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Summary
Beginning in 2009, studies of the humoral responses of HIV-positive individuals have 
led to the identification of scores, if not hundreds, of antibodies that are both broadly 
reactive and potently neutralizing. This development has provided renewed impetus 
toward an HIV vaccine and led directly to the development of novel immunogens. 
Advances in identification of donors with the most potent and broad anti-HIV serum 
neutralizing responses were crucial in this effort. Equally, development of methods for 
the rapid generation of human antibodies from these donors was pivotal. Primarily 
these methods comprise single B-cell culture coupled to high-throughput neutraliza-
tion screening and flow cytometry-based sorting of single B cells using HIV envelope 
protein baits. In this review, the advantages and disadvantages of these methodolo-
gies are discussed in the context of the specificities targeted by individual antibodies 
and the need for further improvements to evaluate HIV vaccine candidates.
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I N V I T E D  R E V I E W

Identification and specificity of broadly neutralizing  
antibodies against HIV

Laura E. McCoy1,2 | Dennis R. Burton1,3

1  | INTRODUCTION

Natural immunity to many viral diseases relies upon circulating neu-
tralizing antibodies from long-lived plasma cells in the bone marrow 
or the production of neutralizing antibodies from memory B cells 
after re-activation by the infecting pathogen, frequently years after 

the original exposure. Successful vaccines such as that for smallpox 
present a non-pathogenic form of the infectious agent and induce a 
similar natural immunity. For HIV, however, natural immunity appears 
ineffective. Thus, for example, superinfection occurs unhindered by 
HIV envelope protein (Env)-specific antibodies,1 the majority of which 
are non-neutralizing.2 However, given that the mechanism of viral 
protection and clearance by antibodies in vivo is so widespread, we, 
and others, have studied humoral responses in HIV-infected donors 
for more than two decades to understand how to prevent and control 
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HIV infection. This persistence has led to the identification of many 
broadly neutralizing antibodies (bnAbs),3–6 which, although relatively 
rare in HIV-infected individuals,7,8 are nevertheless highly effective 
against most circulating strains and can prevent infection in robust 
animal models.9–11 Therefore, although HIV infection does not induce 
protective antibody-mediated immunity, it is possible for the human 
immune system to produce antibodies that may, in principle, protect 
from HIV infection. This review will focus on the epitopes targeted by 
bnAbs and the methodologies used to identify them. In particular, as 
requested, we concentrate on our own efforts in the field with impor-
tant developments in other laboratories included.

The first HIV bnAbs were isolated by our laboratory using phage 
display12–14 and by Hermann Katinger’s laboratory using human hy-
bridoma electrofusion.15,16 These were the bnAbs b12 and 2F5. Later, 
the bnAbs 2G12 and 4E10 were described.17–19 However, although 
these bnAbs proved very useful in answering questions about the 
interplay of HIV and nAbs, there was a definite lull in isolating new 
bnAbs. High-throughput neutralization assays were a major factor 
in changing that situation. The ability to analyze mAb and serum ac-
tivity against large panels of viruses was demonstrated20 and subse-
quently used to evaluate large numbers of HIV-infected donors in the 
International AIDS Vaccine Initiative (IAVI) Protocol G and C studies 
to identify those with exceptionally potent and broad sera,8 map the 
specificities underlying these responses,7,21 and then isolate bnAbs 
from these individuals.22–28 Independently, the standardization of the 
TZM-bl neutralization assay and the definition of neutralization sensi-
tivity tiers29–31 allowed much more rigorous serum analysis.

A second major factor in generating new bnAbs was the develop-
ment of single B-cell approaches for the isolation of human antibod-
ies32–34 (Figure 1). Beginning with the description of bnAbs PG9 and 
PG16 in 2009, the field saw a revolution in the generation of bnAbs 
and in parallel the development of ever improving tools for the analysis 
of the specificities of these Abs. Structural tools, crystallography and 
cryo-electron microscopy, have been critical as have biophysical and 
virological approaches.

