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Abstract: CRISPR-based enzymes have offered a unique capability to the design of genetic switches,
with advantages in designability, modularity and orthogonality. CRISPR-based genetic switches
operate on multiple levels of life, including transcription and translation. In both prokaryotic and
eukaryotic cells, deactivated CRISPR endonuclease and endoribonuclease have served in genetic
switches for activating or repressing gene expression, at both transcriptional and translational levels.
With these genetic switches, more complex circuits have been assembled to achieve sophisticated
functions including inducible switches, non-linear response and logical biocomputation. As more
CRISPR enzymes continue to be excavated, CRISPR-based genetic switches will be used in a much
wider range of applications.
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1. Introduction

As a fast-growing multidisciplinary field, synthetic biology has aimed to revolutionize
biological research with the concept of engineering since its earliest days. In two decades,
numerous synthetic parts with increasing complexity have emerged with the capability of
mimicking the function of a number of basic electric circuits, including biological bistable
switches [1], oscillators [2], spatial pattern formation [3,4], logic gates [5–7], memory de-
vices [8,9], intercellular communication [10–13] and so on. Built upon these parts, synthetic
biological circuits have been introduced into a wide range of applications including au-
tonomous metabolic engineering [14–17], cell-based therapies [18], antibiotic-free pathogen
control [19,20] and so on. These circuits operate on all levels of life including transcription,
translation and post-translation levels. Nevertheless, at their core, the essence of synthetic
circuits is to exert precise spatial and temporal control of gene expression as output signals
in response to input signals.

Compared to the traditional gene regulation elements such as inducible promoters,
synthetic circuits are far superior because of their complexity that enables a sensitive or
adaptative response, multiple inputs/outputs and logical signal computation. However,
attempts to further increase the complexity of genetic circuits have been hindered by the
inherent properties of basic synthetic parts. For example, transcription factors (TFs), the
most widely adopted gene expression regulator in circuits, are known to be challenging
from an engineering perspective. Specifically, the TFs offer important characteristics such as
a high dynamic range and ultrasensitive response to the regulation of gene expression, but
engineering a TF with specific parameters is a difficult task because of (1) poor designability,
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(2) a limited choice of TFs and (3) a physiological burden to host. These unsolved problems
urge the development of modular, orthogonal and easily programmable synthetic parts to
enable the building of more sophisticated genetic circuits.

In recent years, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)
systems have shed light on these problems by offering a unique category of synthetic
parts, which are particularly useful for building complex genetic circuits. The CRISPR
systems are natural defense mechanisms in bacteria and archaea for inactivating foreign
nucleic acids [21]. Basically, CRISPR enzymes identify exogenous nucleic acids and record
short fragments of them in the CRISPR array of the host genome as “immune memory”.
Then, the short fragments (often referred to as “spacers”), along with repeat elements
separating them, are transcribed as pre-crRNA, which is subsequently processed by specific
endoribonucleases into “guide” RNAs (gRNA) for directing CRISPR endonucleases to the
invading nucleic acids. With such “memory”, subsequent invasion by recognizable foreign
DNA (or RNA) will be detected by the “guide” and inactivated by endonucleases.

CRISPR endonucleases are particularly suitable to be engineered as genetic switches
because of their abundance, orthogonality and programmability. First, CRISPR systems
are widely discovered in bacteria and archaea, which bestows an enormous pool of en-
zymes with diverse functions capable of targeting both DNA and RNA [22]. Compared
to the protein-DNA binding of TFs, the fact that CRISPR endonuclease utilize a highly
programmable oligonucleotide to recognize DNA makes it much more specific, reliable
and friendly to standardize in in silico design. The nearly infinite number of possible
oligonucleotide sequences also offers unrivaled potential for orthogonality. More impor-
tantly, conventional genetic switches, such as the TF-based switches, operate only on a
transcription level, but the diverse nature of CRISPR systems allows the development of
genetic switches that control gene expression through both transcription and translation,
which greatly expands the territory of gene regulation. Therefore, by harnessing these
unique features, a large number of highly modular and orthogonal CRISPR-based genetic
switches have been developed in recent years (Table 1).

Table 1. CRISPR-based genetic switches.

