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Abstract.  The ellipsoidal shape of the yeast Saccharo- 
myces cerevisiae is the result of successive isotropic/api- 
cal growth switches that are regulated in a cell cycle- 
dependent manner. It is thought that growth polarity is 
governed by the remodeling of the actin cytoskeleton 
that is itself under the control of the cell cycle machin- 
ery. The cell cycle and the morphogenesis cycle are 
tightly coupled and it has been recently suggested that a 
morphogenesis/polarity checkpoint control monitors 
bud emergence in order to maintain the coupling of 
these two events (Lew, D. J., and S. I. Reed. 1995. J. 
Cell BioL 129:739-749). During a screen based on the 
inability of cells impaired in the budding process to sur- 
vive when the morphogenesis checkpoint control is 
abolished, we identified and characterized BED1, a 

new gene that is required for efficient budding. Cells 
carrying a disrupted allele of BED1 no longer have the 
wild-type ellipsoidal shape characteristic of S. cerevi- 
siae, are larger than wild-type cells, are deficient in bud 
emergence, and depend upon an intact morphogenesis 
checkpoint control to survive. These cells show defects 
in polarized growth despite the fact that the actin cy- 
toskeleton appears normal. Our results suggest that 
Bedl  is a type II membrane protein localized in the en- 
doplasmic reticulum. BED1 is significantly homologous 
to gma12 ÷, a S. pombe gene coding for an et-l,2-galac- 
tosyltransferase, suggesting that glycosylation of spe- 
cific proteins or lipids could be important for signaling 
in the switch to polarized growth and in bud emer- 
gence. 

T 
HE ellipsoidal shape of the yeast Saccharomyces cere- 
visiae reflects cell cycle-regulated polarized growth. 
At specific times during the cell cycle, cell growth is 

either isotropic or polarized toward the bud (for review 
see Lew and Reed, 1995b). A correlation between local 
deposition of new cell wall components and actin localiza- 
tion has been established (Adams and Pringle, 1984; Kil- 
martin and Adams, 1984), leading to the proposal that ac- 
tin directs secretory vesicles to specific regions of the 
plasma membrane to allow localized cell surface growth 
during bud initiation and bud growth. During most of the 
G1 phase, growth is isotropic and cortical actin patches are 
delocalized throughout the cell. The attainment of a criti- 
cal cell size and concomitant execution of START lead to 
the formation of an actin ring at the pre-bud site and the 
orientation of actin filaments toward this site. Subsequent 
to START, growth is almost completely restricted to the 
emerging bud. During bud growth, cortical actin patches 
are localized to the bud. Initially, bud growth occurs pri- 
marily at the distal tip. At some point, though, there is a 
switch to isotropic growth first in the bud, then also tran- 
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siently in the mother cell at mitosis. At cytokinesis, the ac- 
tin cytoskeleton is reorganized and actin patches are relo- 
calized to the mother-daughter neck where the cell wall is 
modified for cell separation. The mechanisms by which ac- 
tin mediates polarized secretion are not well understood, 
but it has been shown that cortical actin patches are associ- 
ated with the cell surface through an invagination of the 
plasma membrane (Mulholland et al., 1994) and it has 
been suggested that components of the secretory pathway 
(endoplasmic reticulum [ER] and Golgi) could be trans- 
ported into the bud to direct localized growth presumably 
via an actin-dependent mechanism (Preuss et al., 1992). 

A variety of proteins have been shown to be required 
for either bud emergence or for bud site selection (for re- 
cent reviews see Bretscher et al., 1994; Chant, 1994; Welch 
and Drubin, 1994). CDC42, encoding a small GTP-binding 
protein, and several genes encoding its regulators are in- 
volved in bud emergence: cells mutated in these genes ar- 
rest as large unbudded cells with a disorganized actin cy- 
toskeleton and delocalized chitin. The BUD genes, along 
with CDC24 and RSV167 are involved in the selection of 
the bud site. 

In S. cerevisiae, the budding cycle is tightly coupled to 
the central events of the cell cycle. Upon completion of the 
primary G1 restriction event known as START, when the 
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mother cell has reached a critical size, bud emergence and 
S phase are initiated (Nasmyth, 1993; Reed, 1992). More- 
over, the dramatic changes of actin organization and the 
isotropic/apical growth switches observed during the cell 
cycle have been shown to be triggered by the different 
forms of the Cdc28 kinase that constitute the cell cycle 
clock (Lew and Reed, 1993). Furthermore, it has been re- 
cently suggested that growth polarity or bud emergence 
are monitored to ensure that mitosis does not occur before 
a bud is produced to receive the daughter nucleus (Lew 
and Reed, 1995a). The impairment of growth polarity ei- 
ther by mutation or external stimuli such as osmotic shock 
is detected and results in a G2 delay. This morphogenesis/ 
polarity checkpoint control is mediated via a partial inhibi- 
tion of transcription of the mitotic cyclin genes CLB1 and 
CLB2 and also through a more direct inhibition of the mi- 
totic form of the Cdc28 kinase via negative regulatory 
phosphorylation of Tyrl9 of Cdc28 (Lew and Reed, 1995a). 
This conserved tyrosine has been shown to be the target of 
negative regulatory phosphorylation for a number of dif- 
ferent cyclin-dependent kinases. 

In this paper, we describe the identification and the 
characterization of a new gene called BED1 (which stands 
for Bud Emergence Delay) 1 that is required for efficient 
polarized growth and is important for bud emergence. The 
bed1-1 mutation was isolated based on synthetic lethality 
with overexpression of mitotic cyclins, a phenotype that 
occurs because bed1 mutant cells depend on the morpho- 
genesis/polarity checkpoint which overexpression of mi- 
totic cyclins overrides. We have shown that the Bed1 pro- 
tein is an integral membrane protein localized in the 
endoplasmic reticulum. This protein shares homology with 
a previously described S. pombe o~-l,2-galactosyltransferase. 

1. Abbrevations used in this paper: BED, bud emergence delay; FOA, flu- 
ororotic acid; ORF, open reading frame. 

Our results suggest that glycosyl modification could play a 
role in regulating growth polarity and bud emergence. 

Materials and Methods 

Yeast Strains, Media, and Growth Conditions 

All strains used in this study were derivatives of BF264-15DU: MATa 
adel, his2, leu2-3,112, trpl-1 ~, ura3Dns (Richardson et al., 1989). The rele- 
vant genotypes of strains used in this study are shown in Table I. Yeast 
cultures were grown at 30°C in YEP (1% yeast extract, 2% bactopeptone, 
0.005% adenine, 0.005% uracil) supplemented with 2% glucose (YEPD), 
raffinose (YEPR), or galactose (YEPG). Genes under control of the 
GALl promoter were induced by the addition of 2% galactose to a mid- 
log phase culture (YEPR) for 4 h. 

