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There has been a collaborative global effort to construct novel therapeutic and prophylactic approaches to
SARS-CoV-2 management. Although vaccine development is crucial, acute management of newly infected
patients, especially those with severe acute respiratory distress syndrome, is a priority. Herein we describe
the rationale and potential of repurposing a dual plasmid, Vigil (pbi-shRNAfurin-GM-CSF), now in Phase III
cancer trials, for the treatment of and, in certain circumstances, enhancement of the immune response to
SARS-CoV-2.
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Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is thought to have naturally evolved from two
existing coronavirus strains (L and S) near Wuhan, China. Origin is presumed due to zoonotic transfer: the SARS-
CoV-2 genome is 96.2% homologous to the bat RaTG13 coronavirus [1]. From 31 December 2019 to 4 April 2020,
1,133,373 confirmed coronavirus cases have been reported worldwide resulting in 60,375 deaths. Encouragingly,
235,999 patients have shown validated recovery. SARS-CoV-2 is emerging as a potentially greater morbidity and
economic threat than the pandemic Spanish flu which infected 500 million people worldwide and resulted in
50 million deaths. The viral reproductive number (R0) of SARS CoV-2 is above two compared with 1.8 for the
Spanish flu [2]. Although more highly infectious, SARS-CoV-2 has resulted in far less mortality and is related to
primarily elderly patients with medical comorbidities. The current reported mortality rate seems to be holding
at approximately 2% worldwide (although age and country related), however, considering shifting denominators,
the case fatality rate may be lower; for example, 1.4% of those with laboratory-confirmed disease [3]. Since the
pandemic of 1918, influenza has become endemic but with use of vaccines the infection rate has been reduced
and the case fatality rate has dropped significantly to 0.1%. The SARS-CoV-2 pandemic, its rate of infectivity,
related death, medical system overload and the consequent financial damage (due to disease, fear and quarantine)
highlights the urgent need to develop new therapeutics as well as rapid response techniques to combat this and
other novel pandemic virus outbreaks in the future.

In particular, patients who recover from SARS-CoV-2 show evidence of an effective immune response to clear
the infection and stop viral shedding within approximately 3 weeks [1]. This is particularly important since the
virus generally does not persist and viral clearance is achievable, although feasibility of reinfection is unknown given
pulmonary site of infectivity and propagation. Efforts can be made to minimize the risk of acute respiratory distress
syndrome (ARDS), by enhancing the existing immune response, and slowing the viral propagation process. We
will discuss repurposing Vigil plasmid, which expresses GM-CSF and decreases furin expression. This approach
inhibits multiples steps of viral propagation including viral entry, protein assembly and egress while GM-CSF
confers cellular immune antiviral and lung protection activity. Pre-clinical and clinical data will be reviewed to
highlight the rationale and evidence for combination approach.
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Brief history of recent human coronavirus infections/epidemics/pandemic
Coronavirus was first identified in 1960 in a patient with an upper respiratory tract infection. The virus remained

under the radar until 2002 when a patient with severe acute respiratory coronavirus (SARS-CoV) was identified
in Guangdong, China. This virus rapidly spread to other hospital patients and staff, then spread globally to 37
countries. Eight hundred of the 8448 individuals diagnosed died [4]. After an initial delay, the measures that were
taken limited the degree of dissemination and mortality in comparison to the 1918 pandemic.

The next coronavirus outbreak occurred in 2012 beginning in Saudi Arabia in a patient diagnosed with acute
pneumonia, the cause of which was identified as Middle East respiratory syndrome coronavirus (MERS-CoV) [5].
2500 cases of MERS-CoV infection were diagnosed in 24 countries of which 800 died before it’s resolution in
2014 [6]. Thereafter another outbreak in humans occurred in 2015 in South Korea resulting in 186 cases and 36
deaths.

SARS-CoV-2, the virus responsible for the current coronavirus outbreak is genetically distinct from both the
SARS-CoV and MERS-CoV viruses. The first patient was diagnosed in Wuhan, China and subsequently, the virus
spread rapidly locally and then escaped regional containment. Over 80,000 cases and 3000 deaths were observed
early on. Worldwide travel restrictions and social distancing measures have since been implemented in an attempt
to slow the spread and thereby ease the global burden on healthcare workers and facilities. However, worldwide
spread continues to occur although regional containment in China and South Korea has been reported but thus
far no well-documented effective therapeutic approach has been found. Although discovery of rapid SARS-CoV-2
infection testing and antibody assessment diagnostics have facilitated identification of hot spot regions. Continued
manufacturing of these tests will allow for rapid identification of individuals with SARS-CoV-2 or who have
recovered and those who have antibody protection which will facilitate easing social-distancing measures.