CRISPR Enzyme Additional Module Function Host Reference
dCas9 / Transcriptional repression bacteria, yeast [23–26]
dCas9 KRAB (F) Transcriptional repression yeast, mammalian cell [25–30]
dCas9 Mxi1 (F) Transcriptional repression yeast [26]
dCas9 SRDX (F) Transcriptional repression Arabidopsis [30]

dCas12a / Transcriptional repression bacteria, mammalian cell [31–35]
dCas12a KRAB (F) Transcriptional repression mammalian cell [33,36]
dCas12a Mxi1 (F) Transcriptional repression yeast [37]
dCas12a SRDX (F) Transcriptional repression Arabidopsis [38]

Csy4 / Translational repression E. coli, mammalian cell [39]
Csy4 dCas9 Translational repression mammalian cell [40]
Csy4 dCas9 Translational repression yeast, mammalian cell [41]
Csy4 dCas9 Translational repression yeast [42]
Csy4 dCas9/dCas12a Translational repression yeast [43]

dCas9 RNAPω subunit (F) Transcriptional activation E. coli [24]
dCas9 AsiA (F) Transcriptional activation E. coli [44]
dCas9 MCP-SoxS (R) Transcriptional activation E. coli [45,46]
dCas9 λN22plus-PspF∆HTH (R) Transcriptional activation E. coli [47]
dCas9 VP64 (F) Transcriptional activation yeast, mammalian cell, Arabidopsis [25,26,30,48,49]
dCas9 p65 (F) Transcriptional activation mammalian cell [25]
dCas9 VPR (F) Transcriptional activation yeast, mammalian cell [50]
dCas9 VTR3 (F) Transcriptional activation mammalian cell [51]
dCas9 SunTag (F) Transcriptional activation mammalian cell [27,52]
dCas9 SAM (F) Transcriptional activation E. coli, mammalian cell [53,54]

dCas12a VP64 (F) Transcriptional activation mammalian cell [33]
dCas12a p65 (F) Transcriptional activation mammalian cell [55]
dCas12a VPR (F) Transcriptional activation mammalian cell [33]

Csy4 / Translational activation E. coli [56]
Csy4 Cas9 Translational activation yeast, mammalian cell [41]

(F) indicate module directly fused to CRISPR enzyme; (R) indicate module recruited by CRISPR enzyme or its associated gRNA.
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2. CRISPR-Based Genetic Switches in Transcription Level

The first widely used CRISPR-based genetic switches functioning at transcription
level are the CRISPR/dCas9 systems designed based on the Cas9 endonuclease, an RNA-
guided DNA endonuclease originating from subtype II of the class 2 CRISPR system [57].
As a CRISPR endonuclease, Cas9 identifies its target through a short PAM (protospacer
adjacent motif, NGG in Streptococcus pyogenes), binds to the adjacent 20 nt dsDNA sequence
through two RNA duplexes and cleaves at a specific location [58]. Such specificity and
programmability make Cas9 an ideal candidate as a tool for gene editing and gene expres-
sion regulation. For simplicity and convenience, the two RNA duplexes for Cas9 were
combined as a single guide RNA (sgRNA) [59]. In addition, although the typical length of
dsDNA binding region within a sgRNA is 20 nt, shortening such a length to 17–18 nt could
benefit the on-target cleavage efficiency of Cas9 [60].

