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Abstract

Background: Autophagy is a dynamic catabolic process characterized by the formation of double membrane
vacuoles termed autophagosomes. LC3, a homologue of yeast Atg8, takes part in autophagosome formation, but
the exact regulation mechanism of LC3 still needs to be elucidated.

Methods: Ceramide-induced autophagy was determined by detecting LC3 expression with Western blotting and
confocal microscopy in human nasopharyngeal carcinoma cell lines CNE2 and SUNE1. The activation of JNK
pathway was assessed by Western blotting for phospho-specific forms of JNK and c-Jun. The JNK activity specific
inhibitor, SP600125, and siRNA directed against JNK were used to block JNK/c-Jun pathway. ChIP and luciferase
reporter analysis were applied to determine whether c-Jun was involved in the regulation of LC3 transcription.

Results: Ceramide-treated cells exhibited the characteristics of autophagy and JNK pathway activation. Inhibition of
JNK pathway could block the ceramide-induced autophagy and the up-regulation of LC3 expression. Transcription
factor c-Jun was involved in LC3 transcription regulation in response to ceramide treatment.

Conclusions: Ceramide could induce autophagy in human nasopharyngeal carcinoma cells, and activation of JNK
pathway was involved in ceramide-induced autophagy and LC3 expression.

Background
Cancer is becoming an increasingly threaten factor in the
global burden of disease[1]. Nasopharyngeal carcinoma
(NPC), which is a malignancy derived from epithelial
cells, is common in South China, especially Guangdong
province [2]. The primary treatment strategy of NPC is
radiotherapy. It was reported that the 5-year survival rate
of early stage NPC patients treated with radiotherapy was
around 80%-95% [3,4]. Various therapies including radio-
therapy can induce autophagy in many kinds of cancer
cells. Autophagy is a lysosomal pathway used by eukar-
yotes for degrading and recycling various cellular consti-
tuents, such as long-lived proteins and entire organelles

[5-7]. The recycling of these intracellular constituents
also serves as an alternative energy source during periods
of metabolic stress to maintain homeostasis and viability
[8-10]. Recent studies have revealed a wide variety of
physiological roles for autophagy as well as its relevance
to diseases, especially to cancer [11,12]. Cancer cells also
adopt autophagy in response to anticancer therapies,
such as chemotherapy and radiotherapy [11,13,14]. For
example, radiation could induce autophagy in colon
cancer, breast cancer and malignant glioma cells [15-17].
Cytotoxic drug often triggers autophagy, particularly in
apoptosis-defective cells, and the excessive cellular
damage can promote cell death [13,18,19].
Accumulated evidences suggest that a basal autophagy

in normal cells is very important for providing homeo-
static and housekeeping functions. In response to meta-
bolic stress and anticancer therapies, autophagy is also
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required for cancer cells to survive [20]. However, in some
situations, excessive autophagy can induce nonapoptotic
cell death of cancer cells [21,22].
The transcription factor c-Jun, a well characterized JNK

substrate, has been shown to play a critical role in apopto-
sis [23,24]. The JNK1 signaling pathway has been shown
to regulate autophagy in both Drosophila and mammalian
cells in response not only to starvation, but also to ER
stress, growth factor withdrawal, cytokine stimulation (e.g.,
IL-2 and TNFa), and caspase inhibition [25-27]. Beclin 1
(orthologue of yeast Atg6), the first identified mammalian
autophagy protein [28], plays a key role in autophagosome
formation. We have found that JNK activation could lead
to autophagy induction through up-regulating beclin1
expression [29].
Atg8 is required for the formation of autophagosome, a

double-membrane vesicle responsible for the delivery of
cytoplasmic material to lysosomes [30]. The protein levels
of Atg8 are significantly elevated when autophagy is
induced under starvation, making it a natural candidate
for an autophagy regulator [31,32]. LC3 was proposed to
be a homologue of yeast Atg8 and could also be used as
an autophagosomal marker [33-35]. Although Atg8/LC3
has been widely used as a marker of autophagosomes, its
exact mechanism of regulation remains elusive.
Ceramide plays an evolutionarily conserved role in the