SARS-CoV-2 morbidity/mortality viral shedding & immune response
Preliminary investigation of the first 191 patients in Jinyintan Hospital and Wuhan Pulmonary Hospital revealed

that 54/191 (28%) died and 137/191 (72%) were able to be discharged [1]. Analysis of these first 191 patients
determined that several factors significantly correlated with risk of death, including age >63 years old, high
sequential organ failure assessment score (>1), high D dimer (>1 ng/ml), respiratory rate >24 breaths/min,
lymphocyte count >.0.6 × 109/l, elevated LDH (median 521 u/l) and elevated IL6 (median 11 μg/ml) as well as
comorbidities, hypertension, diabetes, coronary artery disease and COPD [1]. Ninety three percent of the deaths
were associated with ARDS and biopsy from one patient showing regions of pulmonary edema with hyaline
membrane formation (early-phase ARDS) in one lung and desquamation of pneumocytes and hyaline membrane
formation in the other (late-phase ARDS) [7]. There is suggestive evidence from the SARS-CoV epidemic that
a dysregulated innate immune response and increase of pro-inflammatory cytokines (e.g., IL-1, IL-6 and IFNγ)
may contribute to pulmonary pathology [8]. Notably, ARDS is also observed in chimeric antigen receptor CD-19
(CAR-T-CD19) therapy, which targets CD19 antigen and results in rapid induction of IL-6. Given that IL-6
is elevated to greater degree in patients who died from SARS-CoV-2 infection compared with healthy controls,
tocilizumab, a monoclonal antibody targeted to IL-6, and used to manage ARDS associated with CAR-T therapy,
may be a therapeutic component for those patients with elevated IL-6 [1,9].

Nasopharyngeal swabs from 79 patients at the First Affiliated Hospital, Nanchang University were obtained to
serially assess viral dynamics via PCR-RT [10]. Using the �CT method, estimates of viral load were significantly
higher by a factor of 60× in severe compared with mild cases and 90% of the latter tested negative by day 10 post
onset whereas all the severe cases tested positive beyond that demonstrating both a higher viral load and prolonged
shedding time. Using IgM and IgG immunofluorescence (IFA) in 16 patients in Munich, no detectable neutralizing
antibody (NA) was detected between days 3 and 6 [11]. NA was detected after 2 weeks with limited suggestion of
correlation with clinical course. In a recent study of 173 documented (rRT-PCR) cases (161 with serial assessment)
of COVID-19 admitted to Shenzhen Third People’s Hospital (11 January–9 February 2020), 32 (18.5%) with
severe and 141 (81.5%) with mild disease, seroconversion rates in those with serial assessment (ELISA) for IgM
and IgG using double-antigen sandwich ELISA for total Ab was 100% (median day 11) [12].

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) dependence on furin
The β-coronavirus genus is the etiological agent responsible for viral acute respiratory syndromes; the pandemic

sarbecoviruses, SARS-CoV and SARS-CoV-2, and merbecovirus, MERS-CoV [13]. SARS-CoV-2 is responsible for
the current pandemic of COVID-19 and is distinct from other coronavirus strains. SARS-CoV-2 relies on S1/S2
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cleavage at viral entry as compared with SARS-CoV [14,15]. Following the attachment of the receptor-binding
domain (S1) to the ACE2-binding cellular site, the affinity of which is 10- to 20-fold higher than SARS-CoV [14],
the S1 subunit is shed resulting in a stable and accessible fusion domain (S2) subunit [16]. SARS-CoV-2 utilizes
the plasma membrane fusion pathway rather than the more immunogenic endosomal membrane fusion pathway,
which is used by SARS-CoV. Amino acid sequence differences in the SARS-CoV-2 HR2 region enhances binding
affinity between heptad repeat-1 (HR1) and HR2 thereby accelerating viral membrane fusion [17]. The presence
of a unique furin cleavage site (RRAR) at the S1/S2 boundary and the furin-like S2′ site located between fusion
peptide (FP) and internal fusion peptide (IFP) sites on the S2 subunit may provide a gain-of-function allowing
cleavage during viral egress thereby directly or indirectly contributing to increased replication rate, transmission and
disease severity [15]. Note that proteolytic cleavage of the S glycoprotein can determine whether the virus can cross
species, e.g. from bat. While structurally similar to SARS-CoV-2, the RaTG13/2013 virus lacks a unique peptide
PRRA insertion region at the S1/S2 boundary [18]. Further, the S glycoprotein from a MERS-like coronavirus
isolated from Ugandan bats can bind to human cells but cannot mediate virus entry unless incubated with trypsin
prior to transduction allowing S glycoprotein cleavage and virus entry [19]. These observations suggest that cleavage
of the S glycoprotein may be a prerequisite to coronavirus cross-species transmission. A recent publication from
Nankai University (Tianjin, China) on SARS-CoV-2 reported that genome sequence analysis revealed a section
of genes that was not present in SARS-CoV that had a cleavage site similar to HIV and Ebola which carry viral
proteins necessary for fusogenic activity of viral species to the human cell membrane. To be activated, the viral
fusogenic surface glycoprotein has to be cleaved by furin [20]. As mentioned, viruses contain surface glycoproteins
which when cleaved by furin or other proprotein convertases (PC) are activated and viral propagation is achieved
(i.e., avian influenza, HIV, Ebola, Marburg and measles viruses) [21–23]. Another PC necessary for viral entry is the
transmembrane serine protease TMPRSS2, which is known to contribute to efficient SARS-CoV cell entry and
Hoffman et al., has produced in vitro data showing that SARS-CoV-2 also uses TMPRSS2 priming [24]. However,
further assessment of furin cleavage in vivo is appropriate given fusion-mediated cell entry of SARS-CoV-1 rather
than SARS-CoV via endocytosis, the presence of a unique furin cleavage site (RRAR) at the S1/S2 boundary and
the furin-like S2′ site in SARS-CoV-2 and the combination of cell membrane entry fusion and differences in the
SARS-CoV-1 HR1 domain, which may contribute to the typical syncytium growth pattern in infected cells rarely
reported in SARS-CoV [17]. Inhibition of furin may be a therapeutic approach that has efficacy in SARS-CoV-2 and
other viruses that contain a furin cleavage domain. Another immunotherapeutic intervention would be to increase
the pulmonary expression of GM-CSF, which, in vivo, redirects macrophages from an M1 state of activation to
an M2 activation state and enhances expression of anti-inflammatory mediators and perhaps allow more time for
patients to mount an effective immune response against SARS-CoV-2 [25].