To engineer endonucleases as a part of genetic switches, the endonuclease activity
of these enzymes was deactivated, leaving only the DNA binding activity. Take Cas9 as
an example. Two mutations (D10A and H840A) were introduced to the RuvC and HNH
endonuclease domain of SpCas9 (Cas9 from Streptococcus pyogenes), which abolished its
ability to cleave dsDNA. The resulting deactivated Cas9, with the capability to tightly bind
to DNA, was named dCas9 and often used as a programmable “roadblock” of transcription
in genetic switches [23] (Figure 1A, left). Such a “roadblock” can serve as a transcriptional
repressor, which is often referred to as CRISPR interference (CRISPRi). Therefore, genetic
switches based on CRISPRi would function as a NOT gate, which generates an output
decreased signal as the input signal increases. In recent years, dCas9 has been successfully
demonstrated as CRISPRi alone in bacteria [23,24], alone or with fused additional Mxi1
domain in yeast [26], and a fused KRAB (Krüppel associated box) [25–29] or SRDX (EAR-
repression) [30] domain in mammalian cells and plants, respectively (Figure 1A, right).
On the other hand, dCas9 can also be engineered as a transcriptional activator (CRISPRa),
by incorporating an activation domain by either direct fusion, RNA-scaffold recruitment,
or the combination of both approaches (Figure 1B). For prokaryotic cells, the activation
domains available to be directly fused to dCas9 include the phage activator AsiA and the
RNAP ω (omega) subunit [24,44]. Some other activation domains, including SoxS and
PspF, can be fused to RNA binding domains and indirectly recruited by dCas9 through
binding with the RNA scaffolds connected to sgRNA [45–47]. Interestingly, the output of
transcription regulation can be tuned by manipulating the DNA binding region of sgRNA by
introducing mismatches [47]. In eukaryotic cells, all the reported dCas9-based transcriptional
activators are designed by direct fusion of an activation domain, including multiple copies of
Herpes simplex viral protein 16 domains (VP64) [25,26,30,48,49], the p65 domain [25], the
combined VPR (VP64-p65-RTA) [50] and VTR3 [51] domains, the multimeric peptide array
(SunTag) [27,52] and the synergistic activation mediator (SAM) [53,54] (Figure 1C).

To push the CRISPR technology forward, new CRISPR endonucleases besides Cas9
have been continuously excavated in the past decade. One subtype V endonuclease of the
class 2 CRISPR system, Cas12a (previously known as Cpf1), has drawn more attention
than others for its unique dual functionality to process its own pre-crRNA before cleaving
dsDNA [61]. In the same way as Cas9, Cas12a has also been mutated to serve as transcrip-
tion regulators. Multiple versions of DNase deactivated Cas12a (dCas12a), some of which
have shown great potential for replacing dCas9 in genetic switches [31–33]. For example,
dCas12a has been used alone or fused with KRAB or SRDX domains as CRISPRi, and
functions as CRISPRa after fusing with VP64, p65 or VTR domain [31–36,38,55].

As with transcriptional factors, the CRISPR-based systems are also not perfect. The
CRISPR/Cas9 system has been troubled by (1) the toxicity from off-target effects [62–64],
(2) the large size of Cas9/dCas9 and (3) the lack of non-linearity [65,66]. First, the toxicity of
Cas9 has severely limited its application potential, particularly in gene therapy where safety
is the top concern [67]. Meanwhile, in a complex circuit with multiple dCas9-based switches,
the off-target binding of dCas9 could also affect the orthogonality among these genetic
switches. Second, the relatively large size of dCas9 makes it easy to cause physiological
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burden to the host, which limits its use in instances that require a high expression level
of dCas9. For example, the limitation of dCas9 expression level could cap the maximum
activation signal in CRISPRa or increase the background signal in CRISPRi, both conditions
that pose a negative impact on the performance of dCas9-based genetic switches by reducing
their dynamic range. Notably, the search for endonuclease smaller than Cas9 has led to the
discovery of more compact endonucleases, including Cas12a [61], Cas12b [68], CasΦ [69]
and CasX [70], which greatly promoted the delivery of CRISPR endonuclease in gene therapy.
Third, the lack of non-linear behavior (e.g., ultrasensitivity) of CRISPR-based genetic switches
is determined by the binding mechanism of CRISPR endonuclease, which functions by a
monomeric endonuclease binding to DNA via a single binding site [65]. Achieving non-
linear functions with CRISPR-based systems requires the cooperative activity of multimers or
multiple binding sites [71], as in the TF-based genetic switches [72,73]. Therefore, to achieve
non-linear functions with CRISPR-based switches, a more complex design is required.
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Figure 1. Schematic representation of CRISPR-based genetic switches in transcription level.
(A) Schematic of dCas9 or dCas12a function as a transcriptional repressor by blocking RNAP by
itself (Left), with a fused repressor such as Mxi1, KRAB or SRDX domain (Right). (B) Schematic of
dCas9 or dCas12a function as a transcription activator by fusing with an activation domain such as
AsiA and the RNAPω (omega) subunit, VP64, VPR, etc. (left), or by recruiting an activator through
the aptamer fused with sgRNA such as SoxS and PspF (Right). (C) Schematic of dCas9 or dCas12a
function as a transcriptional activator in combination with various types of activation domains. Red
light indicates repression, green light indicates activation.

