
Received:
30 November 2015

Revised:
11 March 2016

Accepted:
14 April 2016

Heliyon 2 (2016) e00100

http://dx.doi.org/10.1016/j.heliyon.20

2405-8440/© 2016 The Authors. Pub
Building adaptive self-healing 

systems within a resource 

contested environment
Brian Phillips ∗, Mark Blackburn

Department of Systems & Enterprises, Stevens Institute of Technology, United States

* Corresponding author.

E-mail address: bphilli1@stevens.edu (B. Phillips).

Abstract

Critical Software systems must recover when they experience degradation, either 

through external actors or internal system failures. There is currently no accepted 

generic methodology used by the software engineering community to design self-

healing systems. Such systems identify when they require healing resources, and 

then change their own behavior to acquire and utilize these same resources. This 

study investigates using a design pattern to build such a system. It uses simulated 

robot tank combat to represent a challenge faced by an adaptive self-healing system. 

It also investigates how an adaptive system chooses different behaviors balancing its 

actions between healing activities, movement activities, and combat activities.

The results of this study demonstrate how an adaptive self-healing system utilizes 

behavior selection within a contested environment where other external actors 

attempt to deny resources to it. It demonstrates how a multi-system architecture 

inspired by cognitive science its behavior to maximize its ability to both win matches, 

and survive. This study investigates system characteristics such as how behaviors are 

organized and how computer memory is utilized. The performance of the adaptive 

system is compared with the performance of 840 non-adapting systems that compete 

within this same environment.

Keywords: Engineering, Computer science
16.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:bphilli1@stevens.edu
http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2016.e00100&domain=pdf


Article No~e00100

2 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
1. Introduction

This paper investigates building a self-healing adaptive system that uses a design 

pattern inspired by the neocortex of the mammalian brain. This pattern uses two 

separate behavior selection systems to choose behaviors based on the availability 

of data and the needed speed of the behavior change. This study compares two 

configurations for a hierarchy of behaviors by examining performance differences, 

and differences between the memory usages of each configuration.

The research team utilizes an extended RRobots simulation to provide an 

experimentation environment [1]. This is used to investigate the efficacy of different 

adaptation strategies based on machine learning techniques and a two-system 

behavior selection process. The novel contribution of this research is a demonstration 

of how such a design pattern could be used to build self-adaptive self-healing systems 

within a resource or memory constrained, competitive environment.

This paper uses the definition of self-healing systems put forward by [2]. It 

considers a self-healing system to be a specialized form of self-adapting system 

that can observe challenges to its system goals. Self-healing systems act to recover 

from degradation using resources within their own system’s control, or within the 

environment.

Building self-adaptive systems is currently a task performed by highly skilled 

technologists and scientists, custom crafting a unique solution for a unique problem. 

This is because the skills and knowledge are too specialized and rare in the 

engineering community. A literature search for self-adaptive self-healing systems 

yields a number of examples supporting these claims. There is currently no 

general-purpose methodology of creating self-healing system using less specialized 

engineers.

This research uses a design pattern to codify the initial design stages of such a 

system, making that practice reproducible across a wider span of the engineering 

community. This effort presents a study of using such a design pattern approach 

with the goal of growing this into a stable methodology used and accepted by 

a broader community of system builders. A general approach for building self-

healing self-adaptive systems expands the field of self-adaptive systems because 

such approaches will be reused across multiple efforts and projects. Reuse allows 

patterns to be altered, changed, and grown according to the pragmatic needs of 

system builders.

Self-adaptive systems change their behavior according to emerging opportunities 

or stresses within their environment. Self-adaptive systems typically possess a 

control loop that allows it to collect information about its internal state and the 

state of the environment. Such systems contain logic to analyze this information 
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

3 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
and represent the system state as a set of features that are used to inform current and 

future decisions. These decisions may include a behavior change, plan generation, or 

creating hypotheses. The control loop allows the self-adaptive system to act on these 

decisions. Such systems typically collect information on how the decision was made, 

and how the results of that decision affected the goals of the system. The foundations 

of engineering such systems remain an active research area [3].

A self-healing system seeks to identify points in time where it would benefit from 

healing activities and then changes its behavior to achieve this healing. It must detect 

a stimulus event that triggers the adaption while operating. Healing activities may 

involve exploiting additional resources, gaining idle time, performing background 

maintenance, or alerting external actors to potential risks to the system. Autonomic 

computing [4] systems use self-healing adaptation to reduce the level of human 

supervision and maintenance for that system.

Domain specific research has explored building self-healing systems across a 

variety of areas including internet service discovery [5], protective relay functions 

[6] in power systems, and the design of operating systems [7].

Other researchers have investigated using formal models and rule sets to create 

self-healing systems. The authors in [8] have researched building systems that utilize 

reference models external to a system. These reference models would act as a guide 

used by the system to adapt and heal. This approach is similar to run time verification 

techniques [9]. Minsky provides a method for understanding whether self-healing 

will be effective as well [10]. This approach uses an external assessment of the self-

adaptive system to inform or trigger healing actions.

Research efforts have investigated building biologically inspired self-healing 

systems based on cell models [11]. Artificial immune systems [12] act to detect 

system vulnerabilities and overcome those with state changes and new behaviors. 

This effort adopts a similar approach. It uses an abstract biological system as a basis 

for the design of an information system.

This research is different than those noted previously; this approach and

experimental prototype is based on a model documented within cognitive science 

literature. It uses a simplified cognitive model based on observations of the 

mammalian neocortex as a generic pattern for building the system. A design pattern 

based on a cognitive model provides a large degree of adaptation. Many self-adaptive 

systems use past experience to learn new adaptation strategies based on experience. 

They also use previous experience, heuristics, and rule-based systems to plan for 

possibilities, and then quickly adapt when one or more trigger events occur.

This study posits that a system based on cognitive decision processing rather 

than cellular adaptation is suited for larger distributed applications. Such a system 
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

4 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
selects from a set of behaviors to accomplish one or more goals. This becomes 

increasingly important when a system has multiple goals, and some system goals 

are more critical than others. Immune system goals seek to protect a system at all 

times from a variety of threats. Self-healing systems trade between executing their 

system goals and realizing an enhanced level of system health.

