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Fractal analysis of 4D dynamic 
myocardial stress‑CT perfusion 
imaging differentiates micro‑ 
and macrovascular ischemia 
in a multi‑center proof‑of‑concept 
study
Florian Michallek1*, Satoshi Nakamura2, Hideki Ota3, Ryo Ogawa4, Takehito Shizuka5, 
Hitoshi Nakashima6, Yi‑Ning Wang7, Tatsuro Ito8, Hajime Sakuma2, Marc Dewey1,9,11* & 
Kakuya Kitagawa10,11

Fractal analysis of dynamic, four-dimensional computed tomography myocardial perfusion (4D-
CTP) imaging might have potential for noninvasive differentiation of microvascular ischemia 
and macrovascular coronary artery disease (CAD) using fractal dimension (FD) as quantitative 
parameter for perfusion complexity. This multi-center proof-of-concept study included 30 rigorously 
characterized patients from the AMPLIFiED trial with nonoverlapping and confirmed microvascular 
ischemia (nmicro = 10), macrovascular CAD (nmacro = 10), or normal myocardial perfusion (nnormal = 10) with 
invasive coronary angiography and fractional flow reserve (FFR) measurements as reference standard. 
Perfusion complexity was comparatively high in normal perfusion (FDnormal = 4.49, interquartile range 
[IQR]:4.46–4.53), moderately reduced in microvascular ischemia (FDmicro = 4.37, IQR:4.36–4.37), and 
strongly reduced in macrovascular CAD (FDmacro = 4.26, IQR:4.24–4.27), which allowed to differentiate 
both ischemia types, p < 0.001. Fractal analysis agreed excellently with perfusion state (κ = 0.96, 
AUC = 0.98), whereas myocardial blood flow (MBF) showed moderate agreement (κ = 0.77, AUC = 0.78). 
For detecting CAD patients, fractal analysis outperformed MBF estimation with sensitivity and 
specificity of 100% and 85% versus 100% and 25%, p = 0.02. In conclusion, fractal analysis of 4D-CTP 
allows to differentiate microvascular from macrovascular ischemia and improves detection of 
hemodynamically significant CAD in comparison to MBF estimation.

Chronic myocardial ischemia has been recognized as a disease complex with different underlying pathophysi-
ological entities involving the full range of vascular scales from the larger vessels (i.e., macrovascular coronary 
artery disease, CAD) to microcirculation. In microvascular ischemia, different concurring mechanisms have been 
observed including microvascular atherosclerosis and primary microvascular dysfunction (CMD)1–3. Microvas-
cular ischemia is, most commonly, the result of diffuse CAD involving microvessels and can be detected as “sub-
endocardial ischemia” by noninvasive perfusion imaging4. In less frequent primary microvascular dysfunction, 
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the inability of the small arterial vessels and arterioles to regulate tissue perfusion in response to stimuli asso-
ciated with exercise or external pharmacological induction typically results in homogenously reduced stress 
perfusion with a diffuse perfusion gradient5,6. Importantly, microvascular impairment affects a large proportion 
of patients with stable angina and is associated with a significantly higher rate of major adverse clinical events, 
especially in women7,8. Noninvasive clinical workup comprises both anatomical and physiological testing using 
CT angiography, SPECT, PET, echocardiography, MRI, and their combinations, e.g., PET-MRI9. Moreover, four-
dimensional dynamic CT perfusion imaging (4D-CTP) has been introduced to assess functional relevance of 
anatomical stenoses to the myocardium10. However, noninvasive identification of a microvascular component 
in chronic myocardial ischemia is still challenging in clinical routine but would be beneficial in guiding clinical 
management and estimating individual prognosis11.

