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ABSTRACT

Synthetic 3′-biotin-tagged microRNAs (miRNAs) have often been used to select interacting messenger RNA (mRNA) and
noncoding RNA (ncRNA) targets. Here, we examined the extent of association of 3′-end biotinylated miR-27 with Argonaute
(Ago) proteins in transfected human cells using a coimmunoprecipitation assay followed by Northern blot analysis. We report
that biotinylated miR-27 does not efficiently associate with Ago compared to unmodified miR-27. These results suggest that
3′-end biotin-modified miRNAs are questionable monitors of miRNA function in cells.
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INTRODUCTION

MicroRNAs (miRNAs) are small regulatory RNAs that play
important biological roles by modulating cellular protein
production. The specificity of miRNA regulation is deter-
mined by base-pairing interactions between miRNAs and
their target RNAs (Bartel 2009). In mammalian cells, imper-
fect duplexes with messenger RNAs (mRNAs) are formed by
miRNAs associated with one of four Argonaute (Ago) family
proteins (Ago 1, 2, 3, and 4), which are core components of
RNA-induced silencing complexes (RISC). Conserved bind-
ing pockets in Ago proteins recognize both ends of a miRNA
and are critical for formation of the miRNA-Ago complex
(Kuhn and Joshua-Tor 2013). The MID and the PAZ do-
mains recognize the 5′ phosphate and the 3′ hydroxyl at
the ends of a miRNA, respectively. Because miRNAs bind
to Ago proteins with very high affinity (Lima et al. 2009;
Tan et al. 2009), coimmunoprecipitation of miRNAs from
cell lysate by anti-Ago antibodies provides a good assessment
of miRNA association with Ago.
Identification of mRNAs and noncoding RNAs (ncRNAs)

targeted by miRNAs is critical for understanding miRNA
function. Since the discovery of miRNAs, bioinformatic and
biochemical methods have been developed for target identifi-
cation (Thomas et al. 2010). Among them, a 3′-end biotin-
tagged-miRNA-based approach has been used in many stud-
ies (Ørom and Lund 2007; Ørom et al. 2008; Nonne et al.
2010; Lal et al. 2011; Hansen et al. 2013). Specifically, synthet-

ic 3′-biotinylated miRNAs are transfected into cells, followed
by selection with streptavidin affinity resin after cell lysis.
Coselected RNAs are often interpreted by researchers as tar-
gets of a functional miRNA-Ago complex. Here, we use a
coimmunoprecipitation assay to show that synthetic 3′-bio-
tinylated miR-27 miRNAs transfected into human Jurkat
T cells do not efficiently associate with Ago proteins, suggest-
ing that biotinylated miRNAs are unlikely to assemble into
functional RISC complexes.

RESULTS

We tested several otherwise identical synthetic miR-27
miRNAs modified at their 3′ ends with biotin moieties sim-
ilar or identical to those used in published reports (Ørom and
Lund 2007; Nonne et al. 2010; Lal et al. 2011). Biotin was co-
valently conjugated to the 3′-hydroxyl group on the ribose of
the last nucleotide via three different linkers that vary in
length and chemical composition (Fig. 1A).
We transfected either unmodified or biotinylated forms

of miR-27 annealed to miR-27∗ (complementary to miR-
27) (see Fig. 1A) into Jurkat T cells, which express low levels
of endogenous miR-27 (data not shown). The cells were
harvested, washed, and lysed 24 h after transfection, and
Ago complexes were immunoprecipitated with anti-pan-
Ago antibodies (clone 2A8) (Nelson et al. 2007), which
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FIGURE 1. Ago coimmunoprecipitation of 3′-biotin-tagged miR-27 miRNAs. (A) MiR-27 was chemically synthesized and covalently linked to a
3′-biotin moiety through three different linkers: C6, TEG, TEG-phosphate. Biotinylated miR-27 was annealed with a complementary strand, miR-
27∗, and the resulting double-stranded miRNAwas transfected into human Jurkat T cells. A G•Uwobble pair was introduced at the second nucleotide
position of the miR-27 to ensure selective Ago loading (Ørom and Lund 2007). For the same reason, a 5′ phosphate group (represented by “p”) was
added to miR-27 but not to miR-27∗. (B) Northern blot analyses of miR-27, miR-27∗, and miR-16 coimmunoprecipitated with anti-Ago (αAgo)
antibodies (lanes 6,7) or control antibodies (lane 8). Untransfected unmodified (U) and biotinylated (B) miR-27 provided markers (lanes 9,10).
Input (lysate, 20%), supernatant (Sup, 20%), and immunoprecipitate (IP, 100%) are shown. The results are representative of three independent ex-
periments performed using 3′-biotin-miR-27 synthesized by Dharmacon. Comparable results were obtained for miR-27 modified with 3′-biotin
(IDT) and 3′-biotin-TEG (IDT). Ago co-IP efficiencies = (intensity of bands in the IP)/(intensity of bands in the lysate). Values represent mean ±
standard deviations from three experiments.
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recognize Ago 1, 2, 3, and 4. Because the Ago epitope is at
the C terminus, away from the binding pocket for the
miRNA 3′ end (Nelson et al. 2007), 3′-biotin modifications
should not interfere directly with antibody interaction.
Levels of miR-27, miR-27∗, and endogenous miR-16 present
in the lysate, supernatant, and immunoprecipitated pellets
were then analyzed by Northern blot (Fig. 1B). We per-
formed the experiment using several different lysis buffers
and obtained comparable results (Materials and Methods)
(Fig. 1B).
We found that unmodified and biotinylated miR-27 mol-