Many such systems inhabit the global technical environment. Adaptive

information technology (IT) systems require routine maintenance and upgrades [13]. 

The U.S. Air Force is actively pursuing using self-healing techniques to improve 

system resiliency and recoverability in a cyber-combative environment [14]. The 

Defense Advanced Research Program Agency has taken this technique into the 

cyber-physical realm by beginning research into minimally invasive neurological 

implants that assist human patients [15]. Three other examples are listed below:

1. Fault detection systems identify when a trigger event occurs and evaluates the 

effect of that trigger upon the system. The system changes its state or behavior 

to address this fault [16].

2. A system checks its internal state against a reference model. The system changes 

its configuration or settings when its state lies outside of the boundaries set in 

that model [17].

3. System architectures use techniques inspired by biological systems to achieve 

an artificial immune system response [18].

[19] presents a component level description of different self-healing methods. 

Their paper organizes the many elements of self-healing into an ontological 

structure. It does not indicate any sense of a “best-practice” within the software 

engineering field. Essentially, designing self-healing systems continues to be a 

unique practice based as much on the backgrounds of the system builders as it is 

on an approach that has been adopted by practitioners as the standard.

This research effort extends these ongoing efforts by investigating a self-healing 

system within an environment with limited healing opportunities, and where an 

opponent seeks to dominate or deny access to these same resources. IT systems must 

execute maintenance within an environment populated by multiple critical customer 

transactions and requests. Air Force computer systems must react to cyber attack 

in a way that denies asset vulnerabilities to attackers, and still allows the use of 

those assets. Systems implanted in a living body must execute their function without 

harming the surrounding host and potentially survive the immune system activities 

of that same host. This research seeks to contribute to such efforts by providing an 

example of how engineers design and build such a system.
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

5 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
2. Background

Systems engineers and software engineers often benefit from using established 

design patterns when creating new systems [20]. These patterns present a number 

of well-understood approaches to solving different types of design problems. The 

Neocortex Adaptive Systems Pattern (NASP) [21] provides a useful starting point 

for building adaptive systems. This design pattern codifies an architectural approach 

used to build a decision system that uses short term and longer-term behavior 

selection approaches. This paper uses that pattern to investigate how a system decides 

how and when to execute self-healing actions.

This research regards a design pattern as a formalization of a software engineering 

approach that already exists. Indeed, the authors of this paper have seen many 

examples of different hierarchical models for building adaptive systems. Such 

examples are readily found in the fields of Deep Learning [22]. This paper defines 

a generic architecture composed of the primary components found within sample 

hierarchical learning system. This pattern defines a system architecture that is 

informed by these deep learning models, and influenced by neural and cognitive 

science observations. The cognitive science aspect loosely models the organization 

of a two-system decision system documented by Kahneman [23] and a hierarchical 

behavioral selection architecture.

The NASP natively supports using multiple types of decision systems with 

multiple time scales within an adaptive system. Kahneman [23] discusses the 

architecture of such a system and its implications on human decision making. The 

decision process within NASP uses a tree structure of possible adaptation decisions, 

inspired by direct neurological observations [24]. A system built using the NASP 

design approach compares these decisions against each other, either globally or 

within a more limited context. Behavior selection processes use numeric techniques 

such as Particle Filtering or Bayesian Classification [25] to select a single behavioral 

choice from a pool of candidates.

The NASP model solves many different types of behavior selection problems. 

Engineers specify adaptation decisions in a NASP based system design process. 

They specify decision nodes within a tree hierarchy to process information received

from sensors and external sources. Those decisions may be directly created by 

software engineers or artificially generated using larger scale computational

techniques. The NASP architecture is modeled on a biological system that is 

sufficiently generic to make decisions in multiple problem domains within the 

neocortex. [26] demonstrated this by examining different parts of primate brains. 

The tree-based architecture is found throughout the brain across different brain areas 

and functions.
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

6 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
Clip 1. NASP component architecture.

The component architecture of NASP is a hierarchy of decision nodes. Each node 

in the NASP hierarchy is either a decision node that selects from a pool of possible 

behaviors, or a single behavior. Decision nodes can possess many children who 

are either candidate behaviors, or another decision node that optionally contains 

additional children. Child nodes can also be formed by decision nodes proposing 

many kinds of solutions or behaviors to address incoming stimulus values.

Information enters the system in the form of a stimulus signal or trigger event. 

Processing begins at the root node and flows down each branch of the tree. The 

decision nodes pass information to child nodes for processing. Then the decision 

node selects a best candidate behavior from among its children.

The example representation shown in Clip 1 has a root node shown by a triangle. 

That root node has children that addresses two types of problems, named Classifier A 

shown by squares, and Classifier B shown by circles. Those are decision nodes. Each 

of those problem types can be solved using a different set of stimulus values. Some 

of the classifiers use a limited set of information to make decisions more quickly. 

Hollow shapes represent these.

Some of the decision nodes use more stimulus information to arrive at a solution 

with higher accuracy, shown by the solid black shapes. The root node uses a tree 

search technique to select the best of all behaviors based on the most current 

information values stored within the information bus. Each decision node can contain 

a set of decision filters as well.
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

7 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
When a decision node seeks to select a behavior or action, it uses these decision 

filters to remove a set of least-optimal candidates. Heuristic algorithms allow 

the decision node to rapidly eliminate many of the optional children from being 

candidates for selection. Decision nodes compare the advantage of choosing one 

child solution over another based on the current stimulus and data stored within the 

information bus. This allows the decision node to choose a single candidate action 

to respond to incoming stimulus information. This approach fulfills the role of the 

particle filter.

Some decision nodes will receive inputs and consider short term information. 

Other decision nodes can execute detailed planning and processing over a longer time 

period. This particle filtering approach provides a multi-system way of integrating 

learning, behavior selection, and decision-making. A key feature of a NASP is that 

the decision nodes are orchestrated by feedback loops within a single branch, or 

across all branches of a NASP-based system.

