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Introduction

Gastric cancer (GC) is the fifth most common malignancy 

and the fourth reason for cancer-related deaths (1). 

Furthermore, in several South-Central Asian countries, GC 

is the most common and fatal cancer in men (1). Attributed 

to the endoscopic screening, the mortality of GC decreased 

in some countries. However, the overall 5-year survival 
rate remains poor due to asymptomatic onset and delayed 
diagnosis (2).

Artificial intelligence (AI) is a revolutionary technique 
which is deeply impacting and reshaping clinical practice 
in oncology (3). It is an umbrella term that describes 
computing techniques for simulating human intelligence (4).  
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Machine learning (ML) is a domain branch of AI. It is 
defined as computing algorithms that enable self-learning 
of input data patterns without explicit instruction (5). 
Deep learning (DL) is an important subset of ML. DL 
is defined as a learning algorithm that can automatically 
learn unknown features, maximizing classification with 
limited supervision through multiple layers of artificial 
neural network (6,7). As an advanced ML method, DL has 
received widespread attention and made breakthroughs 
in various fields such as computer vision tasks and clinical 
applications by simulating the human brain for analysis, 
learning, and data analysis. DL performs representation 
learning on data, using multiple processing layers composed 
of multiple non-linear transformations to achieve high-level 
abstractions of the data (8,9). The biggest characteristic 
of DL is its ability to autonomously learn through multi-
layer neural networks, approximating complex functions 
through deep non-linear network structures and directly 
obtaining features associated with the data. DL has 
revolutionized the algorithmic design approach in many 
domains including speech recognition, image classification, 
and text understanding, gradually forming a new paradigm 
that uses end-to-end models to directly output final 
results from training data (10). Compared to traditional 
data feature extraction processes, DL reduces the need 
for manual preprocessing steps and enables autonomous 
ML and feature extraction (8). The features obtained by 
DL thus provide a more fundamental characterization 
of the data and exhibit significant advantages in terms of 
classification and visualization. Additionally, due to the 
robustness of DL, it can typically avoid unexpected variables 
that researchers may not anticipate, such as inter-observer 
variability and different clinical conditions and scanning 
parameters (11,12). With the advancement of computing 
power and graphic processing technologies, AI techniques 
such as segmentation, detection and classification are 
being increasingly utilized to the field of medical imaging 
(11,13,14). AI has demonstrated the potential to outperform 
clinicians in diagnostic accuracy and time-saving (14).

Although endoscopy is the most effective tool for early 
detection of GC, it cannot identify metastatic lesions, 
which may lead to mismanagement of patients (15). The 
diagnostic accuracy is mainly dependent on the experience 
of endoscopists (16). Biopsy specimens and pathological 
slices are difficult to capture the heterogeneity over the 
whole tumor. Therefore, computed tomography (CT) is 
currently the most commonly used and convenient tool for 
diagnosing, preoperative staging, and treatment efficacy 

evaluation for GC (17). However, the consistency and 
accuracy of image interpretation vary largely, which may not 
improve with training and experience (9). The analysis of 
CT images mainly relies on morphological features, which 
provide limited information underlying tumor development 
and progression (18). These problems present inevitable 
challenges for radiologists in personalized and precision 
medicine. Due to the desire to solve these problems, AI 
applications in CT images attracted considerable attention 
in various fields such as image segmentation, diagnosis, 
prediction of metastasis risk, survival, and treatment 
response (9). AI techniques provide new methods to process 
images and translate them into quantitative data, allowing 
the identification of microscopic features of tumors invisible 
to human eyes (14). Nevertheless, promising results of AI-
assisted CT analysis have been reported. Several concerns 
have also accompanied the surge of AI applications in 
clinical practice.

In this review, we will summarize the current status of 
the clinical application of AI-based CT for GC, focusing 
on diagnosis, genetic status detection and risk prediction of 
metastasis, prognosis and treatment efficacy. The challenges 
and prospects for future research will also be discussed. We 
present this article in accordance with the Narrative Review 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-201/rc).

