect
cognitive impairment, even suggesting that it presents higher sensitivity than other brief
screening instruments (Videnovic et al., 2010; Mickes et al., 2010; Ringkøbing et al., 2020).
Consequently, the MoCA test is a suitable monitoring and screening tool for assessing
cognitive dysfunction in HD patients (Videnovic et al., 2010; Mickes et al., 2010; Bezdicek
et al., 2013; Gluhm et al., 2013; Ringkøbing et al., 2020) across a wide range of disease
severity stages (Mild, Moderate, and Severe) (Gluhm et al., 2013). However, there is no
current evidence of the association of MoCA global performance with the pattern of brain
structural atrophy exhibited by HD patients. Therefore, the present study aimed to
determine the relationship between the MoCA global performance and the cortical and
subcortical gray matter deterioration in prodromal/early HD patients.

METHODS
Participants
Twenty-two HD patients and twenty-two healthy controls matched for age, sex, and years
of education participated in this study (Table 1A). All HD patients had a positive
molecular diagnosis and were invited to participate in this study at the Instituto Nacional
de Neurología y Neurocirugía “Manuel Velasco Suárez”. Healthy volunteers self-reported
no history of neurological or psychiatric disorders and were recruited at the same period as

Ramirez-Garcia et al. (2022), PeerJ, DOI 10.7717/peerj.12917 2/18

http://dx.doi.org/10.7717/peerj.12917
https://peerj.com/


the HD-subject group. All the procedures were performed according to the Declaration of
Helsinki and approved by the health and ethics committees of the Instituto Nacional de
Neurología y Neurocirugía “Manuel Velasco Suarez” (N� DIC/419/14 and N� 41/14) and
Universidad Nacional Autónoma de Mexico (N� 090/2015). All participants provided
written informed consent before participating in the study.

Clinical assessment
For all HD patients, the functional and motor status were evaluated using the Total
Functional Capacity (TFC) scale (Shoulson & Fahn, 1979) and the Total Motor Score
(TMS), respectively; both instruments from the UHDRS (Huntington Study Group, 1996).
These clinical outcomes were used to measure the stage and severity of HD. Accordingly,
the staging of patients follows the TFC scoring where scores from 11–13 represent
stage I (least severe); 7–10, stage II; 3–6, stage III; 1–2, stage IV; and score of 0 is stage V
(most severe) (Paulsen et al., 2010). The authors received permission to use this instrument
from the copyright holders (Huntington Study Group). The Spanish version of the Center
for Epidemiologic Studies Depression Scale (CES-D) (Radloff, 1977; Soler et al., 1997;
Unschuld et al., 2012) was used as an indicator of a depressed mood and was administered
to all participants. The sum of all items ranges from 0 to 60 and scores ≥16 are considered
as an indicator of depressive symptoms. This scale is free to use without permission.

MoCA test
MoCA test was used to evaluate cognitive status in both groups. This cognitive screening
test consists of twelve individual tasks grouped into eight individual sections: visuospatial/
executive, naming, memory, attention, language, abstraction, delay recall, and orientation.

Table 1 Sample and clinical characteristics.

Healthy controls Huntington’s disease patients Statistical significance Effect size Cohen’s
d or r

A. Sample characteristics Mean SD Range Mean SD Range t-value W-value p-value

Male:Female ratio 9:13 —— —— 9:13 —— —— —— —— —— ——

Sample size (n) 22 —— —— 22 —— —— —— —— —— ——

Age (years) 45.47 12.24 40.08 46.11 12.11 41.08 −0.17 —— 0.863NS −0.05 S

Handedness (R/L/B) 22/0/0 —— —— 21/1/0 —— —— —— —— —— ——

Education (years) 16.13 2.85 10 14.13 3.21 11 —— 305.5 0.133NS 0.22 S

Disease Burden —— —— —— 389.96 100.58 379.19 —— —— —— ——

CAG repeat length —— —— —— 44.59 3.82 14 —— —— —— ——

ICV (cm3) 1384.17 145.88 566.42 1276.49 125.91 370.03 —— 352 0.009** 0.38 M

B. Clinical measures

CES-D 8.89 4.90 18 10.81 6.91 25 −1.01 —— 0.310NS −0.31 S

UHDRS-TMS —— —— —— 17.18 13.63 58 —— —— —— ——

TFC —— —— —— 11.90 1.82 5 —— —— —— ——

Note:
The significant differences are highlighted in bold (**p < 0.01). CES-D, Center for Epidemiologic Studies Depression Scale; TFC, Total Functional, Capacity scale;
UHDRS-TMS,Unified Huntington’s Disease Rating Scale-Total Motor Score. ICV, Intracranial volume. SD, Standard Deviation. R, Right; L, Left; B, Both. Effect size: S,
Small; M, Medium. NS, Not Significant.