In addition to interfering in viral dynamics, a therapy-targeting host proteases rather than a viral epitope could
also reduce the development of vaccine resistance due to mutation of nonessential viral-targeted antigens. For both
reasons, furin is an attractive therapeutic target. It is highly conserved and genomically unrelated to viral replicative
functions and antigenic drift [26,27]. We do not know how effective vaccination will be with SARS-CoV-2 given
the low titers of NA in patients with COVID-19 and antigenic drift characteristic of human host RNA viruses.
Vaccination for influenza virus is only effective in 60% of individuals due to rapid antigenic evolution.

Furin
Furin, was first described in 1986 and is the product of the fur gene [28]. It is an evolutionarily conserved family

member of the proprotein convertases which contain a subtilisin-like protease domain and was the first proprotein
convertase (PC) to be identified in humans [29–31]. Furin is a type I transmembrane protein that is ubiquitously
expressed in vertebrates and invertebrates [32]. It is localized to the Golgi and trans-Golgi network where it cleaves
multiple proteins and is also located on the outer membrane where pathogens utilize it to cleave glycoproteins,
a step essential for entry into host cells [15,21]. It can be secreted as a soluble, truncated active enzyme [21,33,34].
The correct folding of furins catalytic domain relies on the inhibitory function of the N-terminal 83-amino acid
propeptide [35]. To gain its enzymatic activity, the inhibitory propeptide is removed during transport from the
endoplasmic reticulum to the trans-Golgi network [36]. In order to be released into the extracellular space, the
membrane localization is cleaved at the C-terminus [37]. Due to furin’s ubiquitous expression and localization it
is able to process a large amount and variety of proteins including growth factors, cytokines, hormones, adhesion
proteins, collagens, membrane proteins, receptors as well as other classes [38]. Furin cleavage can also inactivate
other proteins [39,40]. Its cleavage consensus sequence is Arg-Xaa-(Lys/Arg)-Arg↓-Xaa [41,42].
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Many viral pathogens including, coronavirus, flavivirus, pneumovirus, avian influenza, influenza A and HIV,
utilize furin-mediated membrane glycoprotein cleavage facilitate viral entry and, for certain viruses, egress from
target host cells [29]. HIV-1 utilizes furin to cleave the viral membrane protein (Env) gp160 into gp120 and gp-41
prior to mature virion assembly. Conversely, flavivirus rely on furin cleavage after formation of packaged virions.
SARS-CoV-2, as noted above, is cleaved at two sites, S1/S2 furin cleavage site (PRRAR↓SV) and a furin-like S2′

cleavage site (KR↓SF) [15].

Viral response to furin protein inhibitors
RNA viruses such a SARS-CoV-2 have several critical functions dependent upon protease activity. Consequently,

modulation of protease activity may provide therapeutic function in SARS-CoV-2 in a variety of other RNA viruses.
Furin is a particularly promising opportunity for therapeutic intervention. As previously described it cleaves and
activates numerous mammalian, viral and bacterial substrates [38]. Becker et al. optimized preclinical therapeutic
performance of several peptidomimetic furin inhibitors and demonstrated ‘in vitro’ significant inhibition of highly
pathogenic H7N1 influenza virus propagation [43].