Methods

We searched the PubMed database to identify studies 
investigating AI applications in CT in GC. The latest 
search time was 1/11/2022. The search terms used were: 
“gastric cancer” and (“artificial intelligence” or “machine 
learning” or “deep learning” or “radiomics”) and “computed 
tomography”. The secondary references cited in articles 
obtained from the MEDLINE and PubMed search were 
also retrieved. We only considered research articles written 
in English. Two authors read the potential studies and wrote 
the draft. The search strategy is summarized in Table 1. The 
characteristics of key studies are summarized in Table 2.

Diagnosis and differential diagnosis

Accurate T-staging is essential for selecting appropriate 
patients for neoadjuvant chemotherapy (NAC) (55). 
However, 22.8% of T1/2 GC were misdiagnosed as 
stage T3/4 by a combination of endoscopy and CT  
preoperatively (56). Wang and colleagues reported a CT-

https://tcr.amegroups.com/article/view/10.21037/tcr-23-201/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-201/rc
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Table 1 The search strategy summary

Items Specification

Date of search 1/11/2022

Databases and other sources searched PubMed/MEDLINE

Search terms used “gastric cancer” and (“artificial intelligence” or “machine learning” or “deep learning” or 
“radiomics”) and “computed tomography”

Timeframe From 1/1990 to 1/11/2022

Inclusion and exclusion criteria Restricted to articles published in English; without predefined restriction as to the study

Selection process Two authors independently screened data sources. A third author mediated the process when 
disagreements occurred

Table 2 Summary of characteristics of key studies

References Application
Number of 
patients

Machine learning algorithm Feature type Optimal results

Diagnosis

Wang 2020 (19) T staging 244 RF Radiomics AUC, 0.899

Sun 2020 (20) T staging 572 SVM, ANN Radiomics, DL AUC, 0.900

Ma 2017 (21) Differentiating Borrmann type IV 
GC from PGL

70 LASSO Radiomics AUC, 0.903

Feng 2022 (22) Differentiating Borrmann type IV 
GC from PGL

438 Transfer learning DL AUC, 0.990

Wang 2021 (23) Differentiating gastric 
neuroendocrine carcinomas from 
adenocarcinomas

126 LASSO Radiomics AUC, 0.821

Chen 2022 (24) Differential diffuse-type from  
signet ring cell GC

693 SVM Radiomics AUC, 0.918

Metastasis prediction

Gao 2020 (15) Lymph node metastasis 768 LASSO Radiomics AUC, 0.920

Chen 2020 (18) Lymphovascular invasion 160 LASSO Radiomics AUC, 0.856

Dong 2020 (25) Lymph node metastasis 730 SVM, ANN, RF Radiomics, DL AUC, 0.822

Wang 2020 (26) Lymph node metastasis 247 RF Radiomics AUC, 0.886

Li 2020 (27) Lymph node metastasis 204 SVM, ANN Radiomics AUC, 0.840

Jin 2021 (28) Lymph node metastasis 1,699 CNN DL AUC, 0.876

Fan 2022 (29) Lymphovascular invasion 101 Adaptive boosting, linear 
discriminant analysis, logistic 
regression

Radiomics AUC, 0.944

Liu 2020 (30) Peritoneal metastasis 233 SVM Radiomics AUC, 0.762

Dong 2019 (31) Peritoneal metastasis 554 SVM, ANN, LASSO Radiomics AUC, 0.958

Huang 2020 (32) Peritoneal metastasis 955 LASSO Radiomics AUC, 0.870

Table 2 (continued)
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Table 2 (continued)

References Application
Number of 
patients

Machine learning algorithm Feature type Optimal results

Mirniaharikandehei 
2021 (33)