This capability is represented in the architecture as a generic information bus. The 

information bus can be created from a blackboard [27] data system or a relational 

database. The information bus is shown in 1 as a large rectangle beneath the tree. 

Many decision nodes interact with the information bus. This is shown by the dotted 

arrows. Decision nodes either write information into the bus, or read it.

Decision nodes can use many approaches to dynamically adapt. They can use 

fixed rules, Bayesian statistics, Artificial Neural Networks, Genetic Algorithms, 

or inputs from an external system. The adaptation process consists of receiving 

stimulus information from a parent node, processing the information, storing the 

information for later use, and searching for additional information from a general 

bus of knowledge. Different decision nodes can add information to the information

bus and make it available to another decision node anywhere in the system. When 

a triggering event arrives into the system, the decision node uses that information 

to select a behavioral response based upon the content of the triggering stimulus. In 

the context of a NASP, a trigger event is an event that causes a change in system 

behavior beyond the content of a data set. A stimulus event is any event that arrives 

into the system either from the exterior environment or interior component regardless 

of whether a behavior change occurs. Each layer in the architecture receives stimulus 

information. It selects a best response from its children. In some cases, a triggering 

event causes a decision node to dynamically generate children. In other cases, those 

child responses are chosen from a static list.

Past research efforts have demonstrated how a system built based on the NASP 

design pattern successfully adapt within a competitive environment [1]. Past 

research featured an adaptive system choosing from a pool of different behaviors 

while battling another within a fixed and constrained simulated two-dimensional 
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

8 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
battlefield. This study expands that research by adding a healing resource into the 

simulated battle. The opposing systems within the simulation must balance their 

primary function of defeating their enemy system with acquiring healing resources 

to enhance their survivability.

3. Hypothesis

This study demonstrates a self-adaptive system that shares an environment with 

another system, where these two systems compete for shared resources while 

attempting to degrade or destroy each other. The adaptive system will exploit 

opportunities to perform self-healing when advantageous. It does this while winning 

a majority of matches against non-adaptive systems with similar capabilities. The 

hierarchical architecture of adaptation decisions may contain one set of possible 

behaviors, or it may contain more than one set, each competing with the other. 

This study extends prior research on self-adaptive competing system with focus on 

investigating strategies for self-healing.

The objective of this study is to illustrate that adaptive systems outperform non-

adaptive systems, and show that a hierarchical architecture decreases the system 

requirements (in the form of memory usage) with negligible impact on the final 

system performance.

This objective leads to the following hypotheses:

H1 – The performance of the self-adaptive system will exceed the average

performance of the non-adaptive system.

H2 – The hierarchical architecture of the adaptive decision tree (also referred to as 

a branch topology) will not affect the outcome of these matches.

4. Materials & methods

This experiment is conducted using two competing agents that oppose each other 

within a simulated battlefield. One of those competing agents is a self-adaptive 

system capable of choosing its own behaviors based on a set of incoming stimulus 

signals. The other agent is a non-adaptive agent that uses a set of fixed behaviors. 

Each of these agents is referred to as a robot because the RRobots code represents 

competing agents as a robot tank. The adaptive tank is a tank agent that possesses 

every behavior that the set of all non-adaptive tanks possesses.

Clip 2 represents how robot tanks use behaviors within the RRobots simulation. 

Each non-adaptive tank has a specific set of behaviors that it uses, shown by solid 
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

9 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
Clip 2. Behavior choice.

triangles. These behavior sets include a single behavior choice for each of the 

different categories of behaviors, as discussed in Table 1. Each behavior in this 

pool of behaviors exists within one of the non-adaptive tanks. The non-adaptive tank 

selects a single behavior and does not change for the entire match. The adaptive tank 

chooses a single behavior from this same pool of behaviors, but it has the potential 

to change its behavioral choice at a later time. Clip 2 indicates a single behavior 

selection by a solid black line, and potential behaviors that could become this choice 

later by a dashed line.

The extended RRobots capability and environment includes a new type of agent 

called the Helicopter. The Helicopter enters the battlefield at specific times. It 

chooses a random location in the battlefield and moves to that location. Once it 

arrives, it pauses and then deposits a new resource named Cargo into the battlefield. 

Once the Cargo is deposited, the helicopter travels to the edge of the battlefield and 

leaves the match until its next scheduled arrival.

Cargo resources have no behavior. They exist within the battlefield at a specific 

location. When a robot tank moves to its location, the robot receives a healing score, 

improving its ability to receive damage without being destroyed. The Cargo is then 

removed from the battlefield.

Robot tank agents observe the moment when a Helicopter enters or leaves 

the battlefield and the location of the Helicopter when it is in the battlefield. 

They perceive when and where a Cargo resource is deposited into the battlefield 

environment. Tank agents may ignore the Helicopter and its newly deposited Cargo. 

They may change their behavior to attack the Helicopter and chase it from the 

battlefield. A tank may also attack a Cargo resource to destroy it, and thus deny 

the opponent an opportunity to heal.

Cargo, helicopters, and tanks accumulate damage by being hit by a simulated 

weapon. Each robot tank has a gun that fires shots. Shots travel the battlefield in 

a straight line from the tank until they exit the battlefield boundaries, or they are 
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

10 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
collocated with another agent and hit the target. Tanks control the angle of a turret, 

which in turn controls the angle of each shot fired. Each tank begins a match with a 

health score of 100. The simulation applies damage to a tank by reducing its amount 

of energy by the shot damage until an energy score of zero is reached. A zero energy 

score results in that tank loosing the match.

Energy scores are also reduced when a tank fires its gun. Every time it shoots, it 

reduces its survival ability because it uses energy to fire that gun. Tanks use different 

strategies to balance their fire power, damage expectation, and aiming.

Tanks use sensors to detect their opponent. The sensor detects an opponent by 

first sending a sensor pulse in a straight line, originating from the source tank. 

A sensor pulse that intersects another robot will cause the environment to trigger 

an event indicating the distance to the target and whether this is a tank, cargo, or 

helicopter. The environment triggers that event into the sensing tanks. Tanks use 

different strategies to rotate their radar and send sensor pulses.