Identification and Molecular Characterization of the 
BED1 Gene 

A strain carrying a GALI:CLB2 allele (GY-1) was mutagenized by ultra- 
violet radiation (70% death) on YEPD plates (GALl promoter re- 
pressed) and incubated at 30°C for 2 d. The colonies were then replica- 
plated to YEPG (GALl promoter induced). Out of 25,000 colonies 
screened, 20 were unable to grow on galaetose. Based on the level of Clb2 
overexpression, we discarded 11 candidates that showed low levels of 
Clb2 protein after 4 h galactose induction of the GAL:CLB2 allele, pre- 
sumably because the mutations affected the galactose pathway. The nine 
remaining candidates were then crossed to the wild-type 15D strain and 
the resulting tetrads were analyzed to show that, for eight of them, the le- 
thality was associated with overexpression of Clb2. The mutant strains 
were backcrossed to a MATa-GALI:CLB2 strain (GY-101) and the dip- 
loid strains were then induced to sporulate and meiotic asci dissected to 
verify that the lethality on YEPG was due to a single mutation and that 
the mutations were not localized to the GALI:CLB2 locus. A comple- 
mentation analysis with the 8 remaining candidates showed that they be- 
long to 6 different complementation groups, 2 of them with 2 alleles. We 
analyzed in greater detail one of them, that contains one allele, bedl-l. 

The BED1 gene was cloned by complementation of the lethality of the 
strain GY-159 (GALI:CLB2-bedl-1) on YEPG plates with a YCp50 
based genomic yeast DNA library (Rose et al., 1987). The screening of 
15,000 transformants (the equivalent of 10 genomes) yielded the plasmid 
pR159.1 5 times and the plasmid pR159.5 a single time, containing inserts 

Table L Yeast  Strains 

Strain Genotype Source* 

15Daub MATa-ade 1-his2-1eu2-3,112-trp 1-1 *-ura3Dns-bar I A S. I .R.  
DLY-005 MATa/ct D . J .L .  
GY-1 MATa-GALI:CLB2(LEU2) S. I .R.  
GY- 101 MATct-GAL 1 :CLB2(LEU2) This study 
GY- 159 MATs-GALl  :CLB2(LEU2)-bedl - 1 This study 
GY-381 MATa-bed 1 ::URA3 This study 
GY-382 MATa-bedl ::URA3-GAL1 :CLB2(LEU2) This study 
GY-409C MATa-bedl  ::URA3-GALI :CLB2(LEU2) This study 
GY-449 MATa-bedl::URA3-cdc28::LEU2-cdc28 FwAl8 (TRP1) This study 
GY-488 MATct-bedl-1 This study 
GY-489 MATer-bed 1 - 1 ::BED 1 (LEU2) This study 
GY-647 MATa/ct-bedl ::URA3/bedl::ura3::LEU2 This study 
GY-650 MATa/ct-BED 1/bedl- 1 ::BED 1 (LEU2) This study 
GY-651 MATa/ct-BED 1 ::BED 1 (LEU2)/bedl- 1 This study 
GY-711 MATa-bedl ::URA3-GAL1 :BED 1 (LEU2) This study 
GY-713 MATa-bedl ::URA3-GAL 1 :BED 1 [HA]3X(LEU2) This study 
GY-716 MATa-bed 1 ::ura3 ::LEU2-GAP:BED 1 (URA3) This study 
GY-718 MATa-bedl ::ura3::LEU2-GAP:BED 1 [HA]3X(URA3) This study 
GY-721 MATa-bed 1 ::URA3-BED 1 (LEU2) This study 
GY-723 MATa-bedl ::URA3-BED1 [HA]3X(LEU2) This study 
GY-748 MATa-gall0A This study 
GY-755 MATa-BED I::BED 1 (LEU2) This study 

*S. I. R., Steven I. Reed; D. J. L., Daniel J. Lew. 
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of 12 kb and 9 kb, respectively (see Fig. 7 A). These two DNA fragments 
had an overlap a region of 2.7 kb that was able to rescue the lethality of 
the strain GY-159 on YEPG medium. This region was sequenced on both 
strands using an automated sequencing system (Applied Biosystems, Fos- 
ter City, CA). 

A diploid strain BED1/bedl-I::BEDI(LEU2) (GY-650; see below) was 
constructed, induced to sporulate, and 48 tetrads were analyzed and 47 pa- 
rental ditype (PD): 0 nonparental ditype (NPD): 1 tetratype (TF) were 
observed demonstrating a tight linkage between bed1-1 and LEU2 loci 
( ~ i  cM). We also created a diploid strain BEDI::BEDI(LEU2)/bedl-1 
(GY-651; see below), dissected 23 tetrads and 23 PD: 0 NPD: 0 TT were 
recovered, indicating again that the gene cloned by complementation was 
likely to correspond to the BED1 locus defined mutationally. 

Plasmids 

The 2.7-kb DNA fragment defined by the region of overlap between plasmids 
pR159.1 and pR159.5 was subcloned into pBlueScript (Stratagene, La 
Jolla, CA) and the BED1 gene was disrupted by replacing an 0.8-kb XbaI 
fragment within the coding region with a HindIII DNA fragment contain- 
ing the URA3 gene to give the plasmid pBS159::URA3C (see Fig. 1 B). 

The BED10RF was amplified by PCR using primers containing BamHI 
sites and a unique NotI site before the STOP codon (primers: 5'-CCC- 
CGGATCCACAATATGTCTAGTGTACCT-3 '; 5 ' -CCCCGGATCCITA- 
G C G G C C G C C T G G G A A G A A A A A T C T C G T G T - 3 ' ;  the BamHI and 
NotI sites are indicated in bold characters and the AT G and STOP codons 
are underlined). The PCR product cloned into the pCRII vector (Invitro- 
gen, San Diego, CA) and digested with BamHI was then cloned into the 
BamHI site of YIpG2 (LEU2) (Richardson et al., 1989), into the BglII site 
of pHV100(URA3) (a gift from H. Valdivieso), or into the BamHI site 
of YIpBED2(LEU2) to generate YIpG2:BEDI, YIpGAP3:BED1, and 
YIpBED2:BED1, respectively. The YIpBED2(LEU2) vector contained a 
BglII-BamHI PCR fragment containing the promoter of the BED1 gene 
(primers: 5 '-CCCCAGATCTGAAGCAGGCTACTTATT-Y; 5'-CCCCGG- 
ATCCATAGTFGTACATGCACA-3 ' )  cloned into the BamHI site of 
vector YIplac128 (Sikorski and Hieter, 1989). A Notl fragment containing 
three tandem copies of the HA epitope from the plasmid pGTEP1 (Tyers 
et al., 1992) was cloned into the NotI site of YIpG2:BED1, Y I p G A ~ :  
BED1, and YIpBED2:BED1 to generate YIpG2:BEDI[HA]3X, YIpGAP3: 
BED1 [HA]3X and YIpBED2:BED1 [HA]3X, respectively. The PCR prod- 
ucts were sequenced to verify that no mutations were introduced during 
amplification. 

Strain Construction 

Strains were constructed according to standard genetic procedures (Sher- 
man et al., 1982) except that transformations of yeast cells were per- 
formed as described by Elble (1992). The strain GY-381, disrupted for the 
BED1 gene, was obtained by transformation of a wild-type haploid strain 
with the plasmid pBS159::URA3C digested with SstI. The disruption was 
verified by Southern analysis (not shown). 