2  | IDENTIFICATION OF HIV BNABS

An important step in the identification of HIV bnAbs was the ability to 
study large cohorts and identify those with potent and broad serum 
neutralizing activity. This was first achieved by defining criteria to rank 
1800 HIV-positive serum samples from the IAVI Protocol G cohort 
for broad and potent activity against relatively neutralization-resistant 
isolates to represent circulating viruses.8,21 We selected and validated 
a six-virus cross-clade indicator panel and developed a scoring system 
wherein elite activity is defined as neutralization of at least one virus 
with an IC50 value of more than 1:300 across a minimum of four differ-
ent clades.8 Having identified HIV-positive donors with broad and po-
tent neutralizing activity, the next step was to isolate the monoclonal 
Abs (mAbs) giving rise to this phenotype. Given the limited efficiency 
of both B-cell immortalization and phage display, we opted to directly 
screen stimulated single B-cell supernatants. This approach used a 

strategy that required adaption to a high-throughput format to screen 
enough B cells to identify rare HIV bnAbs (Figure 1).

In the first experiment, we screened more than 30 000 individual 
B cells from one donor for the ability to neutralize two HIV strains 
and also bind to recombinant gp120 and gp41 protein subunits23 
(Table 1). This screen yielded five B-cell clones which produced mAbs 
with the ability to neutralize at least one HIV strain, where one was 
a neutralization-resistant Tier 2 isolate JR-CSF and the other a highly 
neutralization-sensitive Tier 1 strain SF162. Interestingly, only two of 
the five mAbs, the somatic variants PG9 and PG16, potently neutral-
ized JR-CSF. Unlike the other three mAbs generated, PG9 and PG16 
did not neutralize SF162 nor bind to the recombinant Env subunits. 
Thus, this validated the utility of a screening method in which the pri-
mary selection criterion is neutralization of Tier 2 strains of HIV, be-
cause a method relying first on binding activity, such as phage display 
or B-cell sorting, relying on binding activity of existing antigens such as 
gp120, would likely have failed to identify the bnAbs PG9 and PG16 
that neutralize 73%–78% of strains tested. Furthermore, that only five 
neutralizing mAbs were isolated from 30 000 single B-cell cultures de-
rived from a donor with a favorable serum neutralizing profile validated 
the use of high-throughput screening to identify rare bnAbs.

This approach of high-throughput neutralization screening of single 
B-cell cultures was re-employed to isolate bnAbs from multiple donors 
(Table 1). These bnAbs comprise the PGT121, PGT128, PGT135, 
PGT145, and PGT151 families,22,25 which are among the most potent 
bnAbs isolated to date, with PGT121 found to be protective at low 
doses in an in vivo challenge model.35 Similar large single B-cell culture 
screens led to the identification of the highly potent and broad 10E8, a 
gp41 membrane proximal region (MPER)-specific bnAb36 and 35022, 
which binds the gp120-gp41 interface,37 from the same donor. All of 
these studies operated on the basis that the neutralization specific-
ity of the donor serum was unknown, and therefore, any Ab isolation 
method should not be biased by the use of pre-enrichment for binding 
activity.

However, simultaneous advances in our ability to discern the spec-
ificities that mediate elite neutralization21 advocated for the use of a 
recombinant Env protein as bait for bnAb B cells. This method was used 
to identify multiple Ab lineages from six donors but did not identify any 
with bnAb activity.38 In contrast, the bnAb VRC01 was identified using 
a resurfaced Env gp120 subunit (RSC3) bait that preferentially bound 
the previously isolated bnAb b12 and was recognized by the individ-
ual donor’s neutralizing serum39 (Figure 1, Table 1). RSC3 was fluores-
cently labeled and mixed with donor cells so that RSC3-positive B cells 
could be separated by fluorescence-activated cell sorting (FACS) into 
individual wells. cDNA was generated from each well and heavy- and 
light-chain pairs cloned, recombinantly expressed and then screened 
for neutralization activity. Similar approaches with different baits were 
used to isolated additional gp120-specific bnAbs including 3BNC117, 
3BNC60,40 and 10-1074.41 In this method, selection is based purely 
on the ability to bind the Env bait, and many non-neutralizing mAbs 
may also be cloned unless there is counter selection with an epitope-
specific knockout probe. We successfully used this approach to iso-
late the PCDN series of bnAbs from a protocol C donor, whose serum 
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neutralization activity was N332 dependent, enabling counter selec-
tion with a 332 glycan knockout negative probe.26 However, it should 
be noted that this strategy selects for bnAbs with a stringent require-
ment for an N332 glycan and will not select for antibodies that can use 