Although mechanisms have evolved enabling RNA viruses to invade host cells, host defense mechanisms have
also evolved. Innate and adaptive immune responses have been shown to target viral antigens. Additionally, targets
critical to viral entry, protein assembly and egress are also of high therapeutic value. These are ‘virus dependency
factors’. Various host proteins such as IFI16 and SAMHD1 have been shown to inhibit both RNA and DNA viral
gene expression and replication, respectively [44,45]. Furin is critical for viral membrane fusion, protein assembly
and propagation, particularly as related to SARS-CoV-2.

Multiple furin inhibitors have been developed and tested in vitro and in animal models. Initial targets were
peptide and protein inhibitors which target active sites and competitively inhibit binding sites. As example, two
IFNχ-inducible GTPases, guanylate-binding proteins 2 and 5 (GBP2 and GBP5), with inhibitory furin activity
have demonstrated cleavage inhibition of the HIV Env precursor gp160 and reduced HIV virion infectivity [28].
Control of furin expression with protease activated receptor 1 (PAR1), impacts downstream furin function and
processing of human metapneumovirus F protein in HIV [46]. Associated neurocognitive disorders also provides
evidence of resistance mechanisms that can occur while inhibiting spread of HIV-1 [47]. Another example, α-1
antitrypsin Portland (α1-PDX) inhibits both PC5K5 and furin. α1-PDX has been shown to inhibit processing
of HIV-1 Env and measles virus F [48,49]. Moreover, peptides involving the cleavage site of influenza A virus
hemagglutinin compete for furin activity [50,51]. Activation of MMP9 is also inhibited by autoinhibitory propeptide
of furin [52,53]. These data support therapeutic development involving furin inhibition against SARS-CoV-2.

Interestingly, corneal damage in mice related to Pseudomonas aeruginosa has been shown to be reduced by non-
D-arginine (D9R) and other furin inhibitors [54]. Nonpeptidic furin inhibitors have also demonstrated antifurin
activity in the nanomolar dose range [55]. 2,5-dideoxystreptamine shows unusual furin inhibiting activity whereby
a complex is formed with furin involving two molecules with separate functions, which interfere with the catalytic
triad conformation and binding to an adjacent peptide stretch to inhibit furin activity [56].

Toxic effects related to furin inhibitors have not been observed outside of embryonic models. A study of furin-
deficient mice demonstrated a critical role of furin during embryogenesis in which knock-out of the fur gene led to
death by day 11 due to the failure of ventral closure and embryonic turning [57]. Therefore, furin inhibition should
be limited to the non-pregnant population. Liver-specific interferon-inducible furin knock-out mice have not
demonstrated adverse effects outside of embryogenesis implying that other proprotein convertases may compensate
for furin deficiency given overlapping activity [58,59]. Targeting furin, a host enzyme, also avoids the emergence
of resistance due to viral antigenic drift as described earlier as furin genome is highly conserved and maintains
a stable genomic structure, while SARS-CoV-2 target sites undergo mutational changes throughout the viral life
span and pandemic period [26]. Furin inhibitors also function as mentioned previously via knockdown at the RNA
level [i.e., Regnase-1 (ZC3H12A), Roquin (RC3H1)] [60]. A concern, however, with modulation of Regnase-1 and
Roquin is that both agents will most likely result in off-target effects as these products both degrade off target
mRNA. The results outlined and safety profile support potential role of furin inhibitors within a pandemic and
possibly even within the anti-terrorist government protection ‘tool box’.

GM-CSF antiviral activity
Similar to SARS-CoV-2, alveolar epithelial cells are the primary target of influenza virus (IV) and are the first

site of entry and support for viral propagation and replication. Proinflammatory immune response is rapidly

10.2217/fvl-2020-0068 Future Virol. (Epub ahead of print) future science group



SARS-CoV-2 dual therapeutic Review

initiated toward viral cytopathogenic effect which leads to alveolar epithelial cell (AEC) apoptosis [61]. However,
when infection persists and viral propagation continues leading to intensified inflammatory response, capillary
and alveolar leakage occurs, followed by severe hypoxemia and eventually ARDS which requires hospitalized
management, oxygen support and often ventilation assistance [61,62]. Clearance of the viral pathogens from the
lung by immune effector cells and the initiation of epithelial repair processes including expansion of local epithelial
progenitor cells to begin resealing of the epithelial layer are critical for medical recovery and prevention of
hospitalization, oxygen and ventilation support in IV-induced lung injury. The majority of mortality in relation
to SARS-CoV-2 infection has been related to ARDS leading to hospitalization and ventilation support which
is testing our medical capacity [63,64]. However, the inflammatory immune response against the virus needs to
be balanced between the elimination of virus and toxic effect of immune-mediated pulmonary injury in order
to limit damage to the respiratory tract and alveolar cells which prevent ARDS [65]. Mononuclear effector cells
(macrophages, dendritic cells, CD8+, neutrophils and lymphocytes) carry the bulk of the load in IV clearance
and ‘balanced’ immune response against IV [64]. Similar activity demonstrated with IV is important for clearance
of SARS-CoV-2. GM-CSF has been shown to promote proliferation, differentiation and immune activation of
monocytes, granulocytes, macrophages [66,67]. GM-CSF in the lungs is mainly expressed by AEC type II cells [68]