The LEU2 marked BED1 gene was inserted at the bedl-1 locus by 
transformation of a MATa-bedl-1 strain (G¥-488) with the plasmid 
YIpBED2:BED1 digested with NheI; this strain (GY-489) was then 
crossed to the 15Daub strain to create GY-650. The strain GY-651 was 
similarly obtained by insertion of the LEU2 marked BED1 allele at the 
BED1 locus in 15Daub; this strain (GY-755) was then crossed to a MA Ta- 
bedl-1 strain (GY-488). GY-650 and GY-651 were used to ascertain that 
the cloned BED1 gene was mutated in the bedl-1 strain. 

The strains GY-711, GY-713, GY-721, and GY-723 were obtained 
by transformation of GY-381 with YIpG2:BED1, YIpG2:BEDI[HA]3X, 
YIpBED2:BED1, and YIpBED2:BEDI [HA]3X linearized within the LEU2 
marker with BstEII. The URA3 marker in the bedl disruption was con- 
verted into a LEU2 marker by inserting the LEU2 marker into URA3 
with the plasmid pUL9 (a generous gift from Fred Cross) to generate the 
strain GY-582B. This strain was then transformed with YIpGAP3:BED1 
or YIpGAP3:BEDI[HA]3X linearized in the URA3 marker by EcoRV to 
give the strains GY-716 and GY-718, respectively. 

The GALl0 gene was disrupted by transplacement of a mutated ver- 
sion of gall0. The wild-type strain was transformed with the plasmid 
pBM58(URA3) (a generous gift from Mark Johnston) linearized with 
PvuII; gal- colonies were then recovered on 5-fluor-orotic acid (FOA) 
plates to select for transplacemeuts. 

Cell Biology Protocols 

FACS analysis was performed on mid-log phase cultures as described pre- 
viously (Lew et al., 1992). 

Centrifugal elutriations were performed as previously described (Lew 
et al., 1992). Cells were grown to mid-log phase in YEPR medium and elu- 
triated G1 cells from wild-type and mutant strains were inoculated into 
prewarmed YEPD medium at time 0 rain. Aliquots were then taken every 
15 rain to analyze the following parameters: the timing of START was de- 
termined by incubating an aliquot of the culture at 30°C in the presence of 
a-factor (200 ng/ml, final concentration) for 45 min and the percentage of 
the cells that had passed START was determined by FACS analysis; the 
percentage of cells that had entered into S phase was estimated by FACS 
analysis; the budding index was evaluated by visually scoring a minimum 
of 200 cells; the timing of nuclear division was determined by counting the 
number of cells with two separated nuclei after staining with DAPI. 

Nuclei were visualized with DAPI according to the following protocol: 
cells from mid-log phase cultures were fixed for 30 rain in methanol:acetic 
acid (3:1) at room temperature, washed with 0.15 M NaC1, and stained for 
30 rain in the dark with 0.1 mg/ml DAPI. 

Actin and chitin staining and in vivo labeling with FITC-ConA were 
performed as previously described (Adams and Pringle, 1991; Pringle, 
1991; Lew and Reed, 1993). 

Immunolocalization of the Bedl HA-tagged protein was performed as 
previously described (Pringle et al., 1991) with the following modifica- 
tions: cells from mid-log cultures were fixed with 3.7% formaldehyde 
added directly to the medium and incubated for 1 h at room temperature 
or overnight at 4°C; the cells were washed once with PBS and twice with 1 M 
Sorbitol/1 mM EDTA. The cell wall was then digested with Zymolyase 
(ICN Biochemicals, Costa Mesa, CA) in the presence of [3-mercaptoetha- 
nol. Spheroplasts were washed twice with 1 M Sorbitol/1 mM EDTA, 
treated with 1% NP-40 for 5 min at room temperature and washed twice 
in 1 M Sorbitol/1 mM EDTA. Staining was performed on spheroplasts at- 
tached to poly-lysine--coated slides as previously described (Pringle et al., 
1991) with the 12CA5 monoclonal antibody (Boehringer Mannheim 
Corp., Indianapolis, IN) at a concentration of 5 ng/ml. The secondary anti- 
body was an FITC-conjugated goat serum directed against whole mouse IgG. 

Protein Analysis 

Protein extracts and cell fractionation were performed as described previ- 
ously (Graham et al., 1994). Cells from mid-log phase cultures were 
spheroplasted with Zymolase and lysed to obtain total protein extracts 
with intact membrane structures. These extracts were then centrifuged for 
15 min at 13,000 g to generate the P13 fraction and the supernatant was 
centrifuged at 100,000 g to obtain the P100 and the S100 fractions. The 
HA-tagged Bedl fusion proteins were detected by Western blotting using 
the 12CA5 monoclonal antibody with the ECL detection kit (Amersham 
Corp., Arlington Heights, IL) as previously described (Grandin and Reed, 
1993). Kar2 was detected with a rabbit serum kindly provided by M. Rose. 

Results 

Overexpression of the mitotic cyclins Clbl or Clb2 under 
control of the GALl  promoter is not lethal in S. cerevisiae. 
The cells are only delayed in mitosis, presumably because 
the mitotic cyclin destruction pathway is sufficient to over- 
come the resultant elevated cyclin levels (Stueland et al., 
1993; Amon et al., 1994), thus avoiding deleterious effects 
to the cell. We took advantage of these observations to im- 
plement a screen for mutants unable to tolerate high levels 
of Clb2 expression (see Materials and Methods). Cells car- 
rying an inducible CLB2 allele under the control of the 
GALl  promoter (GY-1) were mutagenized by UV irradi- 
ation and we selected mutants that were unable to grow on 
YEPG which induces the GALI:CLB2 allele. Two catego- 
ries of mutations are expected from such a screen. First, 
cells affected in their ability to degrade mitotic cyclins will 
arrest in mitosis because they cannot overcome the accu- 
mulation of CLB2 leading to chronic activation of the mi- 
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totic form of Cdc28 kinase. This situation would be analo- 
gous to the lethality observed when a nondegradable form 
of Clbl (ClblA152) is overexpressed in wild-type cells 
(Ghiara et al., 1991). A second expected class of mutation 
conferring a defect in bud emergence or growth polarity 
can also be obtained with this screening method. Delays or 
blocks in generation of growth polarity or in bud emer- 
gence are detected by a morphogenesis checkpoint leading 
to a temporary G2 arrest (Lew and Reed, 1995a). This 
control can be overridden either by mutation of tyrosine 
19 of the Cdc28 kinase or the overexpression of mitotic cy- 
clins Clbl or Clb2 (Lew and Reed, 1995a). Therefore mu- 
tations that delay budding or the generation of growth po- 
larity could confer a lethal phenotype when CLB2 is 
overexpressed due to abrogation of the checkpoint. In this 
situation, cells dependent on the checkpoint would die 
with more than one nucleus as a result of mitosis occurring 

BEDI-GAL:CLB2 bedl.1-GAL:CLB2 

0 200 400 600 800 0 200 400 600 800 

DNA content 

Figure 1. Overexpression of the mitotic cyclin Clb2 is lethal in a 
bed1-1 background. The FACS profiles of BEDIGALI:CLB2 
(GY-1) and bedl-I-GALI:CLB2 (GY-159) strains were deter- 
mined after 4 h induction with galactose. 