nearby glycans interchangeably with the N332 glycan, as found for the 
PGT121 family bnAbs.42

Many of the bnAbs identified by screening B-cell cultures are 
trimer-preferring or -specific, such as PG9 and PGT151, and as such, 

F IGURE  1 Methods for HIV bnAb isolation. (A) mAb isolation by phage library from plasma cells and subsequent phage display to enrich for 
antigen-specific clones; (B) mAb isolation by immortalization of total B cells. Propagated cells are then serially diluted and Abs secreted in the 
supernatant tested for antigen specificity; (C) mAb isolation by single B-cell culture without immortalization, Abs secreted in the supernatant 
tested for antigen specificity and Ab sequences obtained; (D) mAb isolation by antigen-specific single B-cell FACS. Ab sequences are amplified 
from each well and tested for antigen specificity
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they may not be identified by antigen selection using molecules such 
as monomeric gp120 (Table 1). It should be noted, however, that the 
bnAb 8ANC195 was isolated by selection with a gp120 core protein40 
but was later revealed to bind an area spanning the gp120-gp140 inter-
face rather than exclusively gp120.43 To counter the limitation of bind-
ing selection based on the gp120 subunit, Env on the surface of cells 
was used as a bait to select the bnAbs 3BC315 and 3BC176,44 which 
are also specific for the gp120-gp41 trimer interface.45 Subsequently, 
advances in the production of soluble near-native stabilized Env tri-
mers46 have allowed better selection of Env-specific B cells, excluding 
those which bind regions not exposed on the infectious viral spike. 
Using this method, we isolated PGDM140028 from the same donor 
that previously yielded the PGT141–145 family of bnAbs via the B-
cell culturing approach.22 Furthermore, stabilized BG505 SOSIP.664 
trimers have been used as baits to isolate two bnAbs which occupy 
overlapping epitopes at the gp120-gp41 interface and also contact 
the fusion peptide, ACS20247 and VRC34.48 Similarly, additional apex-
specific bnAbs were recently isolated from the CAP256 donor using 
both the BG505 SOSIP.664 trimer and B-cell culture.49 However, the 
most potent new bnAb was found by the latter method, leading the 
authors to emphasize the advantages of this method.49

Importantly, the isolation and characterization of bnAbs have oc-
curred concurrently with B-cell ontogeny studies that have, in turn, 
suggested novel ways to identify additional bnAbs. Next-generation 
sequencing (NGS) data generated from total RNA from PGT121/4 
donor lymphocytes revealed an extensive family tree of possible 