Peritoneal metastasis 159 Gradients boosting machine Radiomics AUC, 0.69

Chen 2021 (34) Peritoneal metastasis 239 RF Radiomics AUC, 0.981

Liu 2021 (35) Peritoneal metastasis 599 LR Radiomics AUC, 0.873

Huang 2020 (36) Peritoneal metastasis 544 CNN DL AUC, 0.900

Jiang 2021 (37) Peritoneal metastasis 1,225 CNN DL AUC, 0.946

Genetic status and molecular subtypes

Zhao 2021 (38) Epstein-Barr virus status 133 LASSO Radiomics AUC, 0.955

Zhang 2022 (39) Epstein-Barr virus status 54 Decision tree Radiomics AUC, 0.870

Wang 2021 (40) Human epidermal growth factor 2 132 RF Radiomics AUC, 0.830

Prognosis prediction

Li 2019 (41) OS 181 LASSO Radiomics HR, 2.72

Jiang 2018 (42) OS, DFS 1,591 LASSO Radiomics HR, 3.308 (OS); 
HR, 1.742 (DFS)

Jin 2021 (43) OS, DFS 428 LASSO Radiomics AUC, 0.965 (OS); 
AUC, 0.824 (DFS)

Shin 2021 (44) RFS 410 LASSO Radiomics AUC, 0.719

Jiang 2021 (45) OS, DFS 1,615 S-Net DL HR, 0.159 (OS); 
HR, 0.318 (DFS)

Zhang 2021 (46) OS 640 Multi-focus and multi-level 
fusion feature pyramid 
network

DL HR, 9.46

Treatment response prediction

Jiang 2020 (47) Chemotherapy response 1,778 LASSO Radiomics HR, 0.591

Li 2020 (48) Chemotherapy response 739 SVM Radiomics HR, 1.526

Li 2022 (49) Chemotherapy response 855 U-net Radiomics, DL AUC, 0.797

Xu 2021 (50) Neoadjuvant chemotherapy 292 SVM Radiomics AUC, 0.922

Liu 2021 (51) Neoadjuvant chemotherapy 69 LASSO Radiomics AUC, 0.934

Wang 2021 (52) Neoadjuvant chemotherapy 155 LASSO Radiomics AUC, 0.953

Tan 2020 (53) Chemotherapy response 86 RF Delta-
radiomics

AUC, 0.828

Liang 2022 (54) PD-1 inhibitor 87 Logistic regression, SVM Radiomics AUC, 0.865

RF, random forest; AUC, area under the curve; SVM, support vector machine; ANN, artificial neural network; DL, deep learning; GC, gastric 
cancer; PGL, primary gastric lymphoma; LASSO, least absolute shrinkage and selection operator; CNN, convolutional neural network; LR, 
logistic regression; HR, hazard ratio; OS, overall survival; DFS, disease-free survival; RFS, recurrence-free survival; PD-1, programmed cell 
death-1. 
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based radiomics model accuracy for differentiation of T2 
and T3/4 stage GC, with an optimal area under the curve 
(AUC) of 0.899 (19). Sun et al. extracted handcrafted DL 
features from three phase contrast-enhanced CT (CECT) 
and built a radiomics signature using ML methods (20). 
Unlike traditional radiomics analysis, this study did not 
only used handcraft features, but also features extracted 
from DL neural networks, which provided more diagnostic 
information beyond a visual interpretation. Their radiomics 
nomogram, combined with radiomics signature and 
conventional CT signs, performed well in identifying T4a 
stage GC, with an optimal AUC of 0.90 (20).

Primary gastric lymphoma (PGL) is one of the most 
diagnosed gastric malignancies, difficult to differentiate 
from Borrmann type IV GC using conventional CT (21). 
The treatment options for the two diseases are different (57).  
Surgery is the main treatment option for GC, while chemo 
and radiotherapy are the best options for PGL (57). Ma 
et al. reported a radiomics based model differentiating 
Borrmann type IV GC from PGL. The model showed 
favorable accuracy with an AUC of 0.903 (21). DL 
algorithms typically require a substantial amount of data for 
effective training. Therefore, this requirement often leads to 
the challenge of data scarcity under ideal circumstances (58).  
Transfer learning is an ML technique that enhances the 
performance of a target task by leveraging knowledge 
acquired from a related source task. This approach enables 
the reduction of data requirements for the target task, 
making it less reliant on a large amount of data (59). Feng 
et al. proposed a transfer learning model based on CT and 
whole slide images. The model achieves high accuracy for 
distinguishing PGL from Borrmann type IV GC, with 
AUCs ranging from 0.92 to 0.99 (22).