A 
BED1 BED1 BED1 -GAL:CLB2 
DE)(. RAFF. RAFF. + 4 hrs GAL. 

"IS 1/'"" 
bedl::URA3 bedl::URA3 bedl::URA3-GAL:CLB2 

DNA Content 

Figure 2. Phenotype bed1 dis- 
ruptant cells. (A) FACS anal- 
ysis of bedh:URA3 cells. Wild- 
type (15 Daub), bedl::URA3 
(GY-381) grown at mid-log 
phase in YEPD or YEPR, 
BED1-GALh:CLB2 (GY- 
1) and bedh:URA3-GALI: 
CLB2 (GY-382) induced at 
mid-log phase for 4 h with 
2% galactose were analyzed 
by FACS as described in Ma- 
terials and Methods. Note 
that the budding index was 
probably overestimated in 
bedh:URA3 sample because 
of the cell aggregation ob- 
served in these ceils. (B) Mor- 
phology of bedh:URA3 cells. 
Phase-contrast micrographs of 
wild-type (15Daub) and 
bedh:URA3 (GY-381) cells 
grown in YEPD or YEPR. 
Magnification is the same 
for both strains. Bar, 10 izm. 
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before budding. Eight mutations belonging to six comple- 
mentation groups were isolated from the screening of 
25,000 mutagenized colonies (see Materials and Methods 
for more detailed description of the screening procedure). 
The first mutation that we characterized was a mutated al- 
lele of the previously described VRP1 gene (Donnelly et 
al., 1993). This gene encodes verprolin, a proline-rich pro- 
tein required for proper actin organization. The fact that 
we recovered VRP1, a gene presumably involved in 
growth polarity and bud emergence, indicated that the 
screening method was effective for identification of genes 
involved in growth polarity and bud emergence. We then 
studied in greater detail the bed1-1 mutation; the gene de- 
fined by this mutation and the encoded protein are the 
subject of this paper. 

A bedh:URA3 Strain Is Defective in Bud 
Emergence and the Morphogenesis Checkpoint Is 
Necessary for  Its Viability 

Although a GALhCLB2-bedl-1 strain was able to grow 
on dextrose medium (GAL promoter repressed) and not 
on galactose medium (GAL promoter induced), a bed1-1 
strain was viable on both media. FACS analysis of nuclear 
DNA content of a strain overexpressing Clb2 in a bed1-1 
background showed that a large fraction of the ceils were ar- 
rested with a 4N DNA content (Fig. 1) while Clb2 overex- 
pression in a wild-type background induced only a delay in 
mitosis (Stueland et al., 1993). Microscopic observation re- 
vealed that a large proportion of the cells had more than 
two nuclei (see below for detailed analysis of the bedl 
phenotype). The BED1 gene was cloned, sequenced, and a 
null mutation in the BED1 gene was created by the one- 
step disruption method. The cloned gene was shown to be 
genetically linked to the BED1 locus (see Materials and 
Methods and below). We observed that the mutation and the 
targeted disruption conferred similar phenotypes and there- 
fore used the bedl::URA3 strain to investigate the bed1 phe- 
notype in detail. This strain was viable but showed a 30% 
reduction in growth rate in rich (YEPD) liquid medium 
compared to the isogenic wild-type strain. The cells were 
larger than wild-type and almost completely round, having 
lost the ellipsoidal morphology characteristic of S. cerevi- 
siae (Fig. 2 B). Using a Coulter Channelizer, bedh:URA3 
cells were shown to be 50% larger than wild-type cells in 
rich medium (the mean cell volume for bedl:.'URA3 cells 
was 64 fl vs 42 fl for wild-type cells), bedl:.'URA3 cells also 
had defects in cell separation, in that cultures contained 
clumps of aggregated cells which could not be completely 
disrupted by sonication (see Fig. 2 B). However, treatment 
with the cell wall-digesting enzyme Zymolyase gave single 
cells (not shown), indicating that the defect was in cell sep- 
aration rather than cytokinesis. FACS analysis of bedh: 
URA3 cells showed an increase in the proportion of S/G2/M 
cells in an asynchronous culture in rich liquid medium. A 
small fraction of the cells scored as greater than 2N in 
DNA content, presumably because of the cell separation 
defect (Fig. 2 A). In wild-type cells, bud emergence is con- 
comitant with the beginning of S phase as is illustrated by 
the correlation between the budding index and the per- 
centage of cells that have entered or completed S phase. 
This was not the case in bedl::URA3 mutants: in YEPR 

medium, the percentage of budded cells was lower than 
the percentage of cells that had entered or completed S 
phase despite the fact that the budding index was most 
likely overestimated due to the excessive aggregation asso- 
ciated with the strain (Fig. 2 A). These observations were 
suggestive of a defect in bud emergence conferred by the 
bedl :: URA3 mutation. 

To further characterize this phenotype, small G1 wild- 
type and bedl::URA3 cells were isolated by centrifugal 
elutriation, inoculated into fresh YEPD medium and exe- 
cution of START, initiation of S phase, bud emergence, 
and nuclear division were followed (Fig. 3). As previously 
described (Lew et al., 1992), in the 15D wild-type back- 
ground, completion of START was followed by S phase 
and bud emergence within 15-20 min. Nuclear division 
then occurred 45-50 min later. In bedl disruptant cells, 
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Figure 3. bedl::URA3 cells are defective in bud emergence. Small 
wild-type ( [] ) or bedl::URA3 ( 0 ) G1 cells were isolated by cen- 
trifugal elutriation and the following parameters were evaluated: 
completion of START (--[3-- ; --©-- ) and S phase (--II-- ; --O--) 
were determined by FACS analysis; actin polarization (-I- ; Q-), 
bud emergence (-[3- ; -O-), and nuclear division (--+--) were 
scored by fluorescence microscopy, as described in Materials and 
Methods. 
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completion of START occurred sooner than in wild-type 
cells, presumably because the elutriated population exhib- 
ited a larger size than the wild-type controls (not shown). 
S phase began normally 15-20 rain after START but bud 
emergence was delayed by more than an hour. Nuclear di- 
vision took place very rapidly after bud emergence, within 
10-15 min, suggesting that the morphogenesis checkpoint 
delays mitosis only until a bud forms to receive the daugh- 
ter nucleus. Only a small fraction of bedh:URA3 cells con- 
tained more than one nucleus whereas most of the cells 
overexpressing Clb2 in this background became multinu- 
cleated (Fig. 4). This is consistent with the fact that the 
overexpression of Clb2 or Clbl is lethal in bedl-1 or bed1:: 
URA3 cells (Fig. 1 A and Fig. 2 B; not shown). In a syn- 
chronized culture, these cells went through S phase and 

mitosis before bud emergence and died with more than 
two nuclei (not shown). The disruption of the BED1 gene 
in the context of the cdc28 F19A18 mutation (where CDC28 
is mutated so as to be no longer subject to negative regula- 
tory phosphorylation) was not lethal but a large fraction of 
the cells were multinucleated (Fig. 4). It was difficult to 
quantify the percentage of multinucleated cells in these 
different strains because of the cell aggregation pheno- 
type, but it was clear that more multinucleated cells were 
detected when Clb2 was overexpressed or Cdc28 was not 
phosphorylatable. It was also apparent that, in bed1:: 
URA3 cells, nuclear division occurred very rapidly after 
bud emergence, in that daughter nuclei were observed 
even in very small buds while nuclear division took place 
in wild-type cells when buds were much larger (Fig. 4). We 