Tanks use their sensor events to aim their simulated guns. The tank aims its gun by 

rotating a turret. Tanks use a number of strategies to aim their gun and fire. Opponent 

tanks move as well. Opponent tanks use strategies to decrease the number of shots 

that hit them, or increase the number returning shots that hit.

This research effort uses a vocabulary to describe how robot battles are organized. 

It uses the terms match, group, and tournament to describe the tiered structure of 

the experiment. Tanks compete using a set of battles within the simulated battle 

environment. A single battle is a ‘match’. Executing multiple matches between each 

tank type generates the probability of one tank winning against another. A ‘group’ 

is a set of matches. For example, a group can be composed of 100 matches between 

tank 1 and tank 2. Every combination of the five behavior types was used to define 

a non-adaptive tank that participated in a 100 match battle with the adaptive tank. 

The term ‘tournament’ describes a set of multiple groups that have a single unique 

tank combatant in common across all groups, and thus all matches.

RRobots uses the Ruby software language to implement agents. A software 

algorithm combines different parameters to create a population of 840 different types 

of non-adapting tank agents. Non-adapting agents begin the match with a single 

behavior selected for each strategy, which remain fixed through the entire match. 

Each non-adapting tank possesses a single value for each of the parameters. These 

parameters are shown in Table 1.

For example, a non-adapting robot could have a firing strategy of 1 where it 

expends less energy to fire at targets farther away, an aiming strategy of 0 where 

the tank uses dead reckoning to estimate where the target will be, a healing strategy 
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

11 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
Table 1. Simulation configuration.

Parameter Value

Firing strategy 0 – Always shoot based on damage

1 – Change damage level based on distance

2 – Use a damage level of 1.0 when sensors have previously detected the opponent

Damage level 0.1, 0.6, 1.0, 1.1, 1.6, 2.1, 2.6 energy points

Movement strategy 0 – Move in a circle

1 – Move in a circle, when hit, change circular pattern

2 – Maintain a fixed location

3 – Move along the boundaries of the battlefield

4 – When an opponent is detected, move directly toward it

Aiming strategy 0 – Attempt to anticipate where moving opponent will be

1 – Shoot across a wide angle with a rotating gun

Healing strategy 0 – Ignore Cargo and Helicopter, continue battle

1 – Move to the Cargo when it arrives

2 – Attack Cargo

3 – Attack Helicopter

of 0 where it ignores supplies, a movement strategy of 0 where it executes continuous 

circular motion, and a fire power level of 1.6 energy per shot.

These tanks are implemented using an object-oriented approach. Each non-

adaptive tank class descends from a basis class that implements each of the strategies 

found in Table 1. A software application combines these parameter values and 

creates new classes that descend from the basis class.

The RRobots simulation executes 100 matches between each of these tanks, 

resulting in a total of 70,560,000 matches. The study uses the results of those 

matches to determine the probability of one non-adapting tank defeating another 

non-adapting tank based on their strategy/parameter values. The adaptive-tank uses 

this probability information as a basis for selecting behaviors once the identity of its 

opponent is known.

The adaptive tank is a tank agent that possesses every behavior that the set of all 

non-adaptive tanks possesses. It enters the match with a randomly selected behavior 

consisting of a firing strategy, damage level, movement strategy, aiming strategy, 

and healing strategy. The adaptive tank seeks to change its behavior with the goal 

of optimizing its win probability. An optimal behavior selection depends on type of 

opponent faced. The adaptive tank does not know the identity of its opponent at the 

start of the battle. As the battle progresses, the adaptive tank gathers evidence makes 

an assumption about the identity of its opponent, and chooses a behavior strategy 

based upon that assumption.

The adaptive tank periodically chooses a new behavior set based on the current 

assumption of opponent identity. Each time step allows an adaptive tank to observe 

the actions of its opponent and compute feature values based upon those actions. 
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

12 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
A set of tank battles that compete every non-adaptive tank type against the other 

100 times computes a win probability table. This table shows the probability of a 

behavior for one tank type defeating the behavior of another tank type. The adaptive 

tank uses this table to select a best behavior.

This simulation approach is similar to that found in [1]. Tanks move within a 

two-dimensional battlefield. The match ends after a specified number of time steps 

resulting in a win if one tank is destroyed, or a draw if neither tank is destroyed. 

Each tank uses its sensors to detect an opponent. The tank aims its gun and fires 

shots using an energy level to inflict damage.

The simulation now contains a new aspect, self-healing. It also contains a set of 

self-healing behaviors. The self-healing aspect requires that the tank agent form an 

assumption about the healing strategies of its opponent. This assumption is based on 

these features:

1. Number of times an opponent shoots at and hits a Helicopter agent

2. Number of times an opponent shoots at and hits a Cargo resource

3. Number of times an opponent picks up a Cargo resource

This study also compares the performance of an adaptive tank with a one-branch 

behavior tree, to the performance of a system with a two-branch behavior tree as 

shown in Clip 2. The two-branch system uses two different methods to select a 

preferred behavior, and then merges those selections into a single behavior selection. 

This two-branch topology features one branch that chooses a behavior based on the 

strategies that represent non-healing actions such as movement, firing, aiming, and 

damage level. The other branch contains behaviors based on self-healing strategies.

Clip 3 shows a high-level object relationship diagram comparing these two 

topologies. The one-branch method requires 840 objects in memory to execute its 

function. The two-branch method requires 214 objects in memory composed of 210 

combat behavior objects and 4 self-healing behavior objects. The two-branch method 

uses less computer memory.

4.1. Experiments

The study demonstrates H1 by executing 100 matches between the adaptive tank 

and every non-adaptive tank. The research team calculates a probability of the 

adaptive tank winning a match, and compares it with the average win probability 

of all non-adaptive tanks. The population of win probabilities per non-adapting tank 

contains the best performing and the worst performing tanks. Each non-adapting 

tank competes in multiple matches within a larger tournament. The research team 
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

13 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
Clip 3. Comparing two decision topologies.

partitions these into categories based on whether the non-adapting tank wins a 

majority of its matches.