Ramirez-Garcia et al. (2022), PeerJ, DOI 10.7717/peerj.12917 3/18

http://dx.doi.org/10.7717/peerj.12917
https://peerj.com/


The MoCA total score (30 pts) reflects the global cognitive performance, and it is calculated
by summing the individual sections scores plus an additional educational level correction
(Nasreddine et al., 2005; Aguilar-Navarro et al., 2018). In HD patients, the recommended
cut-off score ≥26 pts (Bezdicek et al., 2013; Ringkøbing et al., 2020; Rosca & Simu, 2020) was
further validated and used for screening suspected MCI. The authors received permission to
use this instrument from the copyright holders (https://www.mocatest.org/).

Image acquisition
The high-resolution T1-weighted anatomical images were obtained with a Fast Field-Echo
sequence with the following parameters: TR/TE: 8/3.7 ms; FOV: 256 × 256 mm2; flip
angle: 8�, acquisition, and reconstruction matrix: 256 × 256; isometric resolution: 1 × 1 ×
1 mm3. All brain images were acquired using a 3T Achieva MRI scanner (Phillips medical
systems, Eindhoven, The Netherlands) at Instituto Nacional de Psiquiatría “Ramón de
la Fuente Muñiz” in Mexico City. The image preprocessing included: MNI orientation,
denoising, and intensity inhomogeneity correction (Manjón et al., 2010; Avants et al., 2011).

Subcortical nuclei volumes quantification
Volumes of subcortical nuclei were extracted using a patch-based method by an automated
volume system implemented in VolBrain online web interface (http://volbrain.upv.es)
(Manjón & Coupé, 2016). The volume was obtained for fourteen (bilateral) subcortical
regions of interest (ROI) including caudate, putamen, thalamus, globus pallidus,
hippocampus, amygdala, and nucleus accumbens. For each individual, subcortical nuclei
volumes were calculated as a percentage of their respective intracranial volume (ICV).
Brain masks for ICV calculation were inspected visually to determine possible intracranial
cavity extraction errors. No errors were found.

Cortical reconstruction and cortical thickness determination
Cortical reconstruction was performed using FreeSurfer image analysis suite (http://surfer.
nmr.mgh.harvard.edu/) version 7.2. The fully automated procedure includes the following
steps: non-uniform intensity normalization, correction of intensity variations due to
magnetic field inhomogeneity, skull stripping, segmentation, separation of left and right
hemispheres as well as cortical from subcortical structures, triangular tessellation of the
grey matter-white matter (GM-WM) boundary, topology correction, deformable data
processing, and surface inflation registration to a spherical atlas, parcellation of the
cerebral cortex, and creation of a variety of surface-based data. Finally, cortical thickness
was computed by using the distance between the gray/white surface and the pial surface
(Fischl et al., 1999; Fischl, Sereno & Dale, 1999; Fischl & Dale, 2000; Fischl, Liu & Dale,
2001). The quality control of the cortical reconstruction involved a visual inspection of
each image to detect potential topological defects. For all subjects’ images, pial surface or
WM segmentation errors were found; therefore, each error was corrected manually, and
cortical reconstruction was rerun; finally, the new WM and pial surfaces were inspected
again to avoid further errors. The correlations between MoCA total score and cortical
thickness were performed using disease burden, ICV, and years of education as nuisance
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factors for the HD patients, and ICV and years of education for the healthy controls.
All analyses were performed vertex-wise in the whole brain cortex by the General Linear
Model within Qdec to model the data. Correction for multiple comparisons for both
analyses was performed by permutation testing using Monte Carlo Simulation with a
smoothing of 15-mm full width at half height Gaussian kernel setting a significance level of
p < 0.05. Anatomical labels were obtained from the Desikan-Killiany cortical atlas.