Many biological structures can be considered fractals due to their self-similar and scale-invariant organiza-
tion, e.g., vascular trees12,13, cardiac dynamics14,15, and perfusion as a physiological process16,17. Geometrical 
complexity – or chaos – found in physiological myocardial perfusion is a well-recognized phenomenon and can 
be described using fractal geometry12,16,17. Animal studies using radioactively labelled microspheres provided 
insights into the self-similar and scale-invariant properties of myocardial perfusion, which form the basis for 
fractal analysis (FA)16. This concept has been transferred to radiological imaging18 and FA has shown potential 
to differentiate between macro- and microvascular ischemia on cardiac MRI4,19,20. The organization of vascular 
structure, both anatomically and functionally, comprises a number of different scales, including large to small 
arteries, pre-arterioles and arterioles, precapillary segments, the capillary bed and the venous drainage21. FA is 
suitable to characterize such multiscale structures based on fractal dimension (FD), which can be interpreted as 
a quantitative measure of geometrical complexity or chaos, in this case for characterizing perfusion patterns12,16. 
Therefore, FA might be suitable to identify the vascular scales impaired in individual patients, thereby differen-
tiating between macrovascular ischemia (i.e., CAD) and microvascular ischemia (i.e., CMD) in patients with 
chronic myocardial ischemia.

This study explains how fractal principles of perfusion using FA of 4D-CTP might differentiate ischemia 
pathophysiology in rigorously characterized, nonoverlapping groups of patients with normal perfusion, micro-
vascular CMD and macrovascular CAD with an invasive standard of reference.

Methods
Patients.  Data from the prospective AMPLIFiED multicenter study (registered identification number 
UMIN000016353) were analyzed. Briefly, AMPLIFiED is a prospective, multicenter study including a total 
of 174 patients with suspected or confirmed, stable coronary artery disease and a clinical indication for inva-
sive coronary angiography and was conducted to assess the diagnostic performance of four-dimensional stress 
dynamic CT perfusion imaging (4D-CTP). In this pilot study, we investigated patients with accurately charac-
terized and clinically confirmed ischemia types to establish reference values for FD. Our cohort consisted of 30 
patients with microvascular ischemia (n = 10), macrovascular ischemia (n = 10), and normal perfusion (n = 10).

Definition of patient groups.  We used a combined reference standard consisting of invasive catheteriza-
tion with quantitative coronary angiography (QCA) and fractional flow reserve (FFR) measurement in conjunc-
tion with focal perfusion defects on 4D-CTP assessed visually. Each visual perfusion defect on 4D-CTP was 
correlated with invasive results. Perfusion defects have been assessed by two readers in a consensus procedure 
and have been validated by an independent third reader. We defined the following criteria to assign patients 
to either of the three perfusion groups (see also flow chart in Fig. 1): Macrovascular ischemia was defined as 
visual ≥ 90% diameter stenosis on angiography or ≥ 50% diameter stenosis with positive fractional flow reserve 
(FFR) (< 0.8) in conjunction with visually abnormal perfusion in the downstream myocardium on 4D-CTP. For 
this study, we excluded patients with occlusive disease. Microvascular ischemia was defined as < 25% diameter 
stenosis despite visual subendocardial perfusion abnormality on plain 4D-CTP. With this approach we expect 
to identify patients with subendocardial ischemia due to microvascular atherosclerosis, which has been found 
to be the most common pathophysiological entity in patients with microvascular ischemia2. This subset can be 
described with the term “ischemia and nonobstructive coronary arteries” (INOCA)22. Patients with 25–49% 
diameter stenosis were excluded to avoid potential overlap of pathophysiology. Normal controls were defined 
as normal coronary arteries without signs of perfusion deficits on 4D-CTP. Segments with signs of delayed 
enhancement were excluded from analysis.

Comparison of fractal analysis to myocardial blood flow.  To assess CAD detection, we compared 
fractal analysis to CT-derived myocardial blood flow (MBF) for identifying hemodynamically relevant stenosis 
using invasive angiography and FFR as reference standard. Analysis was conducted on a per-segment level using 
the American Heart Association (AHA) 17-segments model. Three nonoverlapping patient groups – one with 
normal perfusion, one with macrovascular ischemia, and one with microvascular ischemia – were retrospec-
tively extracted from the dataset to establish reference values for differentiation of normal and abnormal perfu-
sion states using fractal analysis.