3. CRISPR-Based Genetic Switches in Translation Level

Besides DNA endonuclease, CRISPR systems also contain endoribonuclease that rec-
ognize specific RNA sequences and structures on the repeats of pre-crRNA and cleaves at a
certain location [74]. The genetic switches designed based on these endoribonucleases op-
erate at the level of translation, which can work alongside the switches at the transcription
level in genetic circuits [75].
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The first widely used CRISPR endoribonuclease in a genetic switch is Csy4, a type
I CRISPR endoribonuclease discovered in Pseudomonas aeruginosa that recognizes a 28-nt
RNA hairpin structure and precisely cleaves between the 20G and 21C [76,77] (Figure 2A).
Such precision enables Csy4 to control translation via cleaving of its target RNA hairpin
inserted at the 5′ capping or 3′ UTR region of an mRNA, which could severely reduce mRNA
stability and, consequently, translation rate [39] (Figure 2B). Furthermore, Csy4 has been
demonstrated to control translation in a more sophisticated way for better performance and
programmability. For example, a Csy4-based translational activator has been engineered
by inserting the Csy4 target RNA hairpin between an RBS (Ribosome Binding Site) and a
cis-repressive element [56]. As a result, mRNA translation is inhibited as the cis-repressive
element binds to RBS in a complementary manner, and will be restarted after Csy4 cleavage
that releases the cis-repressive element from the RBS (Figure 2C). As an endoribonuclease,
Csy4 has also been used in many multiplexed gene regulations at translation level in yeast
and mammalian cells [40–43]. By simultaneously processing multiple gRNAs with different
target sequences for directing dCas9, Csy4, along with other similar endoribonuclease
such as Cas5d, Cas6a and Cse3, can build complex logic gates for precisely regulating gene
expression [56] (Figure 2D). Moreover, Cas12a, with the dual functionality of cleaving dsDNA
and processing its own gRNA, is also valuable in multiplexed gene regulation because it
allows simultaneous control of multiple genes using a single enzyme pairing with different
gRNAs, which is much simpler than the Csy4/dCas9 systems [34–37,55] (Figure 2E).
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Besides RNA endoribonuclease, another category of CRISPR enzyme, the RNA-guided
RNA endonuclease, have also emerged in recent years with the potential as genetic switches
at translational level, namely the Cas13a and Cas7-11 endonuclease [78–80]. These enzymes
possess two distinct RNase activities: (1) processing their own pre-crRNA in a way similar
to Csy4 [81]; (2) targeting specific RNA sequence for cleavage. Such dual functionality
makes them particularly ideal for the knockdown of RNA transcripts in vivo. Specifically,
Cas13a, a subtype VI effector in class 2 CRISPR-Cas systems, previously known as C2c2,
has been used for gene silencing in E. coli, plants and human cells [80,82]. Cas13a possesses
a unique “collateral” cleavage effect, which means, upon recognition of its target, Cas13a
engages cleavage of nearby non-target RNA [79]. Such a cleavage pattern of Cas13a has
been harnessed in a nucleic acid detection method known as SHERLOCK (Specific High
Sensitivity Enzymatic Reporter UnLOCKing), in which the target nucleotide sequence is
incorporated in the gRNA, and an RNA probe is designed to be fluorescent after being
cleaved via “collateral” cleavage [83]. Cas7-11, on the other hand, is a subtype III effector in
the class 1 CRISPR-Cas system recently reported to have a similar function as Cas13a [78].
Currently, although these endonucleases are primarily being employed for gene silencing, it
is apparent that they have great potential to be engineered as multiplexed genetic switches
similar to Csy4 and Cas12a.

4. Application of CRISPR-Based Switches in Genetic Circuits

With the individual genetic switches, larger circuits can be built to offer more sophisti-
cated functions and provide greater potential for a wider range of applications. Thus far, a
number of CRISPR-based genetic circuits have been reported, which primarily incorpo-
rate CRISPR-based genetic switches in three different ways: (1) Ligand/Light-inducible
genetic switches, (2) genetic switches with certain non-linear behavior or feedback pat-
terns, (3) multi-input biocomputation circuits (Table 2). The first refers to CRISPR-based
genetic switches capable of sensing input signals (e.g., chemical ligands) and generates
certain output signals; the second mainly includes the circuits that still function as a genetic
switch, but offer non-linear functions such as ultrasensitivity, biostability, oscillation or
IFFL (incoherent feed-forward loop); the third implies the circuits capable of computing
Boolean logics including AND, NOT, NOR and XOR, etc.