Statistical analysis
We evaluated the data normality with the Shapiro-Wilk test (p < 0.05) using the
standardized residuals after a linear regression for group comparison analysis and using
the raw data for correlation analysis. In addition, normality distribution was analyzed
visually by a quantile-quantile plot of each variable vs a normal distribution. After these
analyses, the appropriate statistical tests to be performed were determined. If the p-value
was less than 0.05 (normality distribution is not assumed) a non-parametric test was
implemented, but if the p-value was higher than 0.05 (normality distribution is assumed) a
parametric analysis was implemented. Comparison between healthy controls and HD
patients for age, years of education, ICV, CES-D scores, and MoCA total score were
analyzed by two-tailed t-test or Mann-Whitney U-test as appropriate, setting a significance
level of p < 0.05. It is important to mention that for the CES-D scores for the control group
the sample size was 19 subjects because data from three subjects was unavailable from
the hospital; for the rest of the comparison the sample size for the control and HD groups
was 22 subjects each. For HD patients, partial correlations between MoCA total score
and CAG repeat length, CES-D score, UHDRS-TMS score, and TFC score were computed
by Spearman’s rank correlation rho, and the correlations with subcortical nuclei volumes
were computed by Pearson’s correlation. All partial correlations included the disease
burden and years of education as nuisance factors, except the MoCA correlation with CAG
repeat length, which only included years of education as a nuisance factor. For healthy
subjects, partial correlations of MoCA total score with subcortical nuclei volumes were
computed by Pearson’s correlation including the years of education and age as nuisance
factors. For all comparisons, the effect size was computed by Cohen’s d for parametric test
(d = 0.2–0.50 Small; d = 0.50–0.80 Medium; larger than d = 0.80 Large) and r for
nonparametric tests (r = 0.10–0.30 Small; r = 0.30–0.50 Medium; larger than r = 0.50
Large). Disease burden was computed by the formula: age (years) × (CAG repeat length −

35.5) (Penney et al., 1997). The analysis of the area under the curve (AUC) from the
receiver operating characteristic (ROC) was performed for the MoCA screening test to
corroborate the cut-off score in our study, setting a significance level of p < 0.05 and a
confidence interval (CI) of 95%. All statistical analyses were performed using R 3.6.0 and
RStudio Version 1.1.463.

RESULTS
Demographic and clinical characteristics
There were no statistical differences in age or years of education between healthy controls
and HD patients (Table 1A), but significant differences were found in ICV (p = 0.009) with
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a medium effect size (Cohen’s r = 0.38), indicating a moderated difference between group
medians. There was no statistical difference in CES-D score between healthy controls and
HD patients. The functional and motor status of HD patients indicated an initial
symptomatic stage. Most of the patients were in clinical stage I (82%; 11–13 pts), and only
four of them were in stage II (18%; 7–10 pts) according to their TFC performance.
In addition, HD patients’ motor status (UHDRS-TMS) coincided with the disease stage I
(Mean ± SD = 12.38 ± 7.86) and stage II (38.75 ± 13.86), showing a mild severity of motor
signs (Table 1B). Based on these scores, the HD cohort was considered prodromal/early
HD patients (Prodromal n = 16; Early n = 6).

MoCA cut-off determination and MoCA global performance
comparison
The AUC ± SD of MoCA total score was 0.794 ± 0.07 with 95% CI of [0.647–0.941], and
sensitivity and specificity of 72.7% and 86.4%, respectively. MoCA test showed an AUC
significantly greater than 0.5 (p = 0.000), which demonstrates its discriminative ability
between HD patients and healthy controls. The maximum likelihood of Youden’s index J
was 0.59 and showed the optimum cut-off point was < 26 pts coinciding with its suggested
original cut-off score (Fig. 1). Comparison for MoCA total score between healthy
control (Mean ± SD = 27.90 ± 1.41; range = 6) and HD patients (Mean ± SD = 24.18 ± 4.17;
range = 16) showed significant differences (W = 384.5; p = 0.000) with a large effect size
(Cohen’s r = 0.50; Fig. 2A), indicating a large difference between group medians. Thirteen
HD patients (59%) presented an impaired cognitive performance with scores ranging
between 14 to 25 pts, and nine patients (41%) had no impaired cognitive performance with
MoCA scores ≥ 26 pts.