Recently, Wang and colleagues constructed a radiomics 
nomogram with radiomics signature,  lymph node 
metastasis (LNM), and tumor margin. This nomogram 
revealed a moderate accuracy for differentiating gastric 
neuroendocrine carcinomas from adenocarcinomas (23). 
Chen et al. reported a radiomics-based nomogram for 
differential diagnosis for diffuse-type and signet ring cell 
GC (24).

Risk prediction of metastasis

LNM prediction

LNM is one of the most important hazard factors for the 
unfavorable outcome of GC (60). Although CT is the 

most commonly used tool for preoperative assessment of 
LNM, conventional CT mostly relies on morphological 
characteristics with unsatisfactory sensitivity for LNM (61).  
Huang et al. firstly revealed the value of radiomics for 
predicting LNM in colorectal cancer (62). In this study, 
150 radiomics features were extracted from CT images and 
reduced to 24 optimal predictors by using the least absolute 
shrinkage and selection operator (LASSO) model with 
10-fold cross-validation. Then, a radiomics signature was 
established with linear combination of selected features. The 
radiomics signature demonstrated significant association 
with LNM status. Since then, radiomics and DL approaches 
have attracted great interest for LNM prediction in GC 
(15,25,26,28,63,64). Several studies developed radiomic 
models by extracting features from CECT images and found 
promising results (15,25,63,65,66). Dong et al. enrolled 730 
locally advanced GC (AGC) patients from five independent 
centers and proposed a DL radiomic nomogram based on 
multiphase CT. The nomogram showed good predictive 
ability for N-staging with best AUC of 0.822 (25). Dual-
energy CT (DECT) provides quantitative information on 
material concentration and improves the ability of tumor 
characterization. Li et al. extracted DL and radiomics 
features from three monochromatic images for arterial 
phase (AP) or portal venous phase (VP) image of CECT (27). 
They found that AP and VP radiomics showed significant 
association with LNM. The nomogram incorporated the 
two radiomics signatures, and CT-reported LNM achieved 
better performance in both cohorts with AUCs of 0.84 and 
0.82 (27). For GC confined to the mucosa and submucosa, 
patients without LNM can receive endoscopic resection 
in order to avoid complication of lymphadenectomy. 
Nevertheless, up to 25% of T1b (submucosa) patients suffer 
LNM. Endoscopic resection for EGC with LNM may 
delay the detection of LNM and prevent early management 
of patients. Thus, accurate preoperative diagnosis of LNM 
is of particular significance for patients with early-stage GC. 
Gao et al. proposed a radiomics signature with 6 features 
and revealed favorable accuracy for LNM prediction for 
early-stage GC (17).

While most LNM prediction models were based on 
images of primary gastric lesions, Gao et al. proposed a 
faster region-based convolutional neural network (CNN) 
model by labeling perigastric metastatic lymph nodes. The 
recognition accuracy of their model achieved 95.4% (64). 
Jin et al. proposed a CNN-based model for predicting 
11 lymph node stations. The model showed excellent 
prediction accuracy with an AUC of 0.88. Furthermore, by 
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visualizing subnetworks, they found that imaging features 
related to intratumoral heterogeneity and invasive seem to 
be most valuable for predicting LNM (28).