PGT121/4 heavy- and light-chain combinations with as little as 6% 
amino acid mutation but still notable neutralization breadth.50 Studies 
by other groups have identified bnAbs including CAP256,51 CH103,52 
and CH23553 that highlight the extensive viral epitope diversification 
and interplay between B-cell lineages during the co-evolution of virus 
and bnAbs. Similarly, our study of an N332-dependent Protocol C 
donor yielded a family of bnAbs and precursors from 16 to 38 months 
post infection.26 The development of the bespoke Ab analysis platform 
Clonify54 enabled us to filter these data for PCDN Abs and identify a 
likely unmutated common ancestor (UCA) of the lineage and revealed 
that there was a virus-triggered selection bottleneck in Ab maturation 
after 27 months. Thus, the application of NGS techniques to study 
B-cell repertoires from peripheral lymphocytes has greatly increased 
our understanding of bnAb development. However, it is important 
to note that at least one individual bnAb must first be identified and 
validated experimentally; otherwise, it is generally not possible to de-
cipher which rare B-cell transcripts encode bnAbs. There have been 
attempts to mine NGS B-cell repertoire data by predicting heavy- and 
light-chain pairing55 but paired heavy and light sequencing technology 
will be required to gain a clearer understanding of bnAb donor reper-
toires. Furthermore, VRC01-class bnAbs have been found in multiple 
donors and carry certain genetic hallmarks. However, given there can 
be up to 50% sequence divergence between Abs from different in-
dividuals,56,57 it is challenging for NGS alone to identify new bnAbs 
even within this class.58 Experimentally, this meant pre-screening of 
VRC01-like heavy chains paired with the original light chain of VRC01 

BnAb Epitope Isolation method

PG9 Apex B-cell culture/neutralization

PG16 Apex B-cell culture/neutralization

PGT145 Apex B-cell culture/neutralization

PGDM1400 Apex B-cell selection/antigen binding

CAP256.VRC26 Apex B-cell culture/neutralization

CH01 Apex B-cell culture/neutralization

PGT121 High-mannose patch B-cell culture/neutralization

PGT128 High-mannose patch B-cell culture/neutralization

PGT135 High-mannose patch B-cell culture/neutralization

10-1074 High-mannose patch B-cell selection/antigen binding

VRC01 CD4bs B-cell selection/antigen binding

CH103 CD4bs B-cell selection/antigen binding

3BNC117 CD4bs B-cell selection/antigen binding

PGV04 CD4bs B-cell selection/antigen binding

8ANC131 CD4bs B-cell selection/antigen binding

CH235 CD4bs B-cell culture/neutralization

PGT151 gp120-gp41 interface B-cell culture/neutralization

35022 gp120-gp41 interface B-cell culture/neutralization

8ANC195 gp120-gp41 interface B-cell selection/antigen binding

ACS202 gp120-gp41 interface B-cell selection/antigen binding

N123-VRC34.01 gp120-gp41 interface B-cell selection/antigen binding

10E8 MPER B-cell culture/neutralization

TABLE  1 BnAb specificity and isolation 
method
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was required. Heavy chains, which were functional, were then paired 
with donor light chains encoding the characteristic five-amino-acid 
sequence motif of VRC01.58 However, such an approach is not trivial 
and is not applicable to donors with undefined specificities.

3  | SPECIFICITY OF HIV BNABS

The ability to identify bnAbs over the last decade has dramatically in-
creased our knowledge of the specificities underlying broad and po-
tent neutralization of HIV.3 In turn, this has allowed more thorough 
pre-screening of potential bnAb donor serum samples. If the specific-
ity of a neutralizing response can be determined, it can help to de-
cide whether a binding or neutralization-based selection method is 
the best option to isolate bnAbs (Table 1). There is also now a greater 
understanding of the frequency and distribution of bnAb epitopes, 
both within individual patients and across cohorts.59 However, there 
may remain additional epitopes to identify as shown by the serological 
analysis of protocol C, the most diverse longitudinal primary infection 
cohort studied to date. This study revealed that the bnAb specificity 
of 12% of the 439 donors is unknown.7 Where the specificity could 
be determined in the top-ranking neutralizing donors, the majority of 
bnAb specificities mapped to glycan-dependent epitopes, including 
the apex, high-mannose patch, and PGT151-like gp120-gp41 inter-
face epitopes.7 It is especially noteworthy that all of these epitopes 
were originally defined by bnAbs discovered by direct neutralization 
screening rather than antigen selection (Table 1). Only one top-ranking 
neutralizing donor exhibited a CD4-binding site dependent bnAb re-
sponse, while many donors made type-specific CD4-binding site re-
sponses,7 in agreement with other studies.60 However, it should be 
noted that CD4-binding site bnAbs typically display very high levels of 
somatic hypermutation, which may necessitate a longer post-infection 
time period to develop than typically studied. Indeed, CD4-binding site 
bnAb activity emerged in only one subject at 66 months in the proto-
col C study.7 Of note, other studies have suggested a greater propor-
tion of bnAb serum responses to target the CD4-binding site.21,61,62