Figure 1 ROC curve of MoCA total score in prodromal/early HD patients. ROC curve distinguishing
between healthy controls and HD patients. ROC curve plotted the true positive rate (Sensitivity %) in the
function of the false positive rate (100%-Specificity %). The dashed red line represents the area under the
curve of 0.5 and the “J” point (red point) stands for the Youden index, i.e., the point with the best
combination of Sensitivity and Specificity. Full-size DOI: 10.7717/peerj.12917/fig-1
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Correlation of MoCA global performance with CAG repeat length and
clinical measures
MoCA total score showed a significant strong positive correlation (ρ = 0.73, p = 0.000) with
functional status (TFC) and a significant strong negative correlation (ρ = −0.78, p = 0.000)
with motor performance (UHDRS-TMS) of HD patients, which indicates that there is a
strong linear relationship between the variables. There was no significant correlation with
CAG repeat length, or CES-D score (Table 2).

Correlation of cortical thinning and subcortical nuclei volumes and
MoCA global performance
Correlation analysis performed between cortical thickness and MoCA total score of the
HD patients revealed positive significant associations in clusters located bilaterally in the
superior frontal, rostral middle frontal, precentral, superior parietal, lateral occipital,
middle temporal, inferior temporal, isthmus cingulate, paracentral, posterior cingulate,
precuneus, and fusiform cortical areas; significant correlations were also found in clusters
located only in the left hemisphere including caudal middle frontal, postcentral, pars
opercularis, and banks of superior temporal sulcus cortical areas; and significant

Figure 2 MoCA global performance difference and its correlation with cortical thinning. (A) MoCA
total score comparison between the control group (CTRL) and HD patients. Data are shown as mean ±
SD (���p = 0.000). The dashed red line represents the MoCA cut-off. All subjects are represented as
individual data points. (B) The positive correlation between MoCA global performance and cortical
thinning across the whole cortical mantle of HD patients. Significant cluster maps are projected onto an
average cortical surface. The warm color scale represents the significance values corrected by Monte
Carlo simulation (p < 0.05). Full-size DOI: 10.7717/peerj.12917/fig-2

Table 2 MoCA correlation with clinical measures of HD patients.

MoCA test correlations ρ-coefficient p-value

CAG repeat length 0.35 0.110NS

CES-D 0.11 0.620NS

TFC 0.73 0.000***

UHDRS-TMS −0.78 0.000***

Note:
The significant differences are highlighted in bold (***p < 0.001). NS, Not Significant.
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correlations were found for the right hemisphere in the cuneus, pericalcarine, and inferior
parietal cortical areas (Fig. 2B; for a more detailed anatomical description see
Supplemental Information–Fig. S1). The peak max of each significant clusters was located
in precuneus, lateral occipital, inferior parietal, and rostral middle frontal cortical regions
for the right hemisphere and superior frontal, precuneus, and fusiform cortical regions
for the left hemisphere (see Supplemental Information– Tables S1 and S2). Partial
correlations between subcortical volumes of 14 ROIs with the MoCA total score showed a
significant strong positive association for the bilateral caudate (right: r = 0.641, p = 0.032,
and left: r = 0.647, p = 0.028) and left amygdala (r = 0.692, p = 0.010), which indicates
that there is a high linear relationship between these variables (Table 3). Partial
correlations analysis performed between MoCA total score, and cortical thickness and
subcortical nuclei volumes of healthy controls did not show any significant association
(see Supplemental Information–Table S3).

DISCUSSION
In this study, we tested the hypothesis that MoCA global performance correlates with a
specific brain atrophy pattern in prodromal/early HD. Our analyses identified that the
MoCA total score correlates with bilateral caudate and left amygdala volume differences
and with extensive cortical thinning of areas that belong to the temporo-occipital, and
parietal and superior frontal cortices.