cellular response to stress by regulating cell growth, differ-
entiation, senescence, and survival [36,37]. The ability of
ceramide to trigger programmed cell death in response to
growth factor withdrawal, death receptor ligation, hypoxia,
radiation, and chemotherapeutic drugs is likely integral to
its role in suppressing cancer initiation and progression
[38-41]. It was reported that ceramide, as a second mes-
senger engaged in radiation, could induce autophagic cell
death by inhibiting the activation of Akt/mTOR pathway
in cancer cells [1,42]. Also, P53 and FOXO3 were involved
in the regulation of LC3 expression in prolonged starva-
tion and muscle atrophy, respectively [43,44]. But how
anticancer agents regulate LC3 expression is elusive.
Therefore, we explore the relationship between JNK acti-
vation and LC3 expression in ceramide-induced autophagy
in nasopharyngeal carcinoma cells.
In the present study, we focused on the mechanism of

activation of JNK pathway mediating autophagy-related
gene LC3 expression and autophagy following ceramide
treatment in human nasopharyngeal carcinoma cell lines.
These data provide a novel mechanism for regulation of
LC3 expression in anticancer agents-induced autophagy.

Methods
Drugs and reagents
N-acetyl-D-sphingosine(ceramide), RPMI-1640 medium,
dimethylsulfoxide (DMSO), SP600125 and sodium

dodeyl sulfate were purchased from Sigma-Alorich Co
(St Louis, MO, USA). Ceramide was initially dissolved in
100% DMSO and stored at -20°C.

Cell lines and cell culture
Human nasopharyngeal carcinoma cell line CNE2 and
SUNE1 were cultured in RPMI-1640 supplemented
with 10% heat-inactivated fetal bovine serum, penicillin
(50 U/mL), and streptomycin (50 μg/mL). The cells
were incubated at 37°C in humidified 5% CO2.

Confocal microscopy
Cells were grown on glass coverslips and transfected with
pYFP-LC3 for CNE2 and SUNE1 cells. 36 h after transfec-
tion, the cells were treated with ceramide and analyzed
after additional 24 h. Cells were fixed with 4% paraformal-
dehyde in PBS for 30 min at room temperature, the slides
were mounted in anti-fading solution and stored at 4°C.
The coverslips were examined under a laser-scanning con-
focal microscope (Olympus, FV-1000).

Reverse transcription polymerase chain reaction (RT-PCR)
Total RNA was isolated by TRIzol (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s instructions.
RT-PCR was performed as previously described [45,46].
To detect the mRNA of the LC3 (GenBank, accession
number NM_022818.4), the PCR primers were employed
as follows: forward primer: 5’-GCACCATGCCGTCGGA-
GAAGACC-3’, reverse primer: 5’-CACTCCTAGGTGGG
AACACTACTG-3’. The forward primer (5’-CCACC-
CATGGCAAATTCCATGGCA-3’) and the reverse primer
(5’-TCTAGACGGCAGGTCAGGTCCACC-3’) were used
to generate a 588 bp fragment of GAPDH (GenBank
accession number NM002046.3) as internal control.