Figure 4. The viability of bedl::URA3 cells depends on the integrity of the morphogenesis checkpoint control machinery. Nuclei were vi- 
sualized by staining cells with DAPI: (.4) wild-type (15Daub in YEPD); (B) bedl::URA3 (GY-381 in YEPD); (C) bedl::URA3-GALI: 
CLB2 (GY-382 after a 4 h induction with 2% galactose in YEPR); (D) bedl::URA3-cdc28.':LEU2-CDC28elg"41S(TRP1) (GY-449 in 
YEPD). Note that the fields are not representative of the percentage of multinucleated cells in the different strains. Magnification is the 
same for all the strains. Bar, 10 Ixm. 
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Figure 5. Actin and chitin localization in bedl::URA3 cells. Wild-type (15Daub) and bedl::URA3 (GY-381) cells grown in YEPD were 
fixed with formaldehyde and stained with rhodamine-phalloidin to visualize actin (A) or with calcofluor to detect chitin (B). Magnifica- 
tion and exposure time are the same for both strains. Bar, 10 p~m. 

concluded from these experiments that the BED1 gene 
was required for timely bud emergence, that the morpho- 
genesis checkpoint is functional and that the viability of 
bedl::URA3 cells depends on the integrity of this check- 
point control machinery. 

bedl::URA3 Cells Have Defects in Polarized Growth 
Although Actin Is Properly Polarized 

The fact that bed1 mutant cells are delayed in bud emer- 
gence, are large, and have an unusually round morphol- 

ogy, suggested that they might be defective in polarized 
growth during the cell cycle. This type of phenotype is of- 
ten associated with an inability to properly organize the 
actin cytoskeleton (see Discussion). We investigated this 
possibility by looking at actin localization by rhodamine- 
phalloidin staining of bed1 mutant cells. As shown in Fig. 5 
A, actin staining revealed a pattern similar to that ob- 
served in wild-type cells: actin rings were observed at the 
pre-bud site and after bud emergence, actin patches were 
found exclusively in the buds and actin cables were ori- 
ented toward the tips of the buds. Finally actin patches 
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were relocalized to the necks of the buds during cytokine- 
sis. We also observed, as with wild-type cells, that actin 
patches were concentrated to the tip of the growth projec- 
tion (shmoo) when bed1 mutants were treated with the 
mating pheromone a factor (not shown). 

We then determined the timing of polarization of the ac- 
tin cytoskeleton during the cell cycle in a synchronized cul- 
ture (Fig. 3). bed1 mutant cells began to undergo actin po- 
larization within 5 min after completing START, as in 
wild-type ceils. We concluded, therefore, that actin was 
properly polarized at the appropriate time during the cell 
cycle, indicating that the bed1 phenotype does not result 
from an inability to reorganize the actin cytoskeleton at 
the G1/S phase boundary. 

On the other hand, staining of bed1 mutants with calco- 
fluor, a stain for chitin, which is normally found concen- 
trated in the neck region of a budded cell and in "scars" on 
cells where previous buds were located, revealed that 
chitin was now completely delocalized and deposited at el- 
evated levels (Fig. 5 B). One interpretation of this pheno- 
type is that bed1 mutants are defective in polarized secre- 
tion required for proper localization of chitin synthase 
despite the fact that there is no obvious defect in polariza- 
tion of the actin cytoskeleton. 

Growth polarity can be directly visualized by pulse- 
labeling ceils with FITC-ConA, which binds mannose resi- 
dues from the cell wall and chasing in the absence of 
FITC-ConA (for a more detailed description of this method, 
see Lew and Reed, 1993). Exponentially growing wild- 
type and bedl::URA3 cells were pulse labeled and fixed af- 
ter a chase of one generation equivalent in fresh medium. 
Daughter ceils originating from labeled buds (cells with an 
unlabeled birth scar) were scored for staining patterns char- 
acteristic of isotropic growth (uniform staining; see, for ex- 
ample, cell 1 in Fig. 6 A) or apical growth (staining that fades 
out toward one end of the cell; see, for example, cell 2 in 
Fig. 6 A). As previously described (Lew and Reed, 1993), 
N40% of the daughter ceils from a wild-type population in 
YEPD medium exhibited polarized growth (169 out of 449 
daughter cells). Among the cells exhibiting a pattern indic- 
ative of polarized growth, 15% showed a partial gradient 
of the staining where the pole of the cell was still detected 
(see cell 3 in Fig. 6 A; 27 out of 169). On the other hand, 
most of the bedl::URA3 daughter cells (N60%; 275 out of 
452 daughter cells) exhibit a uniform staining indicative of 
completely isotropic growth (cell 4) and no daughter cells 
with completely unlabeled poles indicative of apical growth 
were observed. However, N15% of these cells (66 out of 

Figure 6. FITC-ConA pulse labeling of wild-type and bed1 cells. (A) Wild-type (DLY-005) and bedl mutant (GY-647) diploid cells were 
pulse labeled with FITC-ConA for 15 min and after a chase with fresh medium during one generation time, cells were fixed and ob- 
served by fluorescence microscopy. Daughter cells generated from labeled buds with an unlabeled birth scar (indicated by an arrow) 
were scored for uniform staining indicative of an isotropic growth (cell 1), for staining that fades completely out toward the pole oppo- 
site from the unlabeled birth scar, indicative of polarized growth (cell 2) or for an incomplete or partial gradient toward the end of the 
daughter cell (cell 3). In the mutant population, daughter cells exhibiting uniform staining (cell 4) or an incomplete gradient toward one 
pole of the cell (cell 5) could be observed along with cells showing a weak uniform staining with brighter signal around the birth scar 
(cell 6). Bar, 10 Ixm. (B) Confocal microscopy was used to characterize the staining of the same cells in greater detail. Examples of stain- 
ing indicative of polarized growth in wild-type cells are shown on the left. Mutant daughter cells exhibiting weak uniform staining with 
brighter staining around the birth scar or partial fade-out staining are shown on the right. Bar, 5 I~m. 
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Figure 7. Identification and molecular cloning of the BED1 gene. (A) Physical map of the DNA fragment able to rescue the lethality on 
galactose of the GY-159 strain. The disruption of the BED1 gene with the URA3 marker is also schematized. (B) Sequence of the BED1 
gene. The sequence around the ATG is underlined and is in good accordance with the consensus sequence 5'-(A/Y)A(A/Y)A(A/ 
Y)AATGTCT-3' (Hinnebusch and Liebman, 1991), Sequences for termination of transcription (5'-TAG...TATGT'I?G...TZ'F-3') were 
also found after the STOP codon. The sequences upstream from the BED1 gene were identical to the 3' end of the sequence of the 
PASIO gene (YSCPAS10P in Genebank; Van Der Leij et al., 1993). The amino-terminal hydrophobic region of the Bedl protein is indi- 
cated in italics. These sequence data are available from GeneBank/EMBL/DDBJ under accession number U31446. 