and is a first cytokine responder in protection of the lung environment, AEC survival and function, and is a positive
prognostic factor in clearance of IV infection. Expressed GM-CSF in pulmonary secretions can potentially be
used as an indication in bronchial lavage samples of early response and resistance thereby affecting medial need
involving O2 support. Other cell types produce GM-CSF, but AECs have been shown to upregulate GM-CSF in
the distal lung parenchyma upon IV infection, and then produce high levels of GM-CSF in the alveolar surrounding
secretions [69]. AEC GM-CSF secretion with IV infection resolution appears to be further mediated via HGF/c-Met
and TGF-α/EGFR signaling [70].

Relationship of GM-CSF to immune response activation against cancer and viral infection is well described [71–

75]. GM-CSF also regulates the differentiation, proliferation and activation of alveolar macrophages [76,77]. In
vitro studies indicate that GM-CSF causes rapid proliferation of alveolar type II epithelial cells thereby serving
in repair and barrier protection of the respiratory epithelium at early stages of acute inflammation [68]. It is
also known that GM-CSF expression from alveolar type II epithelial cells facilitates surfactant homeostasis further
enhancing protection of viral induced pathology [76,78,79]. GM-CSF also enhances the antiviral responses of alveolar
macrophages. Indeed, elevated levels of GM-CSF may elicit a biphasic M1↔M2 response pattern [80]. Although
a number of studies show that GM-CSF and type I interferon act together to modulate macrophage polarization
toward the M1 state of activation, recent in vivo studies conclude the opposite [80–82]. GM-CSF enhances viral
clearance through expression of scavenger receptors, SR-A and MARCO [83–86]. These two receptors aid in viral
clearance through activation of receptors TLR-3, TLR-9, NOD-2 and NALP-3 [87–89]. GM-CSF enhances mucosal
immune responses and the effectiveness of DNA vaccines [90,91]. Recombinant human GM-CSF has been delivered
to the lung and conferred resistance to IV infection [92,93]. Transgenic mice that constitutively expressed human
GM-CSF exposed to IV, were able to mount and effective antiviral response that resulted in increased numbers of
human alveolar macrophages [94]. Halstead et al., also showed how GM-CSF overexpression after IV virus infection
in a GM-CSF transgene mouse model prevents mortality [82]. Protective effects of GM-CSF against IV-A pneumonia
have been seen in mice with constitutive and inducible GM-CSF expression models in alveolar type II epithelial cell
transgenic mice with GM-/- and GM +/+ pulmonary specific promoters (SFTPC, SCGB1A1), respectively [80].
This model was able to show GM-CSF enhancement of alveolar cell activity as indicated by increased expression of
SP-R210 and CD11c expressive mononuclear cells. In mice lacking SR-A and MARCO, two receptors regulated by
GM-CSF, MARCO was shown to increase expression of SP-R210 on alveolar macrophages and decrease resistance
to IV. However, although continuous SP-C-GM+/+ transgenic mice resisted early mortality from IV, concern
was raised to continuous high GM-CSF exposure over prolonged time. Late assessment of lung tissue sections
revealed the histological features of degenerative desquamative interstitial pneumonia at day 29. Degeneration of
alveolar structure and large spaces containing desquamated cells characterized the lungs of high GM-CSF exposed
mice. The results indicate that excessively high levels of GM-CSF impair appropriate tissue healing resulting in
development of interstitial lung disease secondary to IV pneumonia and provide guidance for early large animal
assessment and Phase I monitoring of patient safety. However, results support that the conditional GM-CSF
expressive mice do well and have long-term survival advantage to IV infection and have significant advantage over
untreated controls. Expression of GM-CSF either through transgenic or pulmonary delivery conferred survival
advantage to influenza virus compared with WT mice that did not survive infection. When alveolar phagocytes
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were depleted, the protective effect also diminished suggesting that these cells are necessary to induce the innate
immune response [93].