Imaging protocol.  The imaging procedures included 4D-CTP, coronary CT angiography (CCTA), delayed 
enhancement CT (CTDE), and invasive coronary angiography with FFR measurement as well as cardiac mag-
netic resonance imaging (MRI) with a dynamic contrast-enhanced perfusion sequence in a subset of patients. 
All participants gave written informed consent. The study was approved by an institutional review board (Clini-
cal Research Ethics Review Committee of Mie University Hospital). FM, MD and KK had full access to all data 
in the study and take responsibility for data integrity and analysis.
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Cardiac CT examinations were performed on a second- or third-generation dual-source CT scanner 
(Somatom Definition Flash, Somatom Force, Siemens Healthineers, Germany). Patients were required to be 
fasting for at least 4 h and abstain from caffeine at least 12 h before the CT examination. The 30-s 4D-CTP scan 
was acquired using the ECG-triggered shuttle mode and started with the injection of 40 mL of contrast medium 
with an iodine concentration of 370 mg/mL at a flow rate of 5 mL/s, followed by a 40 mL saline flush during 
the administration of 20 mg of adenosine triphosphate (ATP) at 160 μg/kg/min for > 3 min. Dynamic 4D-CTP 
in the second- or third-generation CT scanner was performed with the following acquisition parameters: col-
limation = 32 × 1.2 or 48 × 1.2 mm, rotation time = 0.28 or 0.25 s, and tube voltage = 80 or 70 kV, respectively. 
Tube current was determined using an automatic exposure control system with a quality reference of 350 mAs/
rotation at 120 kV.

Figure 1.   Flow chart of patient selection to assemble a rigorously defined cohort with nonoverlapping 
perfusion pathophysiology. Remaining eligible cases were selected by clinical matching, if possible.
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In this study, the 4D-CTP datasets were assessed by fractal analysis (FA) as described in detail below, and inva-
sive coronary angiography with FFR and visual analysis of 4D-CTP served as the combined reference standard.

Image preprocessing.  Image preprocessing was performed in several steps in order to adequately assess 
four-dimensional, dynamic contrast-enhanced CT data reconstructed on a 512 × 512 matrix with around 70 
slices at 12–15 time points. The steps included (I) registration for motion correction with dynamic contrast 
enhancement as a major challenge, (II) image denoising with individual adaptation to image quality while retain-
ing of precious local signal variation, (III) image standardization to ensure intersubject comparability, and (IV) 
segmentation to constrain fractal analysis to the myocardium. (I) For image registration, the open-source library 
SimpleElastix was employed (Marstal K. 2015. https://​simpl​eelas​tix.​github.​io/). A principal-component analysis 
metric (PCAMetric2) was used to account for contrast changes over time. This approach explicitly accounts for 
temporal signal variability due to contrast agent administration and ensures that anatomical features are retained 
despite contrast uptake and washout. (II) Image denoising comprised a locally constrained median filter with 
a radius of 1 (i.e., a 3 × 3 pixel kernel) in combination with bilateral filtering adapted to individual noise levels. 
For bilateral filtering, spatial standard deviation was set to σdomain = 2 and intensity standard deviation σrange 
was determined from the standard deviation of the unenhanced myocardium to account for individual image 
quality23. (III) Image standardization was performed by converting CT Hounsfield units into absolute contrast 
agent concentration24. (IV) Segmentation of the left ventricular myocardium was performed semiautomatically 
by sparsely annotating the myocardium in short-axis multiplanar reformation, and linear contour interpolation 
was used to automatically connect the sparse segmentations. Myocardial segmentation at this stage, however, 
only limited the area, which was subjected to fractal analysis in order to speed up calculation. Actual quantitative 
myocardial measurements were performed after fractal analysis as explained below. The resulting preprocessed 
dataset was subsequently subjected to fractal analysis.

Fractal analysis.  Fractal analysis was performed in a local manner based on the approach in25. This study 
extends said approach by additionally considering the third, spatial dimension as well as the fourth, tempo-
ral dimension, therefore, our method constitutes four-dimensional (4D) fractal analysis. The algorithm can be 
described as follows, starting with the two-dimensional case: a single image slice can be considered a texture 
embedded in two-dimensional space with intensity as the third dimension. Fractal analysis evaluates feature 
propagation over multiple scales, which can be represented by two blankets molded to the texture. One blanket 
is iteratively raised, the other lowered from the texture, losing detail in the process. The local fractal dimension is 
obtained from quantifying the loss of detail (represented by the surface area of the blankets) as a function of dis-
tance to the original texture25,26. For 4D fractal analysis, the image can be considered a hypertexture embedded 
in four-dimensional space with intensity constituting a fifth dimension. Molding the two hyperblankets works 
analogously to the two-dimensional case with loss of detail occurring in all neighboring dimensions according 
to the formulas:

where uε and bε represent the top and bottom blankets, respectively; ε the scale, i.e., the counter of iterations; 
and i, j, k, t as well as m, n, o, s are pixel coordinates (in 3D plus time). Unlike the area in the two-dimensional 
case, the hypervolume V(ε) of the blankets is calculated at each iteration:

Repeating this process yields a bi-logarithmic linear relationship with a decreasing slope for ln V(ε) against 
ln ε. The slope is determined from a linear fit of log V(ε) against log ε and FD can be calculated as:

During the process, fractal analysis integrates and thereby collapses the temporal dimension, which results 
in a spatial FD map reflecting complexity of the perfusion pattern in local vicinity over time.

A per-segment analysis of FD was performed by selecting a representative region of interest (ROI) from each 
myocardial segment based on the AHA-17-segments model. Mean FD of each segment was subjected to statisti-
cal analysis. Two readers with over 15 years or, respectively, over 6 years experience in cardiovascular imaging 
independently performed fractal analysis to assess inter-reader variability. Both readers were blinded to any 
clinical information including perfusion status.

Perfusion rate estimation.  A local perfusion map was computed based on a surrogate of myocardial 
blood flow from adenosine-induced maximum hyperemia in dynamic CT perfusion scans using the maximum 
upslope method (MUS)27–30. The CT scan was preprocessed as described above, except that a radius of 3 was 
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used for median filtering. The MUS was used with a surrogate for myocardial blood flow being estimated from 
the ratio of the myocardial to arterial upslope during the first-pass contrast agent uptake phase:

PerfusionMUS = max(Ṡmyo)/max(SAIF) (5).
where S denotes the time-to-signal intensity curve, Ṡ is its first derivate with the maximum being obtained 

from a linear curve fit of the upslope, and AIF denotes the arterial input function measured in the aorta. The 
same ROIs as for fractal analysis were used for quantitative MBF measurements.

Statistical analysis.  Three patient-wise pathophysiological groups were defined (i.e., normal perfusion, 
macrovascular ischemia, and microvascular ischemia). According to the pathophysiological hypothesis, a cor-
relation between FD and the underlying perfusion pattern was postulated. The Kruskal–Wallis test and pairwise 
group comparisons using the post hoc Mann–Whitney U-test were performed to test for group-wise differences. 
Intrapatient clustering due to analysis on a per-segment level was eliminated by averaging. To derive optimal cut-
offs for the individual pathophysiological groups, the optimal point was calculated as part of a multiclass receiver 
operating characteristic (ROC) analysis after elimination of intrapatient clustering. Myocardial perfusion was 
correlated with both the pathophysiological groups and FD. Agreement with pathophysiology was evaluated 
by calculating quadratic-weighted κ31. Inter-reader variability of fractal analysis was assessed using Cohen’s κ 
for two readers. Moreover, a Bland–Altman analysis was carried out. For diagnostic accuracy, sensitivity and 
specificity were calculated and compared between fractal analysis and MBF using the McNemar test. Multi-class 
area under the receiver operating curve (AUC) was calculated by considering normal perfusion, microvascular 
CMD, and macrovascular CAD. A level of p ≤ 0.05 was considered significant, and adjusted p-values with Bon-
ferroni correction, where appropriate, are reported. The STARD guidelines were adhered to. Statistical analysis 
was performed with R (v3.4.1, R Foundation for Statistical Computing. Vienna, Austria).

Results
Patient cohort.  The characteristics of the patient cohort are summarized in Table 1. Hemodynamic response 
characteristics during 4D-CTP can be found in Table 2. Each of the 17 myocardial segments per patient were 
classified by pathophysiology: In normal controls, 170 segments were included. In patients with microvascular 

Table 1.   Patient characteristics. SD—standard deviation, PCI—percutaneous coronary intervention.