452) exhibited a partial fade-out staining with a decreasing 
gradient of the staining to one end of the cell but with the 
pole still labeled (see for example, cell 5 in Fig. 6 A) and 
~25% (111 out of 452) showed a faint uniform staining with 
a zone of strong staining around the birth scar (see, for ex- 

ample, cell 6 in Fig. 6 A). We used confocal microscopy to 
analyze the fade-out staining in greater detail (Fig. 6 B). 
While no staining could be detected at the opposite pole of 
the unlabeled birth scar in wild-type cells, the end of bed1:: 
URA3 daughter ceils was always stained, suggesting that 
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the apical growth, when it occurs, is defective or incom- 
plete. Examination of cells with a stronger signal around 
the birth scar (cell 6 in Fig. 6 A) showed that the pattern is 
consistent with staining of a region very close to the scar it- 
self but without any gradient toward the pole of the cell. 
Our interpretation is that growth cannot occur in this re- 
gion for mechanical reasons and therefore the signal can- 
not be diluted during bud growth and appears as a narrow 
ring of heavily stained cell wall. The fact that we could still 
detect in some cells a partial gradient toward one pole of 
the cell (~15% of daughter cells) suggests that growth 
may be partially polarized at some point of the budding 
phase. Taken together, these results suggest that bedh: 
URA3 cells exhibit some growth polarity but that apical 
growth is not as efficient as in wild-type cells. 

Molecular Characterization o f  the BED1 Gene: 
BED1 Shows Similarity to an S. pombe Gene Encoding 
an a-l,2-Galactosyltransferase 

The gene encoding Bed1 was cloned by complementation 
of the GALhCLB2-bedl-1  mutant strain (GY-159) using 
a centromeric yeast genomic DNA library and two plas- 
raids containing a 2.7-kb overlapping region were recov- 
ered (Fig. 7 A). We detected one large open reading frame 
(ORF) in this region with a capacity for encoding a protein 
of 393 amino acids (Fig. 7 B). Examination of the se- 
quence of the BED1 gene showed a stretch of hydropho- 
bic amino acids in the NH2-terminal portion of the ORF 
(residues 47 to 67; Fig. 7 B). The inferred structure of 
Bed1 was reminiscent of the organization of type II mem- 
brane proteins: a short NH2-terminal cytosolic domain, a 
unique hydrophobic transmembrane domain (15-20 ami- 
noacids) and a large luminal COOH-terminal domain (for 
review see High and Dobberstein, 1992). 

BED1 had similarity to the recently cloned gmal2+gene 
of S. pombe (Chappell et al., 1994). The two proteins are 
similar in their predicted luminal domains: 4 regions that 

show ~30% identity and up to 70% similarity (Fig. 8). The 
structures of these two proteins are different in that, al- 
though they both have type II membrane protein struc- 
ture, the cytoplasmic domain of Bedl  is larger (45 amino 
acids) than the corresponding domain of gmal2p (only 
two amino acids amino terminal to the transmembrane do- 
main). The gmal2 ÷ gene encodes an ct-l,2-galactosyltrans- 
ferase involved in the synthesis of the S. pombe cell wall 
which, in contrast to that of S. cerevisiae, contains glyco- 
proteins with galactose residues. More recently, two puta- 
tive ORF homologous to gmal2p were detected on chro- 
mosome I of S. pombe. Therefore, gma12 ÷ belongs to a 
highly conserved family of proteins that are conserved 
along their entire lengths in the fission yeasts S. pombe 
and S. octosporus (Fig. 8; Chappell, T., personal communi- 
cation). 

We also noticed that Bedl  is even more homologous to 
a previously unidentified S. pombe partial ORF present 
adjacent to the vacuolar H+-ATPase, subunit B gene (Fig. 
8). Analysis of the sequences available shows that the ho- 
mology between Bed1 and this partial ORF is significantly 
greater than that between Bedl  and gmal2p (see Fig. 8). 
The structure of this ORF is also more similar to the struc- 
ture of Bedl  in that the putative cytoplasmic domain con- 
tains ~40 amino acids. However, the role of the protein rep- 
resented in part by this ORF is not known. The possible 
implications of these homologies will be discussed below. 

Bedl  Is a Type H Membrane Protein Localized in the 
Endoplasmic Reticulum 

Since the analysis of bedl::URA3 cells suggested a role in 
polarized secretion and Bed1 had a predicted structure or- 
ganization consistent with a membrane protein, we deter- 
mined the intracellular localization of Bed1. We intro- 
duced a COOH-terminal triple influenza hemagglutinin 
([HA]3X)-tagged version of Bed1 into bedh:URA3 cells. 
The HA-specific 12CA5 monoclonal antibody detected a 

Figure 8. Homologies between BED1 and gma12 ÷, an S. pombe gene encoding an et-l,2-galactosyltransferase. The search for sequences 
homologous to Bedl was performed at the National Center for Biotechnology Information (NCBI) through the GENINFO (R) BLAST 
Network Service (Blaster) (Altschul et al., 1990). Four S. pombe ORFs were identified: gmal2p (SPA12GATR; accession number 
zQ09174), two ORFs on chromosome I (cdsll and cdsl3; accession number z49811) and a previously unidentified partial ORF (spORF) 
located 5' from the vacuolar H+-ATPase, subunit B gene (SPVATPB). The alignment of the 50RFs was established with the following 
rules: G=A=P=S; S=A=T; R=H=K; D=E; Q=N; M=I=L=V=F; F=W=Y. 
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doublet on Western blots of approximate molecular mass 
of 50 kD, in good agreement with the predicted molecular 
weight of the fusion protein (46 kD for Bedl  and 4 kD for 
the [HA]3X tag) (Fig. 9 A). The HA-tagged version of 
BED1 was able to rescue the defects associated with the 
disruption of BED1 (not shown). Thus, we concluded that 
the fusion protein was functional. Crude fractionation of 
extracts containing intact membrane structures showed 
that Bedl[HA]3X was present in the low speed fraction 
(P13) enriched for endoplasmic reticulum, nuclear enve- 
lope, vacuoles, and plasma membrane. Kar2, a luminal 
protein of the ER (Rose et al., 1989), was also mainly 
present in this fraction, as expected. We also showed that, 
unlike Kar2, Bedl  was tightly associated with membranes: 
Bedl  remained membrane associated after treatment of 
the membrane fraction with carbonate pHl l .0  but not af- 
ter treatment with detergents (not shown). Moreover, only 
the NH2-terminal portion of Bedl  was sensitive to proteol- 
ysis by proteinase K when the protein was associated with 
intact membranes, suggesting that the first 45 amino acids 
are likely to be cytosolic in intact cells (not shown). Based 
on these criteria, we concluded that Bedl  is a type II inte- 
gral membrane protein. 