As described, infection with SARS-CoV-2 can progress to rapid induction of viral pneumonia and ARDS
resulting in fatal outcome [95]. AECs play a critical role in orchestrating the pulmonary antiviral host response [96].
However, with early IV and SARS-CoV-2 infection AEC’s release GM-CSF. GM-CSF heightens immune function
of alveolar cells which leads to improved epithelial repair processes. During IV infection, AEC-derived GM-
CSF also enhances a lung-protective mechanism. Similar results are seen with local rhGM-CSF application. This
early use and/or enhancement of immune function and alveolar protection with elevated GM-CSF expression
appears to overwhelmingly benefit clinical response. However, GM-CSF expression late in the inflammatory lung
response is less well characterized. Although correspondence by Herold S et al. in using recombinant GM-CSF
(leukine, Bayer HealthCare Pharmaceuticals, WA, USA) and an Aeroneb Solo nebulizer to administer leukine
(125 μg/dose) demonstrated significant clinical benefit in four of six patients with ARDS related to infectious
pneumonia (including two with H1N1 virus) [97]. Immune function enhancement was also shown in the leukine
treated patients compared with untreated ARDS patients in analysis of pulmonary immune response, which is
similar to preclinical evidence (in vitro and animal models) [69,93,98,99]. GM-CSF treated patients demonstrated
alveolar cell protection, enhanced alveolar cell activity toward viral and other infectious clearance and shift to M1
response as assessed by increased alveolar CD80+ cells and CD206 drop. These results support enhancement of
GM-CSF expression even late in pulmonary inflammatory response to viral infection may be of benefit which
suggest therapy benefit in late stage ARDS patients. Safe administration of GM-CSF via inhalation therapy in
19 patients with autoimmune pulmonary alveolar proteinosis was also demonstrated to show benefit by Ohashi
et al. [100]. Elevated IL-17 in bronchial alveolar lavage fluid was shown as a GM-CSF induced cytokine and may
serve as a biomarker associated with benefit.

Sever-Chroneos et al. [80], found worsening IV infection and response in GM-CSF deficient mice was due
to impaired IV clearance by macrophages. This work is supported by Berclaz et al. who demonstrated that the
Fcγ receptor (FcγR)-mediated opsonophagocytosis of invaded pathogens by alveolar macrophages is related to
GM-CSF [101]. T-cell-produced interferon γ (IFN γ) also effects alveolar macrophage FcγR expression which in
turn stimulate production of IFN γ and other cytokines such as IL-18 and IL-12 supporting involvement of
both innate and adaptive immunity turn on. Elevated alveolar GM-CSF level in transgenic mice also improves
resistance of alveolar cells in association with IV infection [93]. GM-CSF has also been shown to be an important
stimulator of CD8+ T lymphocytes and further enhances their role to activate DC priming in lymphoid tissue,
thereby providing a positive feedback in further stimulation of CD8+ T cell expansion [102]. Greter et al. [103], also
showed GM-CSF to be critically important for induction of CD8+ T-cell immunity. Chen et al. [104] also found
GM-CSF to promote B-cell maturation and production of IV specific antibodies. During IV pneumonia, extensive
additional in vivo data support the role of GM-CSF as a lung barrier-protectant and positive immune response
factor [69,80,92,93]. AEC-expressed GM-CSF directly benefits the injured epithelium and is important in enhancing
epithelial proliferation in the setting of hypoxic lung injury via repair of barrier function, reduction of capillary
leak and return of tissue to homeostasis [68,105].

The data discussed above regarding targeting furin and increasing GM-CSF expression warrants further investiga-
tion to target SARS-CoV-2 infection. Vigil, which combines bifunctional shRNA targeting furin and incorporating
a GM-CSF DNA sequence in a plasmid delivery vehicle (pbi-shRNAfurin-GM-CSF) has been described as the
most advanced anti-furin technology in clinical testing [28]. Vigil is an autologous tumor cell vaccine, with dual
function that knocks down furin expression as seen by decreased expression of downstream proteins TGFβ1/2 and
expresses GM-CSF [106]. It has demonstrated clinical success in several cancer populations but especially Ewing’s
sarcoma and ovarian cancer [107–110]. It has a demonstrated safety profile with no evidence of grade 3 product related
toxicity effect following 1406 doses in 233 cancer patients. The potential efficacy and use of Vigil for COVID-19
is an example of the rational repurposing of drugs from indicated to nonprimary target disease alternatives. Such
an approach could accelerate the clinical development process particularly urgent given the current COVID-19
pandemic.

Anti-furin therapeutic: GM-CSF bi-shRNAfurin plasmid (VP)
VP constructed by Gradalis, Inc. (TX, USA), consists of two stem-loop structures with a miR-30a backbone [111].
The bi-shRNAfurin DNA as shown in Figure 1A uses a single targeted site to induce both mRNA cleavage
and sequestration in P-bodies (translational silencing) and/or GW-bodies (repositories) [112]. By the use of this
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Figure 1. Vigil plasmid structure. (A) Furin bifunctional shRNA structure. (B) Schematic diagram of the Vigil plasmid. Vigil plasmid is 5140
bp, with a kanamycin cassette and CMV promoter. Vigil plasmid also contains the GM-CSF gene for expression and bifunctional furin
sh-RNA.
(A) Reproduced with permission from [111].
(B) Adapted with permission from [111].