MoCA has demonstrated adequate sensitivity to detect cognitive impairment in HD
patients (Mickes et al., 2010; Bezdicek et al., 2013; Gluhm et al., 2013). Here, we corroborate
the ability of MoCA to distinguish between healthy controls and prodromal/early HD
patients according to their cognitive performance. Besides, we determine the appropriate

Table 3 MoCA global performance and subcortical nuclei volume correlation for HD patients.

MoCA test correlations r-coefficient p-uncorrected p-value
(Bonferroni correction)

Caudate R 0.641 0.002 0.032*

Caudate L 0.647 0.002 0.028*

Putamen R 0.561 0.010 0.140NS

Putamen L 0.602 0.004 0.068NS

Thalamus R 0.399 0.080 1NS

Thalamus L 0.367 0.110 1NS

Globus Pallidus R 0.580 0.007 0.102NS

Globus Pallidus L 0.534 0.015 0.212NS

Hippocampus R 0.518 0.019 0.266NS

Hippocampus L 0.494 0.026 0.370NS

Amygdala R 0.600 0.005 0.071NS

Amygdala L 0.692 0.000 0.010*

Accumbens R 0.465 0.038 0.540NS

Accumbens L 0.513 0.020 0.288NS

Note:
The significant differences are highlighted in bold (*p < 0.05). NS, Not Significant; R, Right; L, Left.
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MoCA cut-off score (< 26 pts) for this HD cohort, which coincided with the original
cut-off point suggested previously to HD (Nasreddine et al., 2005; Bezdicek et al., 2013;
Ringkøbing et al., 2020).

The analysis of the prodromal/early HD patients’MoCA total score showed a significant
difference with respect to the control group. This result support previous reports showing
that symptomatic as well as prodromal HD patients exhibit cognitive decline assessed
using brief screenings or comprehensive neuropsychological tests (Rosas et al., 2008; Duff
et al., 2010; Tabrizi et al., 2013; Paulsen, Smith & Long, 2013; You et al., 2014). It should be
noted that the MoCA test composition encompasses psychometric properties to detect
cognitive impairment (Vogel et al., 2015); therefore, this test is particularly useful for HD
because the patients typically develop notably heterogeneous cognitive deficits with
different degrees of impairment that weigh the presence of the global cognitive decline.

MoCA global performance correlations analysis demonstrated extensive cortical areas
associated with cognitive performance in HD patients. In this sense, our findings are
consistent with previous reports in HD that identified specific cognitive deficits –attention,
working memory, and executive functions– correlating with cortical changes including
cortices of the superior fronto-parietal motor circuits, frontal cognitive control centers,
temporal auditory and semantic processing hubs, and occipital visual centers (Rosas et al.,
2005, 2008; Harrington et al., 2014; Coppen et al., 2018; Martinez-Horta et al., 2020). It is
important to mention that the MoCA test involves the assessment of several cognitive
functions associated with different neurological substrates; therefore, it is understandable
that the atrophy of discreet areas within the whole cerebral cortex contributed to the
deterioration of MoCA global performance of the HD patients.

It is well known that striatal atrophy is the neuropathological hallmark of HD (Vonsattel
et al., 1985; Aylward et al., 2000) being the caudate volume differences considered as a
biomarker of disease progression (Aylward, 2014). Since the striatum is strongly associated
with cognitive functioning (Graff-Radford et al., 2017), it was expected that the caudate
volume differences correlated strongly with MoCA total score. Therefore, our results
strengthen the previous evidence showing that caudate atrophy is associated with cognitive
impairment evaluated by different neuropsychological tests (Peinemann et al., 2005; Rosas
et al., 2008; Aylward et al., 2013; You et al., 2014; Kim et al., 2017). In this respect, it would be
sensible to suggest that the influence of striatal atrophy on cognitive impairment is driven
first by the progressive death of striatal spiny neurons; and secondly by the disconnection of
this nucleus with the frontal cortex as a result of axonal neurodegeneration (Rosas et al.,
2010, 2018; Poudel et al., 2015) affecting cortico-striatal tracts highly connected to regions
within the motor and associative networks (Rosas et al., 2010).