Immunoblotting analysis
Lysates were prepared from 1×106 cells by dissolving cell
pellets in 100 μl of lysis buffer [20 mM Na2PO4 (pH 7.4),
150 mM NaCl, 1% Triton X-100, 1% aprotinin, 1 mM
phenymethysulfonyl fluoride, 10 mg/mL leupeptin,
100 mM NaF, and 2 mM Na3VO4]. 25 μg of total protein
was separated by SDS-PAGE, transferred to PVDF mem-
branes, and analyzed by Immunoblotting using the ECL
method[47,48]. The following primary antibodies were
used: c-Jun (H-79) antibody (sc-1694), p-c-Jun antibody
(sc-822), GAPDH antibody (sc-47724), and horseradish
peroxidase-conjugated second antibody were purchased
from Santa Cruz Co (Delaware Avenue, CA, USA).
SAPK/JNK Antibody (#9252), Phospho-SAPK/JNK
(Thr183/Tyr185) Antibody (#9251) were obtained from
Cell Signaling Technology Co (Beverly, MA, USA). Anti-
LC3 antibody (NB100-2220) was obtained from Novus
Biologicals Inc. (Littleton, CO, USA).
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siRNA transfection
The target sequence for JNK1/2-specific siRNA was 5’-
AAAAAGAAUGUCCU AC CUUCU-3’ (GeneBank acces-
sion number NM002750.2)[49], c-Jun-specific siRNA
sequence was 5’-AGAUGGAAACGACCUUCUATT-3’
(GeneBank accession number NM002228.3), and control
siRNA (no silencing) were synthesized by GenePharma Co
(Shanghai, China). Transfection was performed as pre-
viously described [45,46].

Chromatin immunoprecipitation assay
Chromatin immunoprecipitation was performed using the
ChIP assay kit (Active Motif, Carlsbad, CA, USA) accord-
ing to the manufacturer’s instruction. Approximately
1×107 cancer cells were used in each treatment. c-Jun anti-
body (sc-1694) and rabbit normal IgG(sc-66931) were pur-
chased from Santa Cruz Co (Delaware Avenue, CA, USA).
PCR amplification was performed using the primers span-
ning the c-Jun site on LC3 promoter, which are forward
5’-TTGACCTCCCAAAGTGC-3’, reverse: 5’-TCCAAGC
CTGTAAACCC-3’.

Reporter construction and luciferase assays
A fragment spanning from -1993 to +7 relative to the
transcription start site of human LC3 genomic sequence
was produced by PCR with the forward primer 5’-
GGGGTACCGGTACCCTGCCTTCCGGTTTCA-3’ and
the reverse primer 5’-GAAGATCTGCGATAGCCACT
TCCCT-3’. (The bases with underline are restriction
enzyme Kpn I and Bgl II sites, the italics demonstrate pro-
tective bases). This fragment was fused to the firefly luci-
ferase gene of pGL3 promotor vector (Promega Co.,
Madison, WI, USA) to generate a LC3 (-1993/+7)-luc.
While mutations (TGATTCA to GAATTCG) into the
AP-1 site in the LC3 (-1993/+7)-luc, LC3 (-1993/+7)-
MUT-luc construct was introduced. It was performed
using the QuikChange® Lightning Site-Directed Mutagen-
esis Kit (Stratagene, Santa Clara, CA, USA) according to
the manufacturer’s instruction. The constructs were con-
firmed by DNA sequencing.
Cells were transfected with 1 mg of various reporter

plasmids or pGL3- Basic vector (Promega Co., Madison,
WI, USA), and 10 ng of pRL-TK luciferase reporter plas-
mid (Promega Co., Madison, WI, USA). Cancer cells were
cultivated in medium after transfection for 36 h, and then
treated with or without ceramide for 12 h. The levels of
firefly luciferase activity were normalized to pRL-TK luci-
ferase activity.

Results
Ceramide induced autophagy in CNE2 and SUNE1 cell
lines
Anticancer agents such as tamoxifen or arsenic trioxide
induced destructive autophagy or autophagic cell death

in cancer cells [50,51]. We initially determined whether
ceramide could induce autophagy in NPC cells. CNE2
and SUNE1 cells were transfected with an expression
construct for LC3 fused to a yellow fluorescent protein
(YFP-LC3). In control cells, YFP-LC3 was evenly distrib-
uted in the entire cytoplasm. After treatment of 20 μM
ceramide for 24 h, ring-shaped structures were detect-
able in the cytosol, indicating the association of YFP-
LC3 with autophagosomal membranes which showed an
induction of autophagy (Figure 1A). Using immunoblot-
ting analysis, we observed a clear increase of LC3-II in a
dose and time-dependent manner in SUNE1 cells fol-
lowing ceramide treatment (Figure 1B), which consisted
with our previous study in CNE2 cells published on
Oncogene (2008) [29]. These results collectively sup-
ported the induction of autophagy by ceramide.