proprietary process, the encoding bi-shRNA can accommodate mature shRNA loaded onto more than one type
of RNA induced silencing complex (RISC) [113]. Also, with the bi-shRNAfurin molecular design focusing on a
single site potential toxic effects are reduced. Targeting of multiple sites increases chance for a ‘seed sequence’ being
induced and leading to off-target effect that could result in increased clinical toxicity. Synthetic complementing
and interconnecting oligonucleotides via DNA ligation were used to assemble the two stem-loop double stranded
DNA sequences [114]. The 241 base pair DNA constructed with Bam HI sites at both ends was inserted into the
Bam HI site of a prior clinically validated plasmid called TAG [115] in which we removed a TGFβ2 antisense DNA
sequence and placed the bi-shRNAfurin-GMCSF DNA sequence. Orientation of the inserted DNA was validated
by the appropriate PCR primer pairs designed to screen for the shRNA insert and orientation. Safety profile
defined with the prior TAG clinical therapeutic was used to support clinical advancement of VP in experimental
cancer management testing under FDA guidance.Vigil is designed with the mammalian promoter cytomegalovirus
[CMV] that drives the cassette. In between the GM-CSF gene (with a stop codon) and furin bi-shRNA there is a
2A ribosomal skip peptide followed by a rabbit poly-A tail. The picornaviral 2A sequence allows the production
of two proteins from one open reading frame, by causing ribosomes to skip formation of a peptide bond at the
junction of the 2A and downstream sequences [116]. Since we previously demonstrated the 2A linker to be effective
for generating similar expression levels of GM-CSF and anti-TGFβ transcripts with the TAG vaccine and we
observed robust activity in product release testing of therapeutic effector components expressed with this plasmid
design along with clinical benefit and safety, we maintained the same design for VP. Transient expression of bi-
shRNAfurin-GM-CSF plasmid and diluted expressive cell numbers in patients would not be expected to approach
continuous toxic effect of transgenic models.

Gradalis has been clinically testing this plasmid since 2009 [111]. Aldevron (ND, USA) and Waisman (WI,
USA) have participated in lot manufacturing. This plasmid, which consists of a bi-shRNAfurin DNA sequence
and a GM-CSF DNA sequence (Figure 1b), has been validated for FDA registration trial based on significant
cancer patient benefit for use of transfection (via electroporation) into an autologous tumor for vaccine (Vigil)
construction in Ewing’s sarcoma [107,117–121]. Additional benefit has also been suggested in a variety of other cancer
types in Phase I and II testing, most notably ovarian cancer [71,109,122–124]. The current active lot of Vigil plasmid
was manufactured in 2015 by Waisman. The plasmid concentration per vial is 2.2 mg/ml which provides 770 μg
of plasmid. Yearly stability testing has passed all measures of evaluation under US FDA review. Recent double blind
randomized control trial involving 25 nationally acclaimed sites unblinded and revealed OS advantage (HR: 0.417,
p = 0.020) and RFS advantage (HR: 0.459, p = 0.007; stratified Cox’s proportional Hazard Model) [125].

future science group 10.2217/fvl-2020-0068



Review Nemunaitis, Stanbery & Senzer

Aerosolized therapeutics for viral pneumonia
Viral pneumonia, particularly in elderly or immune compromised patients, can be associated with devastating
medical consequence [126]. Pulmonary delivery via aerosolized systems are simple, nonexpressive, noninvasive
and allow for pain-free access of therapeutic and minimization of possible systemic side effects [127,128]. Aerosols
have been shown to deliver plasmid DNA droplets with size ranging from 1 and 5 μm, which are able to
disperse to the bronchial and alveolar epithelial cells. This enables pDNA entry and maximizes subsequent gene
expression [129]. Rajapaksa et al. successfully demonstrated the use of a SAW liquid nebulization device for the
generation of aerosolized pDNA with suitable size and stability characteristics to facilitate effective pulmonary
delivery particularly for IV vaccination [130]. In vivo studies have shown successful pDNA delivery in both small
and large animals. SAW nebulization used to deliver a plasmid vaccine demonstrated expression of protective
anti-hemagglutinin (HA) antibodies. Anti-HA antibody titers detected were comparable to vaccination outcomes
of other similar pDNA influenza vaccines not using a nebulizer [131]. These results support use of naked pDNA for
effective delivery via pulmonary distribution while also demonstrating product stability and function. Following
pDNA vaccination in rats, revealed higher serum hemagglutination inhibition (HAI) titers which were identified
as protective according to WHO standards [132]. However, at this time, the SAW nebulizer approach has not
demonstrated scale up capability for use in a pandemic event.