Characteristic Normal (n = 10) Microvascular (n = 10) Macrovascular (n = 10)

Male 4 8 6

Age (mean ± SD) 68.7 ± 8.4 66.7 ± 7.8 69.6 ± 12.0

Body mass index (mean ± SD) 22.8 ± 3.5 23.7 ± 3.8 24.0 ± 3.3

Coronary risk factors

Hypertension 4 7 10

Dyslipidemia 4 5 8

Diabetes mellitus 2 0 8

Smoking 4 7 6

Family history of CAD 2 3 1

Symptoms

Typical angina 3 3 3

Atypical angina 6 1 0

Non-anginal pain 0 3 0

Dyspnea 1 0 1

History of PCI 0 1 4

History of myocardial infarction 0 0 2

Table 2.   Hemodynamic response to ATP.

Parameter Normal (n = 10) Microvascular (n = 10) Macrovascular (n = 10)

During stress

Systolic blood pressure (mmHg) 131.1 ± 12.3 119.0 ± 27.1 120.5 ± 13.9

Diastolic blood pressure (mmHg) 73.3 ± 11.6 59.4 ± 15.4 63.6 ± 9.4

Heart rate (beats/min) 76.6 ± 17.3 80.1 ± 13.3 90.4 ± 33.0

At rest

Systolic blood pressure (mmHg) 138.5 ± 19.0 139.9 ± 24.1 139.1 ± 18.7

Diastolic blood pressure (mmHg) 76.6 ± 9.0 72.9 ± 12.3 71.2 ± 12.9

Heart rate (beats/min) 64.2 ± 11.7 64.3 ± 7.1 73.5 ± 13.6
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disease, 123 ischemic segments were identified and allocated to the microvascular ischemia group. In patients 
with macrovascular CAD, 93 ischemic segments, or, respectively, 15 vessels with significant CAD according to 
above criteria were identified and allocated to the macrovascular CAD group.

The complete analysis procedure took about 20 min per patient, which included registration, denoising, 
myocardial segmentation, calculation of FD and MBF maps, and definition of myocardial regions of interest 
according to the AHA 17-segments model. Representative analysis results for patients from each pathophysi-
ological group are depicted in Fig. 2.

Fractal analysis.  In patients without ischemia, perfusion complexity was high (FDnormal = 4.49, interquar-
tile range, IQRnormal: 4.46–4.53), whereas perfusion complexity was significantly reduced in ischemia (p < 0.001, 
Fig. 3A): We found a moderate reduction in microvascular ischemia (FDmicro = 4.37, IQRmicro: 4.36–4.37) and a 
strong reduction in macrovascular CAD (FDmacro = 4.26, IQRmacro: 4.24–4.27) with a squared multiple regression 
coefficient r2 = 0.81. FD predictions agreed excellently with pathophysiology (κ = 0.96, 95%-confidence inter-
val [CI]: 0.94–0.97). The optimal cutoff threshold to differentiate normal perfusion and ischemia (i.e., pooled 
micro- and macrovascular) was FD = 4.41, and for differentiating micro- and macrovascular ischemia FD = 4.31, 
respectively (Table 3). 

Inter‑reader variability of fractal analysis.  The fractal analysis results from two independent readers 
agreed excellently (Cohen’s κ = 0.94, CI: 0.92–0.96) without relevant bias (−0.011, CI: −0.012 to −0.010) and 
acceptable limits of agreement (−0.04 to 0.02) with the more experienced reader being considered as reference 
(Fig. 4).

MBF and relation to fractal analysis.  The MBF estimate was significantly different between the three 
pathophysiological perfusion states (p < 0.001) with the median MBF being lower in ischemia (MBFmicro = 105.6 ml/
min/100 ml, IQR: 94.7–112.9 versus MBFmacro = 68.2 ml/min/100 ml, IQR: 62.6–76.9) compared with normal 
perfusion status (MBFnormal = 138.1 ml/min/100 ml, IQR: 118.6–146.0), see Table 3. Comparison of MBF and FD 
yielded a moderate linear correlation (r2 = 0.71, see Fig. 3B) with a tendency of perfusion to become less chaotic 
at reduced MBF levels. MBF agreed moderately with pathophysiology (κ = 0.77, 95%-confidence interval, [CI]: 
0.72–0.81). The optimal cutoff threshold to differentiate normal perfusion and ischemia (i.e., pooled micro- and 
macrovascular) was MBF = 107.7 ml/min/100 ml, and for differentiating micro- and macrovascular ischemia 
MBF = 86.5 ml/min/100 ml, respectively.