Thus, while the serum neutralizing specificity of new donors can 
often be identified, there may be cases where serum profiles appear 

similar to previously studied donors, but the nuances of a particular 
individual’s bnAb response differ. In turn, this may mean that a typical 
isolation strategy could risk missing novel bnAbs that target known 
epitopes in different ways. This idea is suggested by the complexity 
with which existing bnAb families target their shared epitopes in sub-
tly different ways. These differences are outlined below for the major 
classes identified to date, namely, those targeting the trimer apex, high-
mannose patch, CD4-binding site, gp120-gp41 interface, and MPER.

The first class of bnAbs targeting a shared site, but with subtle dif-
ferences in the exact epitope bound, is the trimer apex-binding Abs 
(Figure 2). The pioneering examples of this class are PG9 and PG16,23 
which we showed bind to a novel trimer-preferring, glycan-dependent 
bnAb epitope.63–65 The glycan site at residue 160 is typically critical 
for these bnAbs and a decrease in neutralization is seen when addi-
tional glycan sites are removed from the V1, V2, and V3 loops in a viral 
isolate-dependent manner.66 With the isolation of additional N160-
dependent apex bnAbs, by our group and others,22,42,51,67 this class 
can be divided into four groups typified by the prototypes PG9, CH01, 
PGT145, and CAP256.VRC26.09 (CAP256.09).68 All four prototypes 
bind N160 and basic residues in the lysine-rich strand C of the V2 loop, 
but the exact residues required for each epitope vary, with a lysine 
at position 169 the most commonly shared feature.68 Furthermore, 
while N160 is absolutely required for only three out of four prototypes, 
CAP256.09 is only partially dependent on a glycan at this position.51,68 
There are also differences in the particular glycans preferred by each 
prototype, with variations even between PG9 and PG16, which prefer 
glycans with α-2-3 and α-2-6 linked sialic acid terminal sugars, respec-
tively.68,69 In addition, we found that virus produced in the presence 
of kifunensine, resulting in untrimmed high-mannose glycans, is not 
neutralized by PG9/16.66 These bnAbs are also sensitive to natural gly-
can heterogeneity, which means a fraction of virions may be resistant 
to neutralization because they contain glycoforms that are not recog-
nized by the Abs, resulting in incomplete neutralization curves.66 We 
have also observed this phenomenon with additional apex bnAbs such 
as the potent PGDM140028 and also many other bnAb specificities. 
This effect varies with different bnAb and viral isolate combinations.70 
However, the extent to which incomplete neutralization is observed 
with serum samples remains to be determined.