Aerosolized ribavirin however has demonstrated large volume capacity and adequate aerosolized delivery and
clinical benefit including use in morbid condition patients. Ribavirin is indicated therapy for severe RSV infection
in children. The conventional continuous treatment of 60 mg of ribavirin/ml for 18 h was found to be effective.
Aerosolized ribavirin (administered 20 mg/ml for 2 h three times daily) has also been effective in cancer patients
with RSV infection [133]. Ribavirin inhalation method at intermittent high doses (60 mg/ml) over the same schedule
in immune suppressed children with RSF infection was also well tolerated. Moreover, results demonstrated similar
improved clinical response compared with standard therapy. There was also less adverse exposure to healthcare
workers [134,135]. Parainfluenza virus is associated with potentially serious complications in high morbidity patients
(i.e., heart-lung transplant, allograft rejection, bronchiolitis obliterans [136]. Inhaled ribavirin in this population was
associated with clinical improvement [137]. Aerosolized ribavirin (60 mg/ml) was also effective against IV-A and
B infections in mice [138]. Recently, aerosolized ribavirin (100 mg/ml) was shown to be effective in mice infected
with lethal IV-A H3N2 virus, and resulted in >0% survival when given early (within 24–48 h) after infection [139].
Aerosolized ribavirin treatment has been used with success against metapneumovirus pneumonia [140]. Moreover, in
treatment of pneumotropic human adenovirus, aerosolized ribavirin demonstrated greater benefit over intravenous
ribavirin likely related to the more robust drug concentration achieved in the alveoli with aerosolized product
compared with intravenous ribavirin therapy. Additionally, the aerosolized delivery did not appear to lead to
cytotoxic effect [141]. S-FLU immunization provides a broad cell-mediated immune response to conserved viral
antigens. Data reveal that immunization with S-FLU–expressing H1 HA (H1 S-FLU) DNA reduces the viral load
in lungs after aerosolized challenge with the closely matched pdmH1N1 virus strain [142]. The reduction of viral
load was shown to be optimal using aerosol administration when compared with intravenous S-FLU. However, viral
neutralizing Ab was not observed in S-FLU–immunized pigs, and the reduction of viral load in the H1 are group
correlated with the presence of IFNg–producing CD8 or CD4/CD8 double-positive cells in the bronchoalveolar
lavage suggest adequate product delivery. These data provide proof of principle that S-FLU DNA can be efficiently
delivered by aerosol to a large animal, supporting possible use of a nebulizer device as a method of immunizing
patients. Aerosolized delivery may be further optimized with use of lipid-DNA complexes [143]. Others have also
shown successful aerosol delivery of measles vaccine in humans and/or exosome/viral delivery [144,145].

The challenge to this approach is how to introduce plasmid DNA into the lungs without loss or damage to
the plasmid. Plasmid DNA is highly prone to shearing, therefore methods with low shear forces are necessary for
effective delivery of the supercoiled DNA. Both nebulizers and dry powder inhalers use low amounts of shear forces.
Nebulizers however use aerosol droplets to deliver particles into the lungs, which may not be an effective method
to deliver plasmid DNA, as DNA degrades while in solution if not stored appropriately. Additionally, nebulizers
limit the concentration of product that can be delivered due to solubility. Dry powder inhalers are not limited by
solubility and plasmid DNA would not need to be stored in solution [146–148]. This method also reduces shear stress
and thermal degradation which results in a high concentration of quality plasmid delivered directly into the lungs.
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Conclusion
Accumulating knowledge of intracellular viral processing, molecular biology, viral dynamics, host immune mecha-
nisms and immunokinetics will allow for the development of tools and methods to protect lung function, delay or
prevent ARDS, enhance anti-viral resistance and institute prophylactic measures. The unique role of furin and the
demonstration of robust viral clearance in all patients who survive SARS-CoV-2 infection supply the rationale and
support for repurposing Vigil for treatment of patients with COVID-19. Knockdown of furin with Vigil would
target multiple steps of viral propagation, including viral, entry, protein assembly and egress. Expression of GM-CSF
would provide further therapeutic benefit, enhancing the immune response and AEC protection. The data, limited
as it is, showing no obvious correlation between seroconversion and viral clearance, gives additional support to a
multifunctional therapeutic approach to COVID-19, in other words, combining inhibition of a protease critical
to viral entry and cell to cell transmission with an immune response modulator. Vigil is already involved in FDA
characterization with a known product safety profile. Further testing will be necessary, including in vitro activity
assessment against SARS-CoV-2 and large animal safety.

Future perspective
SARS-CoV-2 presents unique challenges for clinical management and infection containment. While vaccination is
important to foster immunity and protect at-risk populations, finding relevant and effective therapeutics that could
work across multiple viral pathogens will remain important. Logical drug repurposing and compound testing will
be critical for rapid response to not only this pandemic, but future pandemics as well.

Executive summary

• SARS-CoV-2 relies on furin cleavage for multiple steps of the viral replication process, including viral entry,
protein synthesis and viral egress.

• GM-CSF provides a lung protective effect, which may help to prevent ARDS and therefore allow natural immune
clearance and antibody generation.

• Vigil plasmid is an example of logical drug repurposing and targets multiple viral propagation steps.
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