Detection of coronary artery disease.  For the detection of CAD, we dichotomized the dataset into 
macrovascular CAD (n = 10) and non-CAD (n = 20, i.e., pooled non-ischemia and microvascular ischemia). We 
assigned a patient or, respectively, a vessel to CAD when FD in at least one pertaining myocardial segment was 
below the FD threshold for CAD (i.e., FD ≤ 4.31), yielding 15 CAD vessels and 75 non-CAD vessels.

On the patient level, we found that fractal analysis correctly identified 10/10 CAD patients and 17/20 non-
CAD patients, corresponding to a sensitivity of 100% (CI: 69–100%) and a specificity of 85% (CI:62–97%). In 
comparison, MBF correctly identified 10/10 CAD patients and 5/20 non-CAD patients, corresponding to a 
sensitivity of 100% (CI: 69–100%) and a specificity of 25% (CI: 9–49%).

On the vessel level, fractal analysis correctly classified 15/15 CAD vessels and 71/75 non-CAD vessels, yielding 
a sensitivity of 100% (CI: 69–100%) and a specificity of 95% (CI:87–99%). MBF correctly classified 15/15 CAD 
vessels and 24/75 non-CAD vessels, corresponding to a sensitivity of 100% (CI: 78–100%) and a specificity of 
32% (CI: 22–44%).

While both fractal analysis and MBF perfectly diagnosed CAD in this highly selective patient cohort, fractal 
analysis significantly outperformed MBF in terms of specificity for identifying non-CAD patients (p = 0.02) and 
non-CAD vessels (p < 0.001).

Differentiation of coronary artery disease and microvascular ischemia.  For the differentiation of 
macrovascular CAD and microvascular CMD, we analyzed the respective sub-cohorts (each n = 10). For diag-
nostic accuracy, we defined macrovascular CAD as positive outcome. Fractal analysis correctly differentiated 
CAD and CMD in the majority of myocardial segments, i.e., correct classifications were achieved in 93/93 CAD 
segments and 113/123 CMD segments, yielding a sensitivity of 100% (CI: 96–100%), a specificity of 92% (CI: 
86–96%) and Cohen’s κ = 0.91 (CI: 0.85–0.96).

In comparison, MBF correctly classified 79/93 CAD segments and 102/123 CMD segments, yielding a sensi-
tivity of 85% (CI: 76–92%), a specificity of 83% (CI: 75–89%) and Cohen’s κ = 0.69 (CI: 0.59–0.79).

The multi-class AUC (normal vs. microvascular vs. macrovascular ischemia) on the myocardial segment level 
was 0.98 (CI: 0.97–0.99) for fractal analysis and 0.78 (CI: 0.76–0.81) for MBF.

Discussion
This proof-of-concept study introduces fractal analysis of 4D-CTP for differentiating microvascular and macro-
vascular causes of myocardial ischemia in a rigorously characterized patient cohort. Our concept is strictly based 
on pathophysiological considerations, which have been well studied in normal perfusion and animal models, 
however, those findings have not been put to clinical use before. In comparison to MBF estimation, fractal 
analysis allows to reliably identify microvascular ischemia and, moreover, improves the diagnostic accuracy 
for detecting macrovascular CAD. As quantified by FD, perfusion is inherently complex with complexity being 
reduced in ischemia, which depends on the underlying pathophysiology. Perfusion complexity is only partially 
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Figure 2.   Comparison of myocardial blood flow estimation (first row) and fractal analysis (second and third 
row) of left-ventricular myocardium in three patients with either normal perfusion (A), microvascular ischemia 
(B) or macrovascular coronary artery disease (CAD, C). (A) Normal perfusion pattern with physiological FD 
(perfusion complexity) and MBF = 146 ml/min/100 ml (female, age 69, hypertension, dyslipidemia, smoking, 
family history of CAD). (B) Microvascular ischemia pattern in the anterior wall and septum with normal 
coronary arteries and MBF = 100 ml/min/100 ml in the ischemic area (female, age 69, hypertension, diabetes 
mellitus, smoking). (C) Macrovascular ischemia pattern in the territory of the left anterior descending artery 
(LAD) and a corresponding 90% stenosis (segment 6, FFR < 0.8) on invasive coronary angiography and 
MBF = 94 ml/min/100 ml in the ischemic area (female, age 75, hypertension, dyslipidemia, diabetes mellitus, 
smoking). MBF identified ischemic regions, however, only FD correctly differentiated between microvascular 
and macrovascular perfusion patterns.
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related to MBF and provides independent information on the perfusion status. Reference values for fractal 
dimension (FD) have been established in this study and are readily applicable to clinical pharmacological stress 
4D-CTP protocols to complement noninvasive imaging workup in patients with stable myocardial ischemia.