We were unable to detect Bedl  [HA]3X by immunofluo- 
rescence when the fusion protein was expressed under the 
control of its native promoter (not shown). Therefore, we 
constructed a strain containing the tagged protein under 
control of the constitutive GAP promoter (GY-718), yield- 
ing a 20-fold increase in the amount of Bedl  protein, as 
observed by Western blot (Fig. 9 A). Since it has been shown 
that, in some cases, overexpression of proteins of the secre- 
tory pathway can lead to a mislocalization due to satura- 
tion effects, we verified that Bedl  had the same fraction- 
ation profile when overexpressed as when it was expressed 
under control of its own promoter (Fig. 9 A). We observed 
an immunofluorescenee staining pattern consistent with 
an ER localization of the protein: the signal was perinu- 
clear with some extensions into the cytoplasm. This pat- 
tern was similar to the immunolocalization of Kar2, a lu- 
minal protein of the endoplasmic reticulum (Rose et al., 
1989). We also observed that Bedl  colocalized with Kar2 
in individual cells (not shown). These data taken together 
suggest that Bedl  is a type II integral membrane protein 
of the endoplasmic reticulum and support the hypothesis, 
based on homologies with gmal2 ÷, that Bedl is a galactosyl- 
transferase and that the switch to polarized secretion might 
require galactosyl modification of particular proteins or lip- 
ids during transit through the endoplasmic reticulum. 

D i s c u s s i o n  

The BED1 gene was identified based on its involvement in 
bud emergence and polarized growth in S. cerevisiae. Al- 
though impaired, cells disrupted for BED1 are viable, sug- 
gesting either that this gene encodes an important but 
nonessential function, or that BED1 is redundant with an- 
other related gene. Bud emergence was strongly delayed, 
occurring only 1 h after initiation of S phase in bedl:: 
URA3 cells while these two events were tightly coupled in 
wild-type cells. On the other hand, nuclear division took 
place immediately after bud emergence, indicating a tight 
coupling between these two events in bed1 mutant cells. 

However, bed1 cells became multinucleated when the mi- 
totic form of Cdc28 was hyperactivated by either the over- 
expression of the mitotic cyclins Clbl or Clb2 or by muta- 
tion of Tyrl9, the regulatory phosphorylation site of 
Cdc28. Lew and Reed (1995a) have shown that, while the 
G2 delay induced by defects in growth polarity or budding 
can be completely abolished by Clbl or Clb2 overexpres- 
sion, the cdc28 rw mutation only reduces the delay but can- 
not eliminate it completely. This accounts for the observa- 
tion that a bedl::URA3-cdc28 F19Als strain is viable while 
overexpression of Clb2 in a bedl::URA3 background is le- 
thal. Taken together, these observations suggest that the 
viability of bedl cells depends on the morphogenesis 
checkpoint machinery which is able to delay mitosis in the 
absence of budding in order to maintain the coordination 
between the nuclear division cycle and the budding cycle. 
In fact, the dependence of the bed1 mutant on the mor- 
phogenesis checkpoint for survival is the most convincing 
demonstration of the importance of this regulatory system 
in the yeast life cycle. Finally, cells disrupted for BEDI  ex- 
hibited morphological aberrations, losing the ellipsoidal 
shape characteristic of S. cerevisiae and being larger than 
wild-type cells. In addition, bed1 cells had defects in cell 
separation as indicated by a tendency to form aggregates 
in liquid medium. 

The delayed bud emergence, the morphological and 
morphogenetic phenotypes observed in bedl::URA3 cells 
(increased size, round cell shape, and delay in bud emer- 
gence) could be a result of defects in secretion or the gen- 
eration of growth polarity by analogy with other morpho- 
genesis mutants (for reviews see Bretscher et al., 1994; 
Welch and Drubin, 1994). Disorganization of the actin cy- 
toskeleton and delocalized deposition of chitin are usually 
phenotypically coupled, presumably because proper actin 
function is required for polarized secretion and therefore 
for budding. In bedl::URA3 cells, actin polarization after 
START and actin reorganization at cytokinesis occurred 
on schedule. Surprisingly, however, chitin deposition was 
greatly increased and completely delocalized, indicating 
that bed! cells have defects in polarized growth. More- 
over, a more direct evaluation of growth polarity by in 
vivo pulse labeling with FITC-ConA showed that bed1:: 
URA3 cells are defective in the most polarized form of 
growth, growth directed to the bud tip or apical growth. 
Some residual growth polarity was observed, explaining 
why bedl::URA3 cells are viable and suggesting that an- 
other gene redundant with BED1 might be responsible for 
this activity. From these observations, we suggest that 
bed1 cells are impaired in directing secretory vesicles to 
the bud site but not in secretion per se, and that Bedl  is 
part of a pathway that is downstream or parallel to the ac- 
tin pathway; both pathways being necessary for proper de- 
livery of secretory vesicles to the bud site during bud 
emergence and to the bud neck during cytokinesis and cell 
separation. 

A role in polarized secretion is also consistent with the 
intracellular localization of Bedl.  Crude fractionation of 
whole cell lysates showed that Bedl  was present in a low 
speed fraction containing endoplasmic reticulum, vacu- 
oles, nuclear envelope, and plasma membranes. Biochemi- 
cal experiments indicated that Bed1 was an integral type II 
membrane protein with a small NH2-terminal cytoplasmic 
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Figure 9. Bedl is a membrane protein localized in the endoplasmic reticulum. (A) Bed1 is present in an ER-enriched fraction. Total pro- 
tein extracts (TOTAL) containing intact membrane structures were subjected to a crude fractionation procedure: the P13 fraction is en- 
riched for membranes from the endoplasmic reticulum, the vacuoles, the plasma membrane and the nuclear envelope; the P100 fraction 
is enriched for Golgi membranes; the S100 fraction contains soluble proteins. The Bedl[HA]3X protein was detected by Western blot 
with the 12CA5 mouse monoclonal antibody and Kar2 with a rabbit polyclonal antibody. Note that twice as much volume of GY-723 
(BEDI[HA]3X) was loaded compared to GY-718 (GAP:BEDI[HA]3X). It was estimated by densitometric scanning of different expo- 
sures of the Western blots that 40% of Kar2 was in the P13 fraction, 20% in the P100, and 20% in the S100 fraction. The same kind of 
measurement gave for Bedl 90%, 10%, and less than 1% in fractions P13, P100, and S100, respectively. (B) Immunolocalization of 
Bedl. GY-718 (containing GAP:BEDI[HA]3X) and GY-716 (containing GAP:BED1 as a negative control) cells grown in YEPD were 
stained with DAPI to visualize the nuclei and at the same time with the 12CA5 antibodies to detect the Bedl fusion protein. Magnifica- 
tion and exposure time are the same for both strains. Bar, 5 ~m. 



domain and COOH-terminal luminal domain. The pre- 
dicted structure of the protein was in agreement with this 
conclusion since Bedl contained a putative hydrophobic 
transmembrane domain in the NH2-terminal portion of 
the protein (amino acids 47-67). We were not able to de- 
tect an epitope-tagged version of the protein expressed 
from its own promoter by immunofluorescence because of 
low levels of expression but a staining pattern suggesting 
an ER localization for Bedl  was obtained when the tagged 
protein was overexpressed. We showed however that the 
behavior of Bed1 in the fractionation procedure we used 
was not affected by overexpression from the constitutive 
GAP promoter. Taken together, these two different ap- 
proaches suggested that Bedl is an integral type II mem- 
brane protein of the ER. 