Lymphovascular invasion (LVI)

LVI, which refers to lymphatic and/or blood vessel invasion, 
is an independent risk factor for LNM and early recurrence 
in GC patients (67,68). Chen et al. developed a radiomics 
signature based on AP and VP images to predict LVI (18).  
The radiomics signature combined with AP and VP 
features achieved good predictive accuracy with an optimal 
AUC of 0.865. Fan et al. constructed a radiomics model 
integrating CECT- and PET-based features for predicting 
LVI in GC. Three ML classifiers (adaptive boosting, linear 
discriminant analysis, and logistic regression) were used for 
model construction. A combined model with 10 radiomics 
features and 8 clinical factors showed the best performance 
with AUCs of 0.92–0.94 (29). Li et al. developed two LVI 
prediction models for GC using radiomics and the transfer 
learning method (69). The two models showed similar 
prediction performances. They further constructed a 
nomogram incorporating the radiomics model, histologic 
grade, radiological T, and N stage. The nomogram also 
revealed good predictive ability for progression-free survival 
(PFS) and overall survival (OS).

Peritoneal metastasis (PM)

The peritoneum is one of the most common sites of 
metastasis in GC (70). However, occult PM, which shows 
no positive signs on CT images, occurs in 10–30% of GC 
patients (71). Therefore, tools for detecting occult PM are 
an urgent need. Several studies have evaluated the value of 
CT-based ML methods for predicting occult PM (30-34). 
In contrast to conventional radiomics workflow, which only 
extracts features from the primary tumor area, Dong et al. 
built two radiomics signatures by features extracted from 
the tumor area and peritoneal area. Their results showed 
that radiomics features from both areas could provide 
useful information on PM. The nomogram incorporated 
the radiomics signatures and Lauren types achieved an 
extremely high accuracy for predicting PM with (31). In 
another study conducted by Chen and his colleagues, iodine 
uptake (IU) and 120-kV equivalent mixed (M) images were 
acquired for feature extraction by using DECT (34). They 
found that IU-derived radiomics features provide useful 
information for predicting PM. Since adjacent nontumor 

tissues may also provide a wealth of information of 
tumorigenesis, Liu and colleagues applied the bounding box 
annotation method, which contained both the tumor and 
peritumoral area, to develop a radiomics-based model for 
the prediction of PM (35). Unlike traditional label methods 
of lesions, bounding box method can encompass both the 
tumor and peritumoral area. This allows for the inclusion 
of more information compared to traditional annotation 
methods, making it more convenient and time-saving 
(72,73).

Huang et al. first investigated the value of DL model for 
identifying occult PM for AGC. Their proposed deep CNN 
model based on 2D CECT images revealed promising 
accuracy with an AUC of 0.90 (36). In a multicenter study 
that enrolled 1,978 GC patients, Jiang developed a deep 
CNN model with long-short connections for predicting 
occult PM (37). In contrast to a conventional CNN, their 
model incorporates a long connection that facilitates the 
extraction of multilevel tumor features. These features 
are then integrated into the final fully connected layer for 
prediction (37). Their model achieved better performance 
with best AUCs of 0.946.

Genetic status and molecular subtypes

With the development of high-throughput sequencing 
techniques, several genomic classification systems reflecting 
the complicated genomic mechanisms underlying GC 
have been proposed. The Cancer Genome Atlas (TCGA) 
has proposed a molecular classification including four 
subgroups: Epstein-Barr virus (EBV) status, microsatellite 
instable, genome stable and chromosomal instability. 
This system has been incorporated into the World Health 
Organization (WHO) classification (74,75). Epithelial-to-
mesenchymal transition and TP53 mutation are key players 
in the development and progression of tumor. Based on 
these two mechanisms, the Asian Cancer Research Group 
categorized GC into four molecular subtypes, which 
correlate well with the progression and outcome of GC (76).  
The molecular subtypes showed better stratification ability 
for adjuvant chemotherapy (AC) and immunotherapy 
response (77,78). Thus, preoperative identification of 
molecular subtypes is of great significance for treatment 
management for GC patients. However, researches 
focusing on the association between AI methods and 
genetic information of GC are still rare. EBV-positive GC 
is related to better survival and response of chemotherapy. 
By utilizing the public database of TCGA and The Cancer 
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Imaging Archive, Zhao and colleagues constructed two 
radiomics models based on 2D or 3D features (38). Both 
models showed a good discriminating ability of EBV 
expression status. Zhang et al. developed a 9-feature 
radiomics model for predicting EBV status (39). The model 
also showed favorable accuracy with a sensitivity of 80% 
and a specificity of 84%.