The differentiation of macrovascular and microvascular ischemia is thought to reflect important prognostic 
implications: stable myocardial ischemia patients with a microvascular component have a poorer clinical outcome 
and prognosis including a higher rate of major adverse clinical events, which is specifically evident in female 
patients32,33, and is an area of active research34. Various diagnostic methods have been proposed to identify micro-
vascular ischemia by exploiting its different pathophysiological mechanisms. However, no single noninvasive 
method has yet reached clinical applicability in terms of enabling a reliable diagnosis of microvascular ischemia. 

Figure 3.   Boxplot of fractal dimension (FD) versus perfusion pattern (A) and myocardial perfusion 
(semiquantitative maximum upslope estimate (B). (A) Fractal dimension was significantly (p < 0.001) different 
between normal perfusion, microvascular and macrovascular ischemia patterns (thresholds see Table 3 and 
Results section). (B) Fractal dimension showed moderate linear correlation with perfusion, however with a 
relatively high variation in perfusion.

Table 3.   Results of fractal analysis for detecting and classifying ischemia. The fractal dimension (FD) is the 
quantitative parameter for complexity of perfusion and is given after elimination of intra-patient clustering. 
IQR—interquartile range.
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In current clinical practice, the diagnosis of microvascular ischemia is based on the presence of myocardial 
ischemia on functional perfusion imaging, i.e., MRI35–37, CTP38, or positron emission tomography (PET)39, in 
the absence of coronary stenosis on either coronary angiography including an option for acetylcholine testing40 
or CCTA, which has high diagnostic accuracy for noninvasive detection of macrovascular CAD41,42. While the 
pathophysiological relation between epicardial vessel wall remodeling and resultant pathophysiological conse-
quences for myocardial blood flow (MBF) has been studied43, imaging of the microcirculation remains chal-
lenging. Since CAD is often diffuse with associated mild to moderate stenoses, the distinction between ischemia 
primarily due to macrovascular stenosis or microvascular ischemia is difficult. As demonstrated in the current 
study, fractal analysis of 4D-CTP may provide a quantitative imaging parameter that allows differentiation of 
macrovascular and microvascular ischemia, thereby contributing to the demand for a more personalized, non-
invasive disease characterization for individualized therapeutic interventions44.

Fractal analysis of perfusion has shown potential to differentiate the predominant pathophysiology underlying 
myocardial ischemia19. The principle assumes that structural and functional alterations of the vasculature alter 
the perfusion pattern, which in turn can be assessed using radiological and nuclear medicine imaging methods18. 
The vascular scale that is impaired determines how the perfusion pattern is altered. In macrovascular ischemia, 

Figure 4.   Bland–Altman plot for inter-reader agreement of fractal analysis per myocardial segment. Two 
readers (> 15 years and > 5 years of experience in cardiovascular imaging) independently performed fractal 
analysis while blinded to any clinical information and perfusion status. The more experienced reader is 
considered as reference.
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stenoses in the large epicardial arteries restrict blood flow to the downstream perfusion territory. The net effect 
on flow exhausts vasodilative capacity due to a global reduction of driving pressure for the diseased perfusion 
territory. In contrast, microvascular ischemia is the result of heterogeneous endothelial dysfunction and impaired 
microvascular function with diffuse atherosclerosis being considered the most common cause2,5. Moreover, 
microvascular ischemia is characterized by a patchy distribution pattern throughout the myocardium with 
healthy and diseased vascular beds existing side by side21,45–48. Those characteristics result in a patchy exhaus-
tion of vasodilative capacity with potential for compensation by unaffected neighboring microvascular beds. 
The involvement of different vascular scales in macrovascular (i.e., large epicardial arteries) and microvascular 
(i.e., small arteries and arterioles) ischemia alters the perfusion pattern in different ways and is observable in 
terms of contrast agent deposition. Fractal analysis is a promising method to quantitatively assess this altera-
tion of the perfusion pattern, given the fractal nature of both the structural vascular tree49 and perfusion as its 
functional correlate16,50. Indeed, we found a significant difference in fractal dimension between macrovascular 
and microvascular ischemia.