F IGURE  2 Epitope regions targeted 
by HIV bnAbs. Model based on the fully 
glycosylated BG505 SOSIP.664 trimer 
constructed using PDB: 4ZMJ.103 The 
gp120 and gp41 subunits are colored 
light gray and dark grey respectively. The 
five bnAb epitope regions are labeled as 
follows: the apex site is colored purple, the 
high-mannose patch is colored magenta, 
the CD4bs is colored green, the gp120-
gp41 region is colored red, and MPER is 
colored yellow
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The second class of bnAbs to consider is made up of those bind-
ing the high-mannose patch on the gp120 subunit of the Env tri-
mer (Figure 2).22,71 As per the apex bnAbs, we identified this class 
by screening single B-cell cultures, which led to the isolation of the 
PGT121/4, PGT128, and PGT135 families from three individual do-
nors.22 Later epitope-focused binding-based screens yielded similar 
bnAbs.26,27,41 These bnAbs were shown to compete with 2G12, to 
lose binding activity upon EndoH deglycosylation22 and to bind to 
the N332 glycan and a gp120 protein epitope including the sequence 
GDIR.22,27,72 By comparing structural information generated for dif-
ferent families within this class, it was shown that the N332/GDIR 
epitope is accessed from a variety of angles by the different bnAbs, 
which use diverse binding modes, leading to its definition as a super-
site of vulnerability.71 Furthermore, in contrast to some other bnAb 
classes, these high-mannose patch bnAbs use a variety of V, D, and 
J germline genes and do not appear to share particular genetic traits 
required for binding this epitope.22,71 Thus, it would be difficult to 
use an NGS approach to identify bnAbs from new donors even if the 
serum neutralization was clearly N332 dependent. Interestingly, the 
initial observation that suggested N332 was a key part of this epitope 
was that only N332 deletion could completely abrogate neutralization, 
but it did not always do so for all virus strains and N301 was also 
implicated.22 Further investigation revealed that the high-mannose 
patch bnAbs exhibit a degree of promiscuity for different glycan sites 
across the epitope, allowing them to maintain neutralization breadth 
in the face of viral changes to glycosylation sites.28 The level of per-
missiveness for different glycan sites varies among the members of 
this bnAb class, for example, moving the glycan site from 332 to 334 
in a six-virus panel has no effect on PGT128, prevents neutralization 
of two of four viruses by PGT121, and renders PGT135 unable to neu-
tralize any virus.28 Furthermore, within bnAb families, viral variability 
is tolerated to different degrees due to structural differences. PGT128 
and PGT130 belong to branches of the same bnAb family, but due to 
a six-residue insertion, PGT128 is better able to accommodate glycan 
location and heterogeneity in the V1 loop than PGT130.73

The third class of bnAbs target the CD4-binding site (Figure 2) and 
have been predominantly isolated by a binding-based selection using 
proteins designed to isolate bnAbs from donors where this specificity 
is apparent in the serum neutralization profile.39 This approach negates 
the need to screen thousands of individual B-cell culture supernatants 
and allows a more streamlined process for isolating bnAbs. The first 
CD4-binding site bnAb isolated, apart from b12,12 was VRC01, which 
partially mimics the binding of CD4 to its receptor site.74 The RSC3 
bait used to capture the VRC01 B-cell lineage was modified to prefer-
entially bind b12 and a negative bait that could not bind b12 was used 
for counter selection.39 This strategy was re-utilized to isolate PGV04 
from a separate donor. This bnAb, in contrast to VRC01, does not in-
duce conformational changes in gp120 upon binding.25 Many addi-
tional CD4-binding site bnAbs were isolated using RSC356 or other Env 
baits40 and one by EBV immortalization of B cells followed by an ELISA-
based binding screen.75 Structural studies have enabled comparison 
of the CD4-binding site bnAbs and the definition of two subclasses: 
those that bind predominantly using their CDRH3 and those that are 

genetically restricted and use either the VH1-2 or VH1-46 V gene.76 
Within the genetically restricted subclass, the potent VRC01-like an-
tibodies use only the VH1-2 V gene and also share an unusual short 
light chain motif, unlike VH1-46 V gene bnAbs.57,76,77 Recently, it has 
been shown that while VRC01-like heavy chains can mature relatively 
rapidly, generation of light chains that are able to accommodate glycans 
obstructing access to the epitope takes longer.78 In contrast, the CD4-
binding site bnAbs that bind via their CDRH3 are drawn from a wide 
variety of V genes, have no conserved binding motif, but approach the 
trimer from similar angles.76 In summary, the CD4 binding site is recog-
nized by bnAbs that show, in detail, divergent modes of binding but that 
are clustered around the two molecular solutions described above.76