The overexpression of human epidermal growth factor 
2 (HER2) associates with a poor clinical outcome and plays 
a crucial role in tumorigenesis in GC (79,80). The ToGA 
trial demonstrated that anti-HER2 monoclonal antibody 
trastuzumab with chemotherapy prolonged survival of 
HER2+ AGC patients (81). Therefore, trastuzumab is 
recommended as the first-line treatment for AGC patients 
with HER2 overexpression by National Comprehensive 
Cancer Network guidelines. However, GC is a highly 
heterogeneous disease. In contrast to breast cancer, which 
generally exhibits homogenous HER2 overexpression, 
intratumoral heterogeneity of HER2 status has been 
observed in GC (82,83). Therefore, an accurate evaluation 
of HER2 status is of great importance for predicting the 
treatment efficacy of HER2 target therapy. Wang et al. 
developed two radiomics models based on the AP and VP 
images for HER2 expression status in GC (40). Both models 
showed moderate accuracy for discriminating HER2-
negative GC with AUCs ranging from 0.72 to 0.83.

Prognosis prediction

As GC is highly heterogeneous with significant clinical 
characteristics variations even within the same stage, the 
commonly used tumor-node-metastasis (TNM) staging 
system offers insufficient information for outcome 
prediction. Moreover, the TNM stage can only be precisely 
confirmed postoperatively. Therefore, several studies 
have investigated the potential and their added value of 
radiomics- and DL-based approaches for prediction of 
survival and recurrence risk of GC (41-44).

Li et al. found that radiomics features could effectively 
predict the OS of GC patients undergone radical  
resection (41). Jiang and colleagues built a radiomics 
signature with 19 features related to disease-free survival 
(DFS) and OS (42). Jin et al. proposed a radiomics signature 
for predicting DFS and OS for GC patients. In addition, 
the radiogenomics analysis showed that some of the 
radiomics features might be associated with genes involved 
in drug metabolisms and chemokine regulation (43).  
Shin et al. have explored the association between CT-based 

radiomics features and reccurence-free survival (RFS) in 
420 locally AGC patients. A merged model consisting of 
the radiomics signature and significant clinical parameters 
showed better accuracy than the radiomics signatures and 
clinical parameters alone (44).

Jiang et al. utilized a novel deep neural network named 
“S-net” that integrated comprehensive multi-scale image 
features to predict the DFS and OS of GC patients (45). 
Unlike conventional CNN architectures, the S-net model 
integrates the idea of multi-level feature stream fusion. This 
design choice is based on the understanding that both low-
level features from shallow layers and high-level features 
from deep layers contain valuable information for survival 
analysis. By incorporating this approach, the S-net model 
can effectively extract and integrate comprehensive multi-
scale image features, enabling a thorough understanding 
of complex tumor phenotypes (45). While S-net leverages 
various high-level features for survival prediction (45), 
it overlooks the valuable shallow information due to the 
repeated pooling and convolution operations. Therefore, 
Zhang et al. further proposed a multi-focus fusion feature 
pyramid network which unified separate lower-level and 
fused higher-level features. In this model, a new designed 
strategy of cascade connection which extracts single and 
fused lower-level features maps in shadow bottom-top 
pathway. The model showed better performance than 
radiomics and conventional DL approaches (46).

Treatment response prediction

Chemotherapy is a routine treatment for improving the 
survival of GC patients. However, the overall efficacy 
rate of most regimens is less than 40% (84). Recently, 
conversion therapy, defined as a surgical treatment aimed 
at R0 resection after NAC for initially unresectable or 
marginally resectable tumors, emerged as another treatment 
opinion for metastatic AGC patients (82). Nevertheless, 
only 20–40% of patients show sensitivity to NAC (85,86). 
In addition, 40–60% of patients suffered recurrence after 
R0 surgery (87). Therefore, it is of great importance for 
identifying optimal candidates who could benefit from AC/
NAC and thus avoid unnecessary toxicity. Several teams 
have investigated the potential of CT-based radiomics and 
DL methods for predicting AC/NAC response.