Ligand/Light-inducible genetic switches are powerful tools for understanding the
spatial and temporal pattern of gene expression because they offer the crucial capability of
controlling genetic switches with external or internal input signals, such as chemicals or
the light of specific wavelengths (Figure 3A, left and middle). Typically, such inducibility
is achieved by endonuclease (mainly dCas9) fused with chemical-induced dimerizing
domains (CID) or optogenetically inducible dimerizing domains (OID) that sense chemicals
or light signals, respectively. Specifically, the two parts of dimerization domains are
separately fused with endonucleases (dCas9 or dCas12a) and the effector domain. Then,
dimerization occurs when certain chemical ligands or lights of certain wavelengths are
detected, which completes the recruitment of the effector domain to the endonuclease
binding sites on DNA. Thus far, the reported CIDs include FKBP-FRB [84,85] and DmrA-
DmrC [55] induced by rapamycin, ABI-PYL1 induced by abscisic acid (ABA) [84,86] and
GID1-GAI24 induced by gibberellin (GA) [86]. Meanwhile, various OIDs have also been
reported, including PhyB-PIF induced by red light [87], and pMag-nMag and CRY2-CIB1
induced by blue light [88–91]. Alternatively, genetic switches can also be constructed based
on split dCas9 (Figure 3A, right). In this case, dCas9 is split into two pieces and each piece
is fused with part of a heterodimer [53,85,89]. Upon ligand induction, heterodimerization
leads to the restoration of dCas9 enzymatic activity and subsequent DNA binding, which
allows dCas9 to act as a transcriptional repressor [85]. Similarly, Cas9 can also be split and
restored as an inducible genome editor [89].
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Table 2. Applications of CRISPR-based genetic switches in circuits.

CRISPR
Enzyme

Dimerization
Domain Effector Domain Input Signal Circuit Type Reference

dCas9 FKBP-FRB VPR rapamycin ligand-inducible genetic switch [84]
Split dCas9 FKBP-FRB VP64 rapamycin ligand-inducible genetic switch [85]

dCas12a DmrA-DmrC p65, VPR rapamycin ligand-inducible genetic switch [55]
dCas9 ABI-PYL1 VPR ABA ligand-inducible genetic switch [84,86]
dCas9 GID1-GAI24 VPR GA ligand-inducible genetic switch [86]
dCas9 PhyB-PIF / Red light Light-inducible genetic switch [87]
dCas9 pMag-nMag p65, VP64 Blue light Light-inducible genetic switch [88]

Split Cas9 pMag-nMag / Blue light Light-inducible genome editor [89]
dCas9 CRY2-CIB1 p65, VP64 Blue light Light-inducible genetic switch [88–91]
Cas12a / fluorescent DNA probe nucleotide sequence in vitro diagnostic toolbox [92–95]
Cas13 / fluorescent RNA probe nucleotide sequence in vitro diagnostic toolbox [96,97]
dCas9 split luciferease luciferase nucleotide sequence in vitro diagnostic toolbox [98]
dCas9 / / AHL & Ara toggle switch [99]
dCas9 / / / oscillator [99–101]
dCas9 / / Ara IFFL [99]
CasE / VPR DNA copy number IFFL [102]
dCas9 / KRAB, VPR Anti-CRISPR protein IFFL [103]
dCas9 / / DAPG and Ara NOR/AND/OR gate [65]
dCas9 / Mxi1 gRNA NOR gateNOT gate [104]
dCas9 GID1-GAI24 VPR GA and ABA AND gate [86]

dCas9 VP64 Galactose and
β-estradiol AND gate [105]

dCas9 / / Ara NOT gate [99,106]
dCas9 / VP16 gRNA NOT gate [107]
dCas9 / / aTc NOT gate [108]
dCas9 / KRAB gRNA NOT gate [109]

GA: gibberellin; ABA: abscisic acid; DAPG: 2,4-Diacetylphloroglucinol; Ara: Arabinose; AHL: acyl homoserine lactone; aTc: Anhydrotetra-
cycline.