Ceramide induced the activation of JNK/c-Jun pathway
and up-regulated the expression of LC3
Sphingolipids are known to activate MAPKs signaling
pathway in a variety of cell types. To study the role of
JNK/c-Jun signaling pathway in ceramide-induced autop-
hagy, activation of JNK signal pathway by ceramide was
first detected by immunoblotting. We have also found
that JNK/C-Jun could be activated by ceramide in CNE2
cells [29]. To further confirm this result, SUNE1 cells
were employed. The results showed that ceramide stimu-
lated the phosphorylation of JNK in a dose and time-
dependent manner in SUNE1 cells. And ceramide also
increased phosphorylation of the JNK substrate c-Jun
(Figure 2A). These results indicated that JNK/c-Jun path-
way was activated after ceramide treatment in nasophar-
yngeal carcinoma cells. In addition, we also tested
anticancer drug Taxol and found that it could induce
autophagy in CNE2 cells through JNK activation just like
ceramide (Additional file 1, Figure S1). It suggested that
the autophagy induced through JNK activation was not
specific for ceramide.
To determine whether LC3 expression would be tran-

scriptionally up-regulated in CNE2 and SUNE1 cells
exposed to ceramide, the expression levels of LC3 mRNA
were detected. Following various concentrations of cera-
mide treatment for 24 h or treatment with 20 μM cera-
mide for indicated times, the RT-PCR analysis results
revealed an up-regulation of LC3 expression (Figure 2B).

Inhibition of JNK/c-Jun pathway could block ceramide-
induced autophagy and the up-regulation of LC3
expression
To further investigate the role of JNK in ceramide-
mediated autophagy, the cells were pretreated with 10 μM
of SP600125 (a JNK activity specific inhibitor) for 1 h and
then exposed to 20 μM ceramide. siRNA directed against
a common sequence of JNK1/2 was also used to
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knockdown JNK expression. Immunoblotting analysis
showed that the activation of JNK and c-Jun was inhibited
when pretreatment with SP600125 or siRNA directed JNK
in SUNE1 cells (Figure 3A). In contrast to ceramide treat-
ment alone, the punctuate dots of YFP-LC3 in the cyto-
plasm decreased after pretreatment with SP600125 in
CNE2 cells (Figure 3B). More importantly, JNK knock-
down not only inhibited the phosphorylation of c-Jun but
also prevented the induction of LC3 expression by cera-
mide. Figure 3C showed that the up-regulation of LC3
mRNA was obviously inhibited by SP600125 and siRNA
directed JNK in CNE2 cells.

c-Jun is involved in the regulation of LC3 transcription in
response to ceramide treatment
Transcription factor c-Jun is an important downstream
target of JNK. To investigate whether JNK pathway
mediated LC3 expression was through c-Jun transcrip-
tion factor, the siRNA directed against the sequence of
c-Jun was used to knockdown c-Jun expression. The
results showed that knockdown of c-Jun blocked the
increase of LC3 expression at both mRNA and protein
level in CNE2 cells (Figure 4A).
A c-Jun binding site (TGATTCA) within the LC3 pro-

moter (-1429 to -1436 from the translation initiation site)
was detected by sequence analysis. Chromatin immunopre-
cipitation (ChIP) assay was employed to analyze the binding

of c-Jun to the LC3 promoter. After CNE2 cells treated
with 20 μM ceramide or control for 12 h, chromatins were
sonicated into fragments about 0.5 kb in length and precipi-
tated with a rabbit c-Jun antibody or normal IgG. The pre-
cipitated DNA was subjected to PCR utilizing primer
designed to amplify a 193 bp fragment (-1653/-1461) of
LC3 promoter flanking the c-Jun (AP-1) site. The result
revealed that the binding of c-Jun to LC3 promoter in vivo
was enhanced following ceramide treatment (Figure 4B).
To determine the key sequence responsible for the acti-