While the perfusion rate is a good marker of the severity of ischemia, it does not reflect the vascular scale 
that is impaired. Therefore, MBF did not provide reliable differentiation of the underlying pathophysiology in 
our study. For example, a perfusion rate of 100 ml/min/100 ml was observed in all three pathophysiological 
groups we analyzed, as shown in Fig. 3B. Moreover, different methods for perfusion modelling exist, and they 
vary widely in terms of validity and quantitative results51. Therefore, it would be difficult to establish a single 
MBF threshold for diagnosis of the underlying pathophysiology. Unlike MBF estimation, fractal analysis does 
not depend on comparison to individual physiological MBF levels or hemodynamic model fitting. Therefore, 
the threshold we established for FD in this study might be less susceptible to interindividual differences and is 
therefore straightforward to apply to dynamic 4D-CTP scans. Fractal analysis complements MBF analysis and 
contributes to the quantification of changes in perfusion patterns reflecting the underlying pathophysiology. 
Moreover, fractal analysis has potential to improve especially specificity for detecting coronary artery disease 
compared to MBF as suggested by our data.

Our retrospective study design and rigorous inclusion criteria aim at a pathophysiologically nonoverlapping 
patient selection to investigate different perfusion conditions in their isolated form. However, this approach 
entails several limitations: First, the number of included patients per group is small. However, the sample has 
been taken from the large, prospective AMPLIFiED multi-center study and strict selection criteria were necessary 
to ensure a consistent definition of perfusion pathophysiology. In turn, our patient selection process introduced 
a selection bias with regards to uniformity of underlying pathophysiology and neglects intermediate stenosis 
grades. Moreover, our design does not allow to draw conclusions on prospective patient outcome, and it does not 
reflect the majority of patients encountered in clinical routine. A retrospective study with less rigorous inclusion 
criteria, as well as a prospective study would be reasonable to assess the value of fractal analysis in a less uniform 
patient cohort, and, respectively, to explore potential prognostic implications of fractal analysis. Moreover, the 
number of patients is relatively small with only 10 patients in each of the three pathophysiological groups. How-
ever, patients with isolated microvascular ischemia and normal coronary arteries are relatively uncommon22,52. 
The analysis of the myocardial segment level introduces intrapatient clustering, which we mitigated by evaluating 
the amount of clustering and adequately adjusting for it.

15O-water PET is usually regarded as a gold standard for myocardial perfusion estimation. However, since 
PET was not available from the investigated study cohort, the calculated MBF values could not be validated 
against a reference. However, previous studies have established correlations of perfusion rate estimates from 
4D-CTP and PET, e.g., in53.

Fractal analysis as presented in this paper identifies the vascular scale which is responsible for perfusion 
impairment. Further research would be desirable to investigate whether fractal analysis could help to quantify the 
individual contribution of macro- and microvascular components in complex cases, which might assist in clinical 
decision making. Moreover, prospective testing of such a stratification approach would be required to explore 
the impact on prognosis and outcome and to establish a high level of evidence for fractal analysis of perfusion54.

Conclusion
Perfusion is inherently complex under physiological conditions and is less so in patients with ischemia. Frac-
tal analysis allows to quantify perfusion complexity, thus enabling to differentiate micro- and macrovascular 
causes of ischemia. In relation to MBF estimation, fractal analysis further improves the detection of significant 
macrovascular CAD. The results of our study might be exploited in the noninvasive imaging workup of patients 
with chronic myocardial ischemia and thus help in guiding clinical management and stratifying patients by 
pathophysiology. It remains to be shown by further research whether fractal analysis of perfusion also has a 
prognostic benefit and potential to improve clinical outcome.

 Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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