Besides chemicals and light signals, oligonucleotide sequences can also be a form
of input signal that activates inducible CRISPR-based genetic switches. In other words,
CRISPR endonuclease (e.g., dCas9 or dCasd12a) recognizes specific DNA or RNA se-
quences as input signals, and activates subsequent signals accordingly. Such switches are
particularly suitable for nucleotide detection, which makes them quite popular as IVD
(in vitro diagnostic) methods. For example, several toolkits for detecting SARS-CoV-2 have
been developed based on Cas12a or Cas13a, which functions by detecting specific RNA
and cleaving complementary DNA or RNA probes as output signals, respectively [92–97]
(Figure 3B, left). Additionally, IVD methods using dCas9 have also been reported, in which
the two parts of a split luciferase are fused with two dCas9 molecules. Positive signals are
generated when the enzymatic activity of luciferase is restored upon proper placement of
the two dCas9 on the target DNA [98] (Figure 3B, right).

As described above, one of the problems of CRISPR-based genetic switches is the lack
of non-linear function. However, such a shortcoming can be overcome with a more complex
design of CRISPR-based circuits that offers ultrasensitive, bistable and oscillatory signals.
For example, toggle switches with ultrasensitive and bistable signals have been built with
dCas9 in E. coli that achieved bistable toggle between two states [99] (Figure 4A). Moreover,
oscillators based on Cas9 and Cas12a have also emerged recently with a robust oscillatory
state in microfluid chambers [99–101]. Additionally, circuits that exhibit spatial-temporal
behaviors can also be constructed with CRISPR-based genetic switches. By combining
CRISPRi and CRISPRa, IFFL circuits have been constructed in E. coli and mammalian cells
that display pulse-generating and stripe-forming patterns [99,102,103].

Biocomputation with logic gates is an important task of genetic circuits for signal
integration, processing and logic computation. The foundation of biocomputation is
various types of logic gates with robust performance. Many Boolean logic gates, such
as AND, NOT and NOR gates, have been constructed with CRISPR-based circuits that
functions in E. coli, yeast and human cells. For example, one-input logic gate, such as a
NOT gate, can simply be a dCas9-based repressor, which converts “1” to “0” (Figure 4B).
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Likewise, more layer of repressors (or activators) can be connected in a consecutive manner,
which will further convert the signal back to “1” and then jump back and forth between
“0” and “1” [65,66,99,104,106–109]. Thus far, the input signal can be converted up to
seven times with NOT gates [104]. On the other hand, the circuit designs to integrate two
signals with a single logic gate are more complex and diverse. A straightforward design
strategy is to control the expression of two orthogonal sgRNAs and their corresponding
endonucleases with two different inducers that serve as input signals [65]. In this case, the
type of logic gate is determined by the design of the two endonucleases. Specifically, two
transcriptional activators will make the circuit an AND gate [105] (Figure 4C, right), while
two transcriptional repressors will result in a NOR gate [65,104] (Figure 4D). Alternatively,
an AND gate can be built with other methods such as heterodimerization induced by
two different ligands [53,85,86,89] (Figure 4C, left). Notably, a NOR gate is known to be
“Boolean-complete”, which means all types of logic gates can be built by combining NOR
gates in different ways. For example, converting the output signal of a NOR gate with a
NOT gate creates an OR gate [65] (Figure 4E). Similarly, by converting the two input signals
of a NOR gate with two NOT gates beforehand, the combination of the three gates (two
NOT gates and one NOR gate) equals to an AND gate [65].
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5. Conclusions

The enzymes discovered from CRISPR systems, with their abundance, diversity and
unrivaled programmability, have shown remarkable value and potential in the construction
of genetic switches operating in both transcription and translation levels. The prevalence
of their existence in nature has also been a great gift that has bestowed Cas9, Cas12a,
Cas13, Csy4, and Cas7-11 and much more to come. The advantages of genetic switches
constructed with these enzymes have attracted the interest of many circuit designers who
have reported a number of circuits with diverse functions in return. It is apparent that
CRISPR-based genetic switches will continue to stay in the spotlight of the research of
synthetic biology and make their potential into reality in various applications.
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