This study demonstrates H2 by executing another tournament of 100 matches 

against all non-adaptive systems. This tournament uses the two-branch topology with 

the behavior tree instead of the one-branch topology. The study compares the win 

probability of the two-branch topology against the win probability of the one-branch 

agent.

The comparison of probabilities uses an approximation to a binomial distribution 

function [28]. The study does not reject H2 if the mean of the two-branch method 

lies within 95 percent probability as defined by a two sample T-Test.

5. Results

An initial set of 840 tournaments featuring each non-adapting tank battling each 

of the other non-adapting tanks was conducted. The term group defines 100 matches 

between an adaptive tank and a non-adaptive tank. This required 705,600 groups of 

tank battles, or 70,560,000 individual matches. The experiment required a cluster of 

21 Ruby on Rails servers to generate results within a 5 month time span. This initial 

data also yields the average win probabilities for the population of all non-adapting 

tanks, and the average win probabilities for the population of all non-adapting tanks 

that win within a group of matches (also referred to as “best performing”).

Table 2 shows the average in probabilities for these two categories of win 

probabilities. It indicates a win rate of 50 percent since the experiment consists of 
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

14 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
Table 2. Average non-adapting tank win probability.

Tank type Win probability Std deviation

All non-adapting tanks 50 percent 37.30

Best performing tanks 84 percent 15.8

Table 3. Adaptive system win probability.

Adaptation time Win probability
First Second One adaptation Two adaptations

100 1000 94 percent 94 percent

100 2000 94 percent 94 percent

100 3000 94 percent 94 percent

500 1000 89 percent 89 percent

500 2000 89 percent 89 percent

500 3000 88 percent 89 percent

1000 2000 80 percent 80 percent

1000 3000 80 percent 80 percent

1500 2000 72 percent 72 percent

1500 3000 72 percent 72 percent

2000 3000 64 percent 66 percent

2500 3000 61 percent 60 percent

every tank type battling against every other tank type. That win rate isn’t efficacious 

for verifying H1 since it contains the poorest performing tanks as well as the best 

performing tanks. When only the best performing tanks are considered, it becomes 

a more meaningful metric.

Table 3 shows the win probability for each type of adaptive tank. There are 12 

different types of adaptive tanks. Each one of these is defined by two adaptation 

times, and two error rates. The adaptation time indicates a point in time, measured 

in time steps, that the adaptation event will occur. The error rate represents the 

probability that an adaptive system will not identify its opponent. If an adaptive 

system does not identify its opponent then it chooses a random identity and adapts to 

compete against that. Previous research has shown that two-stage adaptation achieves 

better performance levels than a single adaptation stage [1], within an RRobots 

simulation context. Table 3 also shows the performance difference between the single 

and double branch architectures.

The results of the self-healing study differ from previous results documented in 

[1]. The self-healing experiments showed that the overall performance of the system 

was largely unaffected by the time that the second adaptation decision was made. The 

adaptive system changes its behavior the first time using a classifier that has a higher 

error rate than the second behavior selection. This shows an advantage to using the 

fastest classifier initially, even when slower classifier has a lower error rate.

The first-adaptation data in Table 3 is represented in Clip 4. This shows a six 

points in time, measured by time-steps, which represent when the initial adaptation 

occurred. The larger point represents a point with a larger standard deviation than 
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

15 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
Clip 4. First adaptation time governs system performance for self-healing case.

Table 4. Win probability based on heal strategy.

Tank-1 strategy Tank-2 strategy
0 – Ignore 1 – Pick up Cargo 2 – Attack Cargo 3 – Attack Helicopter

0 – Ignore 50 percent 39 percent 54 percent 64 percent

1 – Pick up Cargo 61 percent 49 percent 60 percent 66 percent

2 – Attack Cargo 45 percent 40 percent 49 percent 62 percent

3 – Attack Helicopter 36 percent 34 percent 37 percent 51 percent

the others. The standard deviation is calculated using the win percentages that have 

been rounded off. This means that the point has a slightly different win probability 

based on the final adaptation time. All of the standard deviations were quite small, 

so the size of the data circle is a qualitative representation of that value. A dashed 

trend line shows how system performance is decreasing based on the increasing time 

of initial adaptation.

The two-branch adaptive strategy uses the results of the non-adapting tank 

tournaments to create a statistical basis for adaptation. Table 4 shows the probability 

that a non-adapting tank will win against another non-adapting tank based solely 

on the self-healing strategy used. Table 4 ignores the effects of firing strategies, 

movement strategies, aiming strategies, and firepower levels. Previous work on 

adaptive systems has generated a data set containing only these data elements without 

the self-healing strategies.

When Bayes Rule is applied, Table 4 transforms into a behavior classifier table. 

The research effort adds a new type of adaptive tank to the experiment using this 

data. The new adaptive tank contains two decision branches. The first branch uses 

legacy data to adapt based on non-healing strategies. The second branch uses the 

data contained in Table 5 as a classifier, selecting an appropriate attacker strategy 

based on the assumed strategy of an opponent.

The new adapting tank makes an assumption about the identity of its opponent. 

The error rate of the experiment governs whether this assumption is correct. If the 
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

16 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
Table 5. Bayesian behavior classifier.

Tank-1 strategy Tank-2 strategy
0 – Ignore 1 – Pick up Cargo 2 – Attack Cargo 3 – Attack Helicopter

0 – Ignore 26 percent 2 percent 28 percent *27 percent

1 – Pick up Cargo *34 percent *31 percent *30 percent 25 percent

2 – Attack Cargo 22 percent 25 percent 25 percent 26 percent

3 – Attack Helicopter 18 percent 22 percent 17 percent 22 percent

assumption is not correct then the new adapting tank picks a random healing strategy 

as its assumption. When adaptation occurs the system uses the self-healing strategy 

with the highest probability of success. Asterisks denote these values in Table 5.