vation of LC3 promoter by ceramide, we generated a LC3
(-1993/+7)-luc reporter and transfected this construct to
CNE2 cells. In the meanwhile, the mutations (TGATTCA
to GAATTCG) of AP-1 site in the (-1993/+7) construct
were introduced. We detected the increase in the activity
of LC3 (-1993/+7)-luc reporter approximately by 1.5 fold
induced by ceramide. Having the mutation in the reporter
construct, the luciferase activity of LC3(-1993/+7)-MUT-
luc reporter induced by ceramide was attenuated com-
pared with wild type reporter(Figure 4C). However, even
with the LC3(-1993/+7)-MUT-luc reporter, ceramide still
induced the increase of the luciferase activity (at least
2 folds) compared with control. These findings suggested
that c-Jun could be directly involved in the LC3 transcrip-
tion regulation after ceramide treatment, but there might
be other transcription factors involving in LC3 transcrip-
tion regulation.

Figure 1 Autophagy induced by ceramide in CNE2 and SUNE1 cells. (A) YFP-LC3 expression and localization in CNE2 and SUNE1 cells
treated with DMSO (control) or 20 μM ceramide for 12 h. Representative immunofluorescence pictures are shown at the original magnification
×1000. (B) Ceramide dose and time-dependently induced the formation of LC3-II, a marker for autophagy. SUNE1 cells were treated with
ceramide in the indicated concentrations for 24 h or treated with 20 μM ceramide for the indicated times. Lysates were analyzed by
immunoblotting with LC3 antibody.
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Discussion
In this study our results showed that ceramide induced
autophagy, activated JNK signaling pathway and up-
regulated LC3 expression transcriptionally in human
nasopharyngeal carcinoma cells. Inhibition of JNK activ-
ity or expression could abolish ceramide-induced LC3
expression and autophagy. The binding of c-Jun to the
promoter of LC3 initiated LC3 expression in response
to ceramide treatment. Overall, the results suggest that
ceramide induce LC3 expression and autophagy through
activation of JNK pathway.
Ceramide, one of the sphingosine-based second messen-

ger molecules, generally mediates diverse cellular
responses, such as cell growth inhibition, apoptosis induc-
tion, senescence modulation, endoplasmic reticulum stress
responses and autophagy[52]. Ceramide-mediated apopto-
sis has been extensively investigated [38-40]. Apoptosis
induction by ceramide may involve the activation of speci-
fic genes expression initiated by c-jun, which is triggered
by the activation of JNK in some [40,53,54] but not all cell
types [55]. However, the immediate target responsible for

triggering the apoptotic cascade has not been identified. It
has also been reported that exogenous ceramide could
stimulate autophagy in the human cancer cell lines HT-29
[42] and Hep3B [29]. And an increasing number of reports
have suggested ceramide could induce either apoptotic or
non-apoptotic cell death, depending on the cellular con-
text. However, it is still hard to figure out the specific cir-
cumstances under which ceramide may selectively induce
apoptosis or autophagy. It might be associated with genetic
background in cancer cells.
Previous studies showed that autophagy was regulated

by multiple signaling pathways, including the class III
PI3K [56], the protein kinases mTOR [57,58], ERK [59],
and p38 [60,61]. JNK pathway is critically involved in
both stress-induced and ceramide-induced apoptosis
[40]. In IRE1-deficient cells or cells treated with JNK
inhibitor, the autophagy induced by ER stress was inhib-
ited, indicating that the IRE1-JNK pathway is required
for ER stress induced autophagy [10]. These data sug-
gested that activation of the JNK pathway may play a
crucial role in autophagy.