Jiang et al. developed a radiomics signature for evaluating 
tumor infiltrated lymphoid and myeloid cells. Their 
proposed radiomics signature could also serve as an AC 
response prediction tool (47). Li et al. built a radiomics 
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signature by extracting features from intratumoral and 
peritumoral regions of CT images. The radiomics signature 
showed good predictive ability for DFS and AC response for 
stage II/III GC (48). Li et al. developed an DL model which 
consisted of clinical, handcrafted radiomics and DL features 
for differential diagnosis of signet-ring cell carcinoma (49). 
The reported AUCs for predicting NAC response for AGC 
ranged from 0.68 to 0.89 (50,88-92). A significant portion 
of AGC patients do not achieve pathological downstaging 
after NAC. Thus, early and precise patient stratification 
would be beneficial in identifying suitable candidates for 
NAC. Xu and colleagues proposed a radiomics signature 
by utilizing restaging CT images for early detection of 
pathological downstaging with NAC for AGC. The model 
showed a promising prediction ability with an optimal 
AUC of 0.96, outperforming the routinely used Response 
Evaluation Criteria in Solid Tumors (RECIST) system (50).

Liu et al. developed a multi-energy radiomics model 
by extracting radiomic features from three different sets 
of monochromatic images derived from DECT. Their 
findings revealed that high-energy features achieved the best 
performance for AC response prediction. The predictive 
ability of the multi-energy model outperformed all the 
monochromatic radiomics models (51). Similarly, Wang et al. 
developed a radiomics model based on IU and M images to 
differentiate serosal invasion after NAC. The model showed 
great accuracy with AUCs of 0.95 and 0.91 (52).

Recently, analysis of the alteration of radiomics features 
pre- and post-treatment, refer as delta radiomics, has 
shown potential for predicting treatment response (93,94). 
Delta-radiomics is a radiomics-based approach that focuses 
on the analysis of changes or differences in radiomic 
features before and after treatment. It aims to capture and 
quantify the temporal changes in tumor characteristics. By 
comparing radiomic features extracted from pre- and post-
treatment images, delta-radiomics can provide valuable 
information about treatment response, tumor progression, 
or the effectiveness of interventions (92). Tan et al. reported 
a delta radiomics model, revealing moderate predictive 
accuracy for AC response for AGC patients with an average 
AUC of 0.75 (53). However, in the study conducted by 
Chen and colleagues, radiomics features were extracted 
from 8 image series acquired by DECT, including VP-IU, 
VP-M, delayed IU, and delayed M images pre- and post-
NAC. The pre-NAC IU-based model performed better 
than the delta radiomics model for predicting DFS and 
OS for AGC patients who received NAC (95). This result 
implies that the pretreatment images might provide more 

information for prognosis.
Immunotherapy,  represented  by  inhib i tors  o f 

programmed cell death-1 (PD-1), has shown encouraging 
efficacy in AGC patients. However, effective biomarkers 
for identifying beneficiary patients are still lacking. We 
developed and validated a radiomics signature for evaluating 
tumor-infiltrating regulatory T cells, which contributed to 
hyperprogression disease after PD-1 treatment (96). Liang 
et al. recently proposed a radiomics nomogram to predict 
PD-1 inhibitor response for AGC (54). The model showed 
good accuracy for identifying responders of anti-PD-1 
therapy with AUCs of 0.87 and 0.78. Moreover, the model 
could also accurately predict the PFS of patients.

Challenges and future perspective

There are still some intractable limitations yet to be 
addressed in translating AI techniques from bench to 
bedside.