The fourth class of bnAb is a highly divergent set, derived from 
multiple donors by a variety of methods, but all members of the class 
target the gp120-gp41 interface (Figure 2). Despite this, the epitopes 
are not completely overlapping and many do not compete with one 
another in the same way that apex and high-mannose patch bnAbs 
do, which is in agreement with negative-stain microscopy data show-
ing their distribution across the trimer interface.47 Many gp120-gp41 
interface bnAbs have been isolated in rapid succession over the last 
few years,24,37,47,48 and some previously identified bnAbs44 have been 
shown to bind to this region.45,79 The first bnAb shown to bind this 
region was PGT151 and was again isolated by our large-scale screen 
of single B-cell culture supernatants for neutralization activity.24 This 
bnAb is highly specific for cleaved pre-fusion Env and potently neu-
tralizes via interaction with complex tri- and tetra-antennary glycans 
at positions 611 and 637 within gp4124 and protein residues K490, 
T499, R500, R503 in gp120.80 Shortly after, bnAb 35022 was isolated, 
also by selecting for neutralization activity, and found to be trimer-
specific. It also binds the gp120-gp41 interface although at a site 
closer to the viral membrane than PGT151.37 35022 is predicted to be 
orientated parallel to the membrane and, unlike PGT151, is not cleav-
age specific.37 Coincidental with the discovery of these two new spec-
ificities, two previously identified bnAbs, 3BC315 and 3BC176, for 
which the epitope was not originally delineated44 were found to bind 
to an area partially overlapping with 35022.45 However, unlike 35022, 
the binding of these two bnAbs results in destabilization of the trimer. 
Similarly, a bnAb isolated using a gp120 bait strategy, 8ANC19540 was 
found to also bind the gp120-gp41 interface, and to bind to glycans at 
276, 234, and 637, with a footprint falling between those of PGT151 
and 35022.37,43 Strikingly, this bnAb can bind to Env both in a closed 
conformation and partially reverse the open-conformation induced 
by concomitant CD4 binding.79 Most recently, two additional trimer-
specific bnAbs, ACS202 and N123-VRC34.01, were isolated and found 
to bind to yet another distinct part of the gp120-gp41 interface and 
to contact the fusion peptide.47,48 The differences between the mem-
bers of this class of bnAbs, particularly with regard to different confor-
mational requirements for trimer binding, highlight how a bait strategy 
based on any one of these observations alone may have reduced the 
likelihood of isolating the other gp120-gp41 interface bnAbs.

The fifth class of bnAbs comprise those which target the MPER 
(Figure 2); namely 10E8, which was selected by single B-cell culture and 
screening for neutralization36; and 2F5 and 4E10, which were isolated 
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by a hybridoma approach.16,18,19,81 The latter two Abs were isolated 
prior to PG9/16 and although they have quite extensive breadth are not 
as potent as most of the Abs described herein as bnAbs. Interestingly, 
4E10, and to a much lesser degree 2F5, exhibit polyreactivity in vitro82–

84 but were shown to be protective and non-pathogenic during an in 
vivo challenge study.85 However, 2F5 and 4E10 transgenic mice have 
greatly impaired B-cell development as 95% of cells fail to complete 
the pre-B to immature B-cell transition.86 The minority of B cells which 
circumvent this checkpoint are anergic, but yet can still be activated by 
an MPER immunogen.86 The more recently isolated MPER bnAb 10E8 
is highly potent and does not display any autoreactivity nor does it bind 
lipids as has been reported for other MPER Abs.87 This may be because 
10E8 approaches MPER from an altered angle and uses a different 
binding mode to 4E10.36 Serum analysis suggested 10E8-like specific-
ities were not unusual, with 27% of 78 donors exhibiting this activity. 
However, to date, only one potent MPER bnAb has been identified, and 
additional work is needed to isolate more MPER bnAbs so that this area 
of vulnerability can be more fully understood by defining differences 
between MPER bnAbs as is underway for the other bnAb classes.