We discovered recently that the BED1 gene was inde- 
pendently cloned as SLC2 (Karpova et al., 1995). sic2 mu- 
tants were identified during a screen designed to identify 
mutations synthetically lethal with a disruption of CAP2, a 
gene involved in actin cytoskeleton organization (Karpova 
et al., 1993). The phenotype associated with the slc2-I07 is 
different from that described here: the actin cytoskeleton 
is disorganized in a strain carrying the slc2-107 allele and 
this strain is thermosensitive while bedl::URA3 cells have 
a normal pattern of actin polarization and are not temper- 
ature sensitive (at least up to 37°C; not shown). This could 
be explained either by strain background differences or by 
the fact that the slc2-107 mutation is semidominant, sug- 
gesting that this mutation might be associated with a gain- 
of-function. More recently, the sequence of the BED1 
gene appeared twice in the Genbank database: it was de- 
tected during the sequencing of chromosome IV and 
BED1 is identical to MNNIO (accession number 142540). 
mnn mutants were isolated as mutants that have aberrant 
carbohydrate structures in the cell wall; most of the gene 
products are thought to be involved in mannosylation of 
proteins but some could be involved in more general func- 
tions of the secretory pathway that might affect mannosy- 
lation indirectly (for review see Hercovics and Orlean, 
1993). This latter hypothesis is consistent with our results. 

BED1 was found to be similar to 4 ORFs in S. pombe, 
gma12 ÷, and 2 of its homologues and a previously uniden- 
tified ORF we called spORF. The homology between Bedl 
and gmal2p/cdsl 1/cdsl3 was particularly significant over 4 
regions in the luminal portion of these proteins (~30% 
identity and 65 % similarity). The gmal2p protein has been 
shown to be an a-l,2-galactosyltransferase (Chappell et 
al., 1994). Several galactosyltransferase activities have been 
detected in S. pombe (Chappell et al., 1994; Ballou and Bal- 
lou, 1995) and the grna12 ÷ gene belongs to a large family 
of related genes in S. pombe (Chappell, T., personal com- 
munication). Although the structures of the two proteins 
are clearly similar, Bedl  has a larger cytoplasmic domain. 
On the other hand, this domain is comparable in size with 
the corresponding domain of spORF and, furthermore, 
comparison of the available sequences of spORF and 
Bed1 (see Fig. 7) showed that the degree of similarity be- 
tween Bedl and spORF was higher than between Bedl 
and gmal2p (~40-50% identity and 70% similarity). We 
conclude from these observations that spORF is more 
likely than gmal2 ÷ to be the homologue of BED1 in S. 
pombe. Indeed, gmal2 + could not complement the mor- 

phological defects observed in bed1 cells, although it was 
shown to be enzymatically active in vitro in extracts from 
S. cerevisiae ceils overexpressing gmal2p under the con- 
trol of the GALl  promoter (not shown). Moreover, local- 
ization of gmal2p in the Golgi apparatus (Chappell et al., 
1994) is distinct from that of Bedl. Finally, gma12p is in- 
volved in bulk modification of proteins of the cell wall, a 
phenomenon particular to S. pombe, that has not been de- 
tected in S. cerevisiae; we propose that the role of Bedl  is 
more specific (see below). 

It was surprising to find homology between Bedl and a 
galactosyltransferase since, to our knowledge, no galacto- 
syl modifications have been described for glycoproteins or 
glycolipids in S. cerevisiae. We were unable to detect any 
galactosyltransferase activity in extracts from wild-type 
cells or from cells overexpressing Bedl under conditions 
where ectopically overexpressed gmal2p showed signifi- 
cant activity (not shown). This assay, based on conditions 
described for gmal2p (Chappell and Warren, 1992), is 
somewhat restrictive and does not rule out the possibility 
that Bedl could be a galactosyltransferase that cannot use 
et-methylmannoside or a-methylgalactoside as an accep- 
tor. Furthermore, the idea that Bedl  is a galactosyltrans- 
ferase is in conflict with the fact that no phenotype has 
been described in association with disruption of the 
GALIO gene encoding UDP-glucose 4-epimerase, the en- 
zyme responsible for interconversion of UDP-glucose and 
UDP-galactose. We verified that the disruption of this 
gene in our genetic background did not confer a morpholog- 
ical phenotype similar to that of bedl::URA3 cells when 
grown on glucose medium (not shown). An alternative 
possibility is that another epimerase is present in S. cerevi- 
siae and is responsible for the production of UDP-galac- 
tose from UDP-glucose for the purpose of galactosyl mod- 
ification of specific proteins or lipids. Such modification 
targeted to specific protein or lipid species could have es- 
caped detection in analysis of bulk glycoproteins or gly- 
colipids. This raises the intriguing possibility that specific 
galactosyl modification may be involved in signaling the 
isotropic to polarized switch in secretion. We are currently 
investigating using a PCR approach the hypothesis that S. 
cerevisiae contains other glucose-4-epimerase(s). Alterna- 
tively, Bedl may catalyze a different glycosyl modification 
although, based on precedent, this is unlikely: high levels 
of structural homology have been detected only between 
enzymes that catalyze analogous glycosylation reactions 
(Kleene and Berger, 1993). 

A simple model to explain the role of Bed1 in polarized 
growth and therefore in bud emergence is that Bedl  is in- 
volved in modification of an effector protein that controls 
the targeting of the secretory vesicles via the actin cyto- 
skeleton in the context of the switch from isotropic to po- 
larized growth at the G1/S phase boundary. In an alterna- 
tive model, Bedl  might catalyze a modification that leads 
to local reorganization of the membrane and/or the cell 
wall at the bud site, allowing vesicles to fuse more effi- 
ciently with the plasma membrane. Elucidation of the 
function of Bedl  will require the identification and charac- 
terization of its target(s). 

It is interesting that bed1 mutant cells show defects in 
polarized secretion and that cell division occurs when buds 
are unusually small (Fig. 4). One interpretation of this ob- 
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servation is that bud emergence, albeit with a delay, can be 
initiated without highly polarized secretion but that, under 
such circumstances, significant growth cannot occur until a 
bud becomes an autonomous cell. Thus, whereas bud 
growth is normally integrated as a phase of each cell cycle, 
in bedl cells, it may be pushed forward to the subsequent 
cell cycle. 

In summary, we have characterized a new gene that is 
required for efficient bud emergence and apical growth. 
Cells carrying a disrupted allele of BED1 are viable but 
depend upon a morphogenesis checkpoint to survive. The 
defects observed in bedl cells indicate that this protein is 
in a pathway downstream or parallel to the actin polariza- 
tion pathway in mediating the switch from isotropic to po- 
larized growth. The fact that Bedl  shares significant ho- 
mology with an S. pombe galactosyltransferase suggests 
that glycosylation might have an important signaling role 
in this process. 
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