Figure 2 The effect of ceramide on JNK and c-Jun phosphorylation and up-regulation of LC3 expression. SUNE1 or CNE2 cells were
treated with various concentrations of ceramide for 24 h or with 20 μM ceramide for the indicated periods. (A)The expression levels of JNK,
phospho-JNK, c-Jun and phospho-c-Jun protein were analyzed with immunoblotting. (B)The expression of LC3 mRNA was detected by RT-PCR
analysis.
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Reactive oxygen species (ROS) are chemically-reac-
tive molecules containing oxygen, which form as a nat-
ural byproduct of the normal metabolism of oxygen.
During environmental stress, ROS levels can increase
dramatically. This accumulates into a situation known
as oxidative stress. ROS play a central role in many
physiological and pathophysiological processes includ-
ing inflammation and chronic diseases such as

atherosclerosis and cancer, underscoring the impor-
tance of cellular pathways involved in redox homeosta-
sis[62,63]. ROS were produced endogenously, by
deranged metabolism of cancer cells, or exogenously,
by ROS-generating drugs, which have been shown to
promote autophagy[64,65]. Many signaling pathway
have been proved to mediate this process, such as
JNK, ERK, p38, p53 and AMPK[66-68].

Figure 3 Specific inhibitor SP600125 or siRNA directed JNK blocked ceramide-induced autophagy and up-regulation of LC3
expression. (A) SUNE1 cells were treated with 20 μM ceramide for 24 h in the absence or presence of SP600125 or JNK1/2 siRNA. Lysates were
analyzed by immunoblotting. (B) Autophagosome formation was visualized using YFP-LC3 expressing and observed under a confocal
microscope. Representative immunofluorescence pictures are shown at the original magnification × 1000. (C) The expression of LC3 mRNA was
examined by RT-PCR analysis.
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Indeed, exposure of CNE2 cells to ceramide resulted in
a significant increase in intracellular ROS production
(Additional file 2, Figure S2A). And NAC, a general ROS
scavenger, could eliminate the ROS induced by ceramide
(Additional file 2, Figure S2B). By immunoblotting analy-
sis, we found that, when cells were pretreated with NAC

before ceramide treament, JNK activation and autophagy
were weakly impaird (Additional file 3, Figure S3). It has
been found in previous study that ceramide induces p38
MAPK and JNK activation through a mechanism invol-
ving a thioredoxin-interacting protein (Txnip)-mediated
pathway [69]. Txnip, which inhibits thioredoxin and

Figure 4 c-Jun was directly involved in LC3 transcription in response to ceramide treatment. (A) CNE2 cells were treated with 20 μM
ceramide for 24 h in the absence or presence of c-Jun siRNA. Then LC3, c-Jun or phospho-c-Jun protein expression were analyzed with
immunoblotting. LC3 mRNA was examined by RT-PCR analysis. Pepstatin A is an inhibitor of acid proteases (aspartyl peptidases). (B) Sequential
analysis of the core region of LC3 promoter was analyzed by TESS. CNE2 cells were treated with or without ceramide 20 μM for 12 h, then ChIP
analysis was to detect the binding of c-Jun to LC3 promoter in vivo according to the manufacturer’s instructionand. (C) CNE2 cells were
transfected with LC3 (-1993/+7)-luc or LC3(-1993/+7)-MUT-luc; empty vector was co-transfected as negative control; PCMV-RL was co-transfected
as internal control. 16 h after transfection, the cells were treated with or without ceramide 20 μM for 12 h. Luciferase activities were detected as
described in Material and Methods. (p < 0.05)
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subsequently activates ASK1, acts upstream of ceramide-
induced p38 MAPK and JNK activation. Accordantly, our
data showed that ROS didn’t play a decisive role in cera-
mide-induced autophagy in our model.
Beclin1 is an important molecular switch to adjust

autophagy and apoptosis in mammalian cells [70]. We
had previously reported that JNK/c-Jun pathway was
involved in the ceramide-induced autophagy through
up-regulating Beclin1 expression [29].
Atg8, a lipid-conjugated ubiquitin-like protein, is