First and foremost, explainability is the biggest obstacle 
in translating AI models into routine clinical practice. The 
explainability in AI refers to the question of whether we 
can understand the reasoning and decision-making process 
behind the predictions or decisions made by ML and DL 
models (97). Due to the complex nature of DL models, 
which consist of numerous parameters and intricate non-
linear functions, their internal workings are often difficult 
to intuitively interpret. Explainability is crucial for the 
application of AI, especially in domains where scrutiny, 
validation, and trust in the model’s predictions are required, 
such as medical diagnosis (98). Currently, for most ML-
based models, especially DL models, it is difficult to explain 
how the models made certain decisions, which refers to the 
“black box”. However, transparency and explainability are 
essential for legal and ethical reasons in clinical medicine. 
Understanding how an ML-based model comes to its 
predictions is important to ensure fairness and increase 
the confidence of clinical practitioners when using it. In 
addition, AI models can be influenced by data biases, leading 
to unfair predictions for specific groups or attributes (98). 
Thus, better explainability can allow developers and end-
users to identify potential biases of models and find ways to 
improve them. Recently, explanatory artificial intelligence 
(XAI) has drawn great attention from researchers. XAI aims 
to provide more transparent, explainable decisions for AI 
models. There are mainly three approaches for improving 
the explainability of ML models, including proxy models, 
visualization of CNN, importance estimators (5). Although 
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all these methods have not yet been widely used in the 
area of medical imaging, further advancement of XAI will 
possibly help the clinical application of AI models.

Secondly,  repeatabil ity and reproducibil ity are 
also crucial issues that need to be resolved. Only 
part of the studies reported the images acquisition, 
procession, and ML methodology in sufficient detail  
(15,19,20,22,24-26,29,31,33,36,37,44,47). The scanner 
parameter and the image pre-processing methods, target 
area delineation, feature extraction, and model building 
algorithm varied dramatically among studies. This 
underlines the need for a standardized methodology for 
CT acquirement protocol and AI analysis workflow. The 
Standards for Reporting of Diagnostic Accuracy Studies 
(STARD) statement recommends structured reporting 
for studies (99). A team promoted the Image Biomarker 
Standardization Initiative (IBSI) and provided standardized 
radiomics features to calibrate different software (100). 
These initiatives may help to improve the repeatability and 
reproducibility of research.

Thirdly, most of the current studies were retrospective 
and carried out in a single-center, which may also lead to the 
overfitting of the models. Prospective multicenter studies 
are needed to establish well-curated datasets and ensure 
the generalizability of the models. However, collecting 
and harmonizing imaging data from different centers are 
complex tasks technically. Most of the radiomic features are 
highly sensitive to the diversity of scanner manufacturers, 
acquisition protocols, and reconstruction algorithms. 
Therefore, it is difficult to draw direct comparisons and 
harmonization of results from different centers. The 
current standardization of imaging procedures is insufficient 
to overcome variations in radiomic feature distributions 
among centers. One popular method is resampling images 
to a unified voxel size and filtering images to get similar 
spatial resolution before feature extraction. However, this 
method may be insufficient to remove the center effect and 
can be harmful to texture analysis (7,101). DL networks are 
recently used to synthesize images with similar properties to 
obtain comparable features. Li et al. proposed a generative 
adversarial network-based normalization method which 
could reduce the variability of features obtained by different 
CT protocols and centers (102). The results showed that 
radiomic features extracted from harmonized images could 
effectively improve the accuracy of the LASSO classifier. 
In another study, by using a public CT texture phantom 
dataset, DL networks were trained to transform image 
features to improve their stability across varying CT devices 

and parameters (103). ComBat is a method for removing 
batch effects, initially used for genomic analysis. Recently, 
this method has been used in several multicenter studies for 
harmonization of radiomic features extracted from different 
scanners and institutions. The results showed that ComBat 
could effectively improve the predictive accuracy and 
stability of models (104-106).

Conclusions

AI-powered tools showed great potential to increase 
diagnostic accuracy and reduce radiologists’ workload. 
However, the goal of AI is not to replace human ability 
but to help oncologists make decisions in their practice. 
Therefore, radiologists should play a predominant role in 
AI applications and decide the best ways to integrate these 
complementary techniques within clinical practice.
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