Conversely, the MoCA scores also correlated with the volume differences of the left
amygdala, which has been of interest because of the evidence that the amygdala is affected
in presymptomatic and symptomatic HD stages (Douaud et al., 2006; Ahveninen et al.,
2018; Tang et al., 2018). Although the amygdala has been strongly associated with
psychiatric symptoms (Adolphs, 2000; Fine & Blair, 2000), recently, it has been shown that
smaller amygdala volumes are associated with worse visuomotor skills, slower processing
speed, and emotional recognition (Kipps et al., 2007; Ahveninen et al., 2018). It is

Ramirez-Garcia et al. (2022), PeerJ, DOI 10.7717/peerj.12917 9/18

http://dx.doi.org/10.7717/peerj.12917
https://peerj.com/


important to note that in the healthy control group, we did not identify a significant
correlation between MoCA global performance and cortical and subcortical gray matter
differences; therefore, we suggest that the cognitive-atrophy associations found for HD
patients are specific to the neuropathology of disease.

The MoCA total score also showed significant strong correlations with the clinical
measures TFC and UHDRS-TMS; this is in line with previous reports showing that
cognitive impairment is associated with the decline of functional and motor performance
in HD patients (Hamilton, 2003; Nehl & Paulsen, 2004; Jacobs et al., 2016). In addition, the
degree of cognitive impairment does increase proportionally with the HD stage
progression determined by functional and motor status, which is reflecting a common
behavioral phenotype of HD (Toh et al., 2014; Jacobs et al., 2016). Furthermore, it has been
recently suggested that cognitive and motor symptoms share a common neurobiological
basis (Garcia-Gorro et al., 2019), though these alterations may be affected at different
levels and progress distinctively. Finally, even though CAG repeat length drives age of
onset and severity of disease, and it has been correlated with volume differences of the
striatum and motor cortex (Rosas et al., 2001; Langbehn et al., 2019) as well as with
cognitive and motor deficit progression (Rosenblatt et al., 2006, 2012), here we did not find
a significant correlation with MoCA global performance. Further studies would be
necessary to identify if MoCA decline presents a CAG repeat length–dependent trajectory.

To the best of our knowledge, this is the first study that evaluates the correlation of
the MoCA global performance with the cortical brain atrophy of a neurodegenerative
disease such as HD. However, our study had some limitations to consider. (1) It would be
ideal to reproduce the correlation analysis with a larger sample size to corroborate the
consistency of the significant clusters of cortical atrophy patterns and subcortical volume
correlations. (2) For the future development of the project, it will be relevant to
complement the clinical diagnosis of HD not only with the TFC and UHDRS-TMS
performance but also with the Diagnostic Confidence Level (DCL), which is the standard
measure used for clinical diagnosis in at-risk individuals and is based solely on the motor
evaluation. (3) All HD patients were in a prodromal or early disease stage; therefore,
we recommend implementing this analysis in presymptomatic, prodromal, and moderate
manifest HD patients to clarify the atrophy-progressive pattern among different clinical
disease stages, always considering the potential motion artifacts produced by a
hyperkinetic condition present at manifest stages. (4) An extensive neuropsychiatric
evaluation was not included. Therefore, we recommend carrying out a neuropsychiatric
evaluation during the cognitive assessment session to incorporate it as a possible covariate
in further analyses. (5) We also did not consider medication HD-related on cognitive
analysis because most of the patients were not under specific treatment with a controlled
and stable dosage given the prodromal/early disease stage (see Supplemental
Information–Table S4).

CONCLUSION
In summary, the MoCA test captures not only cognitive status but also structural brain
atrophy associated with the HD cognitive impairment; particularly, the atrophy of the
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caudate and the superior-lateral frontal areas as well as posterior regions such as
temporoparietal and lateral occipital areas. This finding may result in a more detailed
understanding of the neural bases of the specific cognitive deficits of HD patients.

Overall, the MoCA test could be used as the first approach in clinical practice given its
ability for screening the cognitive impairment of HD patients; then, cognitive impairment
detected may be addressed with other comprehensive cognitive batteries for further
characterization. Moreover, the MoCA test is a suitable screening tool due to its
relationship with the brain atrophy pattern exhibited by prodromal/early HD patients,
which may help to establish adequate neuropsychological rehabilitation programs or to
introduce individualized disease-modifying treatment plans according to the cognitive
deficits detected and the stage of the disease.
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