required for the formation of autophagosomes, double-
membrane vesicles responsible for the delivery of cyto-
plasmic material to lysosomes for degradation [71]. LC3,
the homologue of yeast Atg8 in mammalian cells, is sig-
nificantly elevated protein level when autophagy is
induced under starvation, making it a natural candidate
for an autophagy regulator and could also be used as an
autophagosomal marker [33,34].
It was reported that p53 was involved in LC3 expression

during prolonged starvation[44], FOXO3 upregulated LC3
expression and induced autophagy in skeletal muscle in
vivo [43]. But how anticancer agents regulate LC3 expres-
sion remains to be elucidated. In the present study, we
focused on the mechanism of activation of JNK pathway
mediating autophagy and LC3 expression induced by cera-
mide. Our results showed that the activation of JNK path-
way following ceramide treatment increased expression of
LC3, but this effect could be abolished by JNK specific
inhibitor or siRNA. These findings suggest that up-regula-
tion of LC3 expression during autophagy depends on JNK
pathway. c-Jun is a predominant target of JNK and can be
phosphorylated and activated to regulate downstream
genes expression. To study whether c-Jun is involved in
LC3 expression during autophagy, siRNA targeting c-Jun
was used in CNE2 cells. The results showed that both cer-
amide-induced c-Jun phosphorylation and LC3 up-regula-
tion were blocked after c-Jun was knocked down. These
results suggest that the activation of c-Jun is necessary in
the up-regulation of LC3 during autophagy. Furthermore,
ChIP and luciferase reporter gene assay reveal that the
binding of c-Jun to LC3 promoter increased and up-regu-
lated LC3 expression after ceramide treatment. In sum-
mary, these findings suggest that c-Jun is essential for LC3
transcription after ceramide treatment.

Conclusions
Taken together, our study demonstrated that JNK/c-Jun
pathway was involved in ceramide-induced autophagy
and the regulation of LC3 expression. It makes an expla-
nation for autophagy induction in response to multiple
stresses including anticancer treatments, and also pro-
vides a mechanism for the regulation of LC3 expression
during autophagy.

Additional material

Additional file 1: Fig S1: The effect of Taxol on JNK and c-Jun
phosphorylation and up-regulation of LC3 expression. CNE2 cells
were treated with various concentrations of Taxol for 24 h or with 16 μM
Taxol for the indicated periods. The expression levels of JNK, phospho-
JNK, c-Jun and phospho-c-Jun and LC3 protein were analyzed with
immunoblotting. GAPDH was used as internal control.

Additional file 2: Fig S2: Effects of ceramide on ROS production in
CNE2 cells. (A) CNE2 cells were treated with 20 μM ceramide for the
indicated periods. The ROS levels were measured by FACS following DCF
or DHE treatment. (B) Cells were pre-incubated with NAC (200 μM) for 1
hour before treatment with ceramide (20 μM for 24 hours) and
intracellular ROS was determined. O2- and H2O2 were detected using
DHE and DCF fluorescent dye respectively. Results were means ± SD of 3
independent experiments. P < 0.05.

Additional file 3: Fig S3: Ceramide-mediated JNK/c-Jun pathway
and autophagy activation were ROS independent. CNE2 cells were
treated with 20 μM ceramide for 24 h in the absence or presence of
NAC. The expression levels of JNK, phospho-JNK, c-Jun and phospho-c-
Jun and LC3 were analyzed with immunoblotting.

Abbreviations
JNK: c-Jun NH2-terminal kinase; NPC: nasopharyngeal carcinoma; siRNA:
Small interfering RNA; ChIP: Chromatin immunoprecipitation; ER stress:
endoplasmic reticulum stress; DMSO: dimethylsulfoxide; RT-PCR: Reverse
transcription polymerase chain reaction; YFP: Yellow fluorescent protein.
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