6. Discussion

The Hypothesis H1 stated that the performance of the self-adaptive system would 

exceed the average performance of the non-adaptive system. This study defines 

performance as the ability for one type of agent to win against another in series 

of simulated combats, also called trials. Table 2 shows that the average performance 

of a non-adapting tank is 50 percent. The adaptive tank chooses its behaviors from 

a collection of behaviors used by the different non-adapting tanks. The adaptive 

tank uses two different parameters to govern its behavior, an adaption time and a 

probability to identify its opponent. Table 3 contains the results of the adaptive 

battles. The adaptive systems won at a rate of 80 percent, which outperformed 

the non-adaptive win rate. This does not reject H1 so the study accepts H1 as 

demonstrated.

Some of the non-adapting systems perform poorly overall. The study defines a 

poorly performing system as one lost more than 50 percent of their matches. When 

those poorly-performing systems are removed, the win average became 84 percent 

with a standard deviation of 15.8 percent. The average win probability of the adapting 

agent lies within a standard deviation of 33 of the best performing non-adapting 

systems. The adaptive system uses its behavior selection to achieve a performance 

level closely equivalent to the best performing non-adaptive systems. Inspecting 

Table 3 shows that the adaptive systems outperform the best non-adapting systems 

if they are able to execute an adaption prior to time of 1000. This is consistent with 

experiments performed in previous studies.

Hypothesis H2 stated that the branch topology of the tree of adaptation decisions 

will not affect the outcome of these matches. This study defines the branch topology 

in terms of how the decision behaviors are organized in the selection tree. The 

adaptive system changes at predetermined times by first identifying its opponent, 

then selecting a behavior from among a set of candidates. The study considered two 

behavior selection topologies.
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

17 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
The first topology consists of a single decision branch that selected a single 

behavior from a pool that contained every behavior found in the non-adaptive 

systems (found in Table 1). This contained 840 distinct choices.

The second topology consisted of two decision branches. The first branch selects 

a single behavior from a pool of all non-healing behaviors. This contained 210 

behaviors. The second branch contained 4 behaviors based on the different self-

healing strategies (found in Table 1). The adaptive system used both of these 

branches to select two candidate behaviors. It then merges these behavior selections 

into a single behavior set and used this newly merged behavior as its choice. The 

two-branch topology reduces the amount of system memory requirements to 25.47 

percent of the memory used by the one-branch topology. Additional memory offers 

a system the capability to add additional behaviors to the selection process and thus 

improve performance, given a static hardware platform.

A quick analysis of branching strategy memory usage was performed using 

simplifying assumptions. This analysis comparing the distributions of these results 

is used to decide whether H2 is not rejected. The analysis assumes a record based 

memory structure where the size of the record is based on the size of the record 

fields using C++ language structures. These structures contain 32 bit integers that 

represent a strategy selection, and 64 bit pointer references that contain memory 

locations. These records reference the Firing, Damage, Movement, Aiming, and 

Healing strategies. The single branch architecture consumes 30 kB of memory. 

The two-branch method uses 7 kB of memory. If the approach were expanded to 5 

branches, this would require only 4 kB of memory. The amount of memory available 

loosely correlates to the number of behaviors and decisions that an adaptive can 

perform. The study evaluates win probabilities based on trials between adaptive and 

non-adaptive systems. Table 3 contains the win probabilities for both topologies 

across each experiment. The study tests if the win rates from the one-branch topology 

and two-branch topology systems belong to the same distribution. This test uses 

Microsoft Excel to generate this metric using a paired sample T-Test. If the paired 

sample T Test value is less than 0.95 then the study rejects H2. The data generated 

a T-Test probability of 0.9852. The study does not reject H2.

This paper described building an adaptive self-healing system that exists within 

a resource-constrained environment. The system uses two different types of systems 

to identify appropriate behavior choices. The study further investigated the tradeoffs 

between different configurations of the behavior selection system. It implemented 

an adaptive self-healing system as a simulated tank that battles non-adapting tanks. 

The contest represents a generic adaptive systems problem where one system seeks 

to adapt in order to counter or overcome another system. This type of scenario 

features actions that are constrained by resources or limited system states within 

the shared environment. This study represented such restrictions in the form of 
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

18 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
battlefield position and boundaries along with the control of healing resources. This 

is a benefit to system engineers allowing them to design systems with many more 

behavior options within available memory constraints, or to scale their designs to 

smaller platforms.

The results of this study indicated that a system built using the tree-based 

NASP pattern outperformed the non-adaptive systems. These adaptive systems 

demonstrated sensitivity to the timing of adaptation. If a system adapted too late, then 

its adaptation did not greatly affect the outcome a tournament. When the adaptation 

occurred earlier in the tournament, the adaptive system performed equivalently or 

better than the best performing non-adaptive systems. This indicates that the design 

pattern is a useful starting point when designing a new adaptive system with temporal 

constraints.

The study also investigated how a branching structure within the adaptive system 

affected performance. Two structures were compared against each other. A single 

branch structure selected behaviors from among 840 candidate behaviors. A two-

branch method selected behaviors from a set if 210 candidate behaviors. The 

performance of the two types of adaptive systems was essentially the same. This 

result indicates that additional behaviors and behavior selection mechanisms defined 

in the NASP do not adversely affect system performance. Instead, they improve the 

overall spatial efficiency of the adaptive system.

The NASP design pattern has demonstrated usefulness when creating adaptive 

systems based on Bayesian classifiers. The research team feels that this approach 

is sufficiently generic so that it will support other types of classification algorithms 

without changing the overall pattern. In the future, the team will investigate using 

Neural Networks [29] or Genetic Algorithms [30] within a NASP based decision 

tree.

Declarations

Author contribution statement

Brian Phillips: Conceived and designed the experiments; Performed the

experiments; Analyzed and interpreted the data; Contributed reagents, materials, 

analysis tools or data; Wrote the paper.

Mark Blackburn: Conceived and designed the experiments; Wrote the paper.

Competing interest statement

The authors declare no conflict of interest.
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

19 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
Funding statement

The authors received no funding from an external source.

Additional information

Data associated with this study has been deposited at https://bitbucket.org/

blackburnphd/railsrobots/.

References

[1] B.J. Phillips, M. Blackburn, Experimental trials based on a neocortex-based 

adaptive system pattern, Proc. Comput. Sci. 28 (2014) 54–61.