4  | CONCLUSIONS

Given the great progress over the past decade in isolating bnAbs and 
studying their modes of action, an obvious question is do we still 
need more bnAbs? The more recent discovery and characterization 
of gp120-gp41 interface bnAbs suggest it is still worthwhile to search 
for new bnAbs because they could reveal novel sites of vulnerability 
on Env. Furthermore, even if new bnAbs are only subtly different to 
those currently identified, defining these differences can substantially 
improve our mechanistic understanding of each bnAb class. This in 
turn will help us to understand how to induce such bnAbs by immuni-
zation and how to evaluate if any similar responses or precursors are 
stimulated by current immunogens.

The advances in Ab isolation methods over the last decade have 
made a huge contribution to the discovery of such a large number of 
HIV bnAbs in a relatively short-time period. Therefore, another im-
portant question is what is the best way to improve this technology in 
order to seek out new bnAbs and possibly novel epitopes? There are 
considerable advantages, in terms of cost and time, to reducing the 
number of B cells that are screened. Thus far, this has been achieved 
by pre-enriching for Env-specific B cells by single-cell FACS. The devel-
opment of native-like stabilized trimers has greatly improved our abil-
ity to use this method to select for B cells that bind the functional Env 
trimers as compared with non-functional forms of Env. However, even 
with stabilized near-native trimers as FACS baits, non-neutralizing 
binders and strain-specific nAbs are captured.88,89 Also, it is important 
to note that inherently a binding screen will select the best binders 
for the particular assay used. In the case of single-cell FACS, the assay 
involves multimeric Abs (as the B-cell receptors on the surface of B 
cells) binding to a streptavidin tetramer bound to biotinylated gp120 
or stabilized trimer. This is a somewhat different situation to free di-
meric soluble antibody binding to low-density functional Env spikes on 

virion as occurs during viral neutralization. Therefore, improvements 
in bnAb isolation methods would be useful in order to combine the 
streamlined approach of pre-enriching for Env-specific B cells with a 
more informative screen for neutralization function, without the need 
to culture tens of thousands of single B cells.

The further development of Ab isolation methods is not only im-
portant to help identify novel bnAbs but also to evaluate Abs induced 
by candidate immunogens. Until recently, very few immunization 
studies had induced even Tier-2 autologous neutralization, let alone a 
broad response.90–93 Post-immune neutralization titers are lower than 
those seen in elite neutralizer bnAb donors, thus neutralizing Abs may 
be less frequent among the post-immunization B-cell population. Thus 
far, bnAb-like Abs have not been seen post-Env immunization88,90,94 
except in transgenic mouse models95–99 and camelids.100,101 However, 
isolation of neutralizing Abs from immunized rabbits has already pro-
vided an explanation for the limited serum neutralization breadth ob-
served to date with one near-native Env preparation88,93: namely, that 
isolate-specific glycan holes can be highly immunogenic and the target 
of the majority of the autologous Tier 2 serum responses observed.88 
Therefore, it seems probable that, without a major improvement in 
the potency and breadth of the serum response, establishing whether 
even a small proportion of the response is bnAb-like will require higher 
resolution Ab isolation methods with even greater throughput.

Following the identification of PG9 and PG16 in 2009 and the 
many other bnAbs that came after, it has become possible to design 
immunogens based on our knowledge of these extraordinary antibod-
ies. The hope is that by tailoring immunogens to elicit bnAbs rather 
than strain-specific and non-neutralizing Abs, it will be possible to 
elicit broad and potent immune responses.3,102 The growing library of 
bnAbs provides valuable information for vaccine design efforts, com-
plemented by emerging data on the kinds of neutralizing Abs induced 
by germline targeting molecules and near-native stabilized trimers in 
genetically outbred animals and transgenic mice. In conclusion, de-
spite the progress made to date in identifying bnAbs, new approaches 
are now needed for two interlinked reasons. First, to increase through-
put in order to determine if extremely rare HIV bnAbs precursors are 
induced by immunization. Second, to identify more bnAbs against 
known specificities and discover novel epitopes that otherwise might 
be overlooked when evaluating post-immunization responses.
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