[2] M. Salehie, L. Tahvildari, Self-adaptive software: landscape and research 

challenges, ACM Trans. Auton. Adapt. Syst. (TAAS) 4 (2) (2009), 

http://dl.acm.org/citation.cfm?id=1516538.

[3] B.H.C. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, 

B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar, 

A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai, H.M. Kienle, 

J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H.A. Müller, S. Park, M. Shaw, 

M. Tichy, M. Tivoli, D. Weyns, J. Whittle, Software engineering for self-

adaptive systems: a research roadmap, in: D. Hutchison, T. Kanade, J. Kittler, 

J.M. Kleinberg, F. Mattern, J.C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu 

Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M.Y. Vardi, 

G. Weikum, B.H.C. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee (Eds.), 

Software Engineering for Self-adaptive Systems, vol. 5525, Springer Berlin 

Heidelberg, Berlin, Heidelberg, 2009, pp. 1–26.

[4] IBM, An architectural blueprint for autonomic computing, http://www-03.

ibm.com/autonomic/pdfs/ACBlueprintWhitPaperV7.pdf, 2005.

[5] C. Dabrowski, K. Mills, Understanding self-healing in service-discovery 

systems, ACM Press, 2002, p. 15.

[6] S. Sheng, K. Li, W. Chan, Z. Xiangjun, D. Xianzhong, Agent-based self-healing 

protection system, IEEE Trans. Power Deliv. 21 (2) (2006) 610–618.

[7] M.W. Shapiro, Self-healing in modern operating systems, Queue 2 (9) (2004) 

66.

[8] D. Garlan, B. Schmerl, Model-based adaptation for self-healing systems, ACM 

Press, 2002, p. 27.
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://bitbucket.org/blackburnphd/railsrobots/
https://bitbucket.org/blackburnphd/railsrobots/
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib7068696C6C6970735F6578706572696D656E74616C5F32303134s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib7068696C6C6970735F6578706572696D656E74616C5F32303134s1
http://dl.acm.org/citation.cfm?id=1516538
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F736F6674776172655F32303039s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F736F6674776172655F32303039s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F736F6674776172655F32303039s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F736F6674776172655F32303039s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F736F6674776172655F32303039s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F736F6674776172655F32303039s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F736F6674776172655F32303039s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F736F6674776172655F32303039s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F736F6674776172655F32303039s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F736F6674776172655F32303039s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F736F6674776172655F32303039s1
http://www-03.ibm.com/autonomic/pdfs/ACBlueprintWhitPaperV7.pdf
http://www-03.ibm.com/autonomic/pdfs/ACBlueprintWhitPaperV7.pdf
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib646162726F77736B695F756E6465727374616E64696E675F32303032s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib646162726F77736B695F756E6465727374616E64696E675F32303032s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib7368656E675F6167656E742D62617365645F32303036s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib7368656E675F6167656E742D62617365645F32303036s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib7368617069726F5F73656C662D6865616C696E675F32303034s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib7368617069726F5F73656C662D6865616C696E675F32303034s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib6761726C616E5F6D6F64656C2D62617365645F32303032s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib6761726C616E5F6D6F64656C2D62617365645F32303032s1
http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

20 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
[9] K. Havelund, Implementing runtime monitors, in: TORRENTS 2011, 

2nd TORRENTS Workshop, 2011, http://www.havelund.com/Publications/

torrents-2011.pdf.

[10] N. Minsky, On conditions for self-healing in distributed software systems, IEEE 

Comput. Soc. (2003) 86–92.

[11] S. George, D. Evans, L. Davidson, A biologically inspired programming model 

for self-healing systems, ACM Press, 2002, p. 102.

[12] J. Greensmith, A. Whitbrook, U. Aickelin, Artificial immune systems, in: 

M. Gendreau, J.-Y. Potvin (Eds.), Handbook of Metaheuristics, vol. 146, 

Springer US, Boston, MA, 2010, pp. 421–448.

[13] J. Siljee, I. Bosloper, J. Nijhuis, D. Hammer, DySOA: making service 

systems self-adaptive, in: D. Hutchison, T. Kanade, J. Kittler, J.M. Kleinberg, 

F. Mattern, J.C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, 

M. Sudan, D. Terzopoulos, D. Tygar, M.Y. Vardi, G. Weikum, B. Benatallah, 

F. Casati, P. Traverso (Eds.), Service-oriented Computing – ICSOC 2005, 

vol. 3826, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 255–268.

[14] United States Department of the Air Force, Capabilities for 

cyber resiliency, BAA-RIK-14-07, Federal Business Opportunities: 

Opportunities, https://www.fbo.gov/index?s=opportunity&mode=form&id=

d2a95b03a8621c1be03128e02f10d66a&tab=core&_cview=0, 2014.

[15] J.W. Judy, Neural interfaces for upper-limb prosthesis control: opportunities to 

improve long-term reliability, IEEE Pulse 3 (2) (2012) 57–60, 00016.

[16] G.K. Saha, Software – implemented self-healing system, CLEI Electron. J. 

10 (2) (2007), http://www.clei.org/cleiej/papers/v10i2p5.pdf.

[17] O. Sokolsky, G. Rosu, Introduction to the special issue on runtime 

verification, Form. Methods Syst. Des. 41 (3) (2012) 233–235, http://

repository.upenn.edu/cgi/viewcontent.cgiarticle=1790&context=cis_papers.

[18] U. Aickelin, D. Dasgupta, F. Gu, Artificial immune systems, in: E.K. Burke, 

G. Kendall (Eds.), Search Methodologies, Springer US, Boston, MA, 2014.

[19] D. Ghosh, R. Sharman, H. Raghav Rao, S. Upadhyaya, Self-healing systems — 

survey and synthesis, Decis. Support Syst. 42 (4) (2007) 2164–2185.

[20] E. Gamma, Design Patterns: Elements of Reusable Object-oriented Software, 

Addison–Wesley, Reading, MA, 1995.

[21] B. Phillips, M. Blackburn, Towards a design pattern for adaptive systems 

inspired by the physical architecture of the neocortex, in: 4th International 

Engineering Systems Symposium, Council of Engineering Systems 
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.havelund.com/Publications/torrents-2011.pdf
http://www.havelund.com/Publications/torrents-2011.pdf
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib6D696E736B795F636F6E646974696F6E735F32303033s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib6D696E736B795F636F6E646974696F6E735F32303033s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib67656F7267655F62696F6C6F676963616C6C795F32303032s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib67656F7267655F62696F6C6F676963616C6C795F32303032s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib67656E64726561755F6172746966696369616C5F32303130s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib67656E64726561755F6172746966696369616C5F32303130s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib67656E64726561755F6172746966696369616C5F32303130s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F6479736F613A5F32303035s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F6479736F613A5F32303035s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F6479736F613A5F32303035s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F6479736F613A5F32303035s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F6479736F613A5F32303035s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687574636869736F6E5F6479736F613A5F32303035s1
https://www.fbo.gov/index?s=opportunity&mode=form&id=d2a95b03a8621c1be03128e02f10d66a&tab=core&_cview=0
https://www.fbo.gov/index?s=opportunity&mode=form&id=d2a95b03a8621c1be03128e02f10d66a&tab=core&_cview=0
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib6A7564795F6E657572616C5F32303132s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib6A7564795F6E657572616C5F32303132s1
http://www.clei.org/cleiej/papers/v10i2p5.pdf
http://repository.upenn.edu/cgi/viewcontent.cgiarticle=1790&context=cis_papers
http://repository.upenn.edu/cgi/viewcontent.cgiarticle=1790&context=cis_papers
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib6275726B655F6172746966696369616C5F32303134s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib6275726B655F6172746966696369616C5F32303134s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib67686F73685F73656C662D6865616C696E675F32303037s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib67686F73685F73656C662D6865616C696E675F32303037s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib67616D6D615F64657369676E5F31393935s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib67616D6D615F64657369676E5F31393935s1
http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/


Article No~e00100

21 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
Universities, Hoboken, NJ, 2014, http://www.academia.edu/11785298/

Towards_a_Design_Pattern_for_Adaptive_Systems_Inspired_by_the_

Physical_Architecture_of_the_Neocortex.

[22] R. Salakhutdinov, J.B. Tenenbaum, A. Torralba, Learning with hierarchical-

deep models, IEEE Trans. Pattern Anal. Mach. Intell. 35 (8) (2013) 1958–1971.

[23] D. Kahneman, Thinking, Fast and Slow, 1st edition, Farrar, Straus and Giroux, 

New York, 2013.

[24] D.H. Hubel, Eye, Brain, and Vision, Scientific American Library: distributed 

by W.H. Freeman, New York, 1988.

[25] T.S. Lee, D. Mumford, Hierarchical Bayesian inference in the visual cortex, 

J. Opt. Soc. Am. 20 (7) (2003) 1434–1448, http://www.cnbc.cmu.edu/~tai/

papers/lee_mumford_josa.pdf.

[26] D.J. Felleman, D.C. Van Essen, Distributed hierarchical processing in the 

primate cerebral cortex, Cereb. Cortex 1 (1) (1991) 1–47.

[27] D. Corkill, Blackboard systems, AI Expert 6 (9) (1991), http://mas.cs.umass.

edu/paper/218.

[28] S. Wallis, Binomial confidence intervals and contingency tests: mathematical 

fundamentals and the evaluation of alternative methods, J. Quant. Linguist. 

20 (3) (2013) 178–208.

[29] F. Rosenblatt, The perceptron: a probabilistic model for information storage and 

organization in the brain, Psychol. Rev. 65 (6) (1958) 386–408.

[30] J.H. Holland, J.S. Reitman, Cognitive systems based on adaptive algorithms, 

ACM SIGART Bull. 63 (1977) 49.
liyon.2016.e00100

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.academia.edu/11785298/Towards_a_Design_Pattern_for_Adaptive_Systems_Inspired_by_the_Physical_Architecture_of_the_Neocortex
http://www.academia.edu/11785298/Towards_a_Design_Pattern_for_Adaptive_Systems_Inspired_by_the_Physical_Architecture_of_the_Neocortex
http://www.academia.edu/11785298/Towards_a_Design_Pattern_for_Adaptive_Systems_Inspired_by_the_Physical_Architecture_of_the_Neocortex
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib73616C616B68757464696E6F765F6C6561726E696E675F32303133s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib73616C616B68757464696E6F765F6C6561726E696E675F32303133s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib6B61686E656D616E5F7468696E6B696E675F32303133s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib6B61686E656D616E5F7468696E6B696E675F32303133s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687562656C5F6579655F31393838s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib687562656C5F6579655F31393838s1
http://www.cnbc.cmu.edu/~tai/papers/lee_mumford_josa.pdf
http://www.cnbc.cmu.edu/~tai/papers/lee_mumford_josa.pdf
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib66656C6C656D616E5F64697374726962757465645F31393931s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib66656C6C656D616E5F64697374726962757465645F31393931s1
http://mas.cs.umass.edu/paper/218
http://mas.cs.umass.edu/paper/218
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib77616C6C69735F62696E6F6D69616C5F32303133s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib77616C6C69735F62696E6F6D69616C5F32303133s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib77616C6C69735F62696E6F6D69616C5F32303133s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib726F73656E626C6174745F70657263657074726F6E3A5F31393538s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib726F73656E626C6174745F70657263657074726F6E3A5F31393538s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib686F6C6C616E645F636F676E69746976655F31393737s1
http://refhub.elsevier.com/S2405-8440(15)30560-0/bib686F6C6C616E645F636F676E69746976655F31393737s1
http://dx.doi.org/10.1016/j.heliyon.2016.e00100
http://creativecommons.org/licenses/by/4.0/

	Building adaptive self-healing systems within a resource contested environment
	1 Introduction
	2 Background
	3 Hypothesis
	4 Materials & methods
	4.1 Experiments

	5 Results
	6 Discussion
	Declarations
	Author contribution statement
	Competing interest statement
	Funding statement
	Additional information

	References