ecules entered cells with similar efficiencies (Fig. 1B, cf. lanes
1,2 to 9,10, respectively). Biotin conjugation slowed the gel
migration of miR-27 (Fig. 1B, cf. lane 1 to 2), as confirmed
by streptavidin affinity pulldown assays (data not shown).
As expected, unmodified miR-27 was efficiently coimmuno-
precipitated from the cell lysate by anti-Ago antibodies
(∼33% efficiency) (Fig. 1B, lane 6). In contrast, the biotin-
ylated miR-27 (with TEG-phosphate linker; Dharmacon)
was coimmunoprecipitated (∼8% IP efficiency) only at back-
ground levels compared to an isotype-matched control anti-
body (∼4% efficiency) (Fig. 1B, cf. lane 7 to 8; upper band
labeled “B”). Only nonbiotinylated miR-27, present either
as an impurity in the chemical synthesis or resulting from
3′-end degradation occurring during the experiment, was ef-
ficiently immunoprecipitated (∼34%) by anti-Ago antibod-
ies (Fig. 1B, cf. lane 7 to 8; lower band labeled “U”).

DISCUSSION

Our data are in agreement with X-ray crystal structures and
biophysical studies of the human Ago-miRNA complex. A
number of conserved amino acid residues in the PAZ domain
of Ago proteins use noncovalent interactions to recognize
the 3′-hydroxyl group of miRNAs (Elkayam et al. 2012;
Schirle and MacRae 2012). Mutations in these residues or
bulky modifications that replace the 3′ hydroxyl group of
miRNAs, such as propanediol, fluorescein, or puromycin,
abolish interaction with Ago proteins (Ma et al. 2004). Inter-
estingly, studies of Thermus thermophilus Ago suggest that
the 3′ end of a miRNA can be released from its PAZ binding
pocket when extensive base-pairing interactions between
guide and target induce a conformational change in bacterial
Ago. However, 3′-end recognition by Ago needs to occur pri-
or to this conformational change (Wang et al. 2009).
In the literature, several studies have either (1) validated the

biological activity of 3′-biotinylated miRNAs using reporters
(containing perfectly complementary target sites) or known
endogenous mRNA targets; or (2) confirmed association of
biotinylated miRNAs by immunoprecipitation with anti-
Ago antibodies using quantitative real-time polymerase chain
reaction (Q-PCR) (Ørom and Lund 2007; Lal et al. 2011). The
results suggested that biotinylated miRNAs are associated to
some extent with Ago and repress reporters and known tar-
gets similarly to unmodified miRNAs. These conclusions

may be explained in several ways. First, because the assays
used were indirect, the signals may be due to the presence
of some nonbiotinylated miRNAs, originating either from
impurities in the chemical synthesis or 3′-end degradation
in vivo; when loaded onto Ago (Fig. 1B, lane 7; lower band la-
beled “U”), these nonbiotinylated miRNAs may repress arti-
ficial reporters or endogenous mRNA targets. Second, the
TaqMan Q-PCR assay does not distinguish biotinylated
from unmodified miRNAs (Chen et al. 2005); therefore,
both species contribute to the quantitation. Third, although
unlikely, biotinylated miRNAs may be loaded into Ago pro-
teins that are in the particular conformation in which the 3′

end of miRNA is not bound by the PAZ binding pocket
(Ma et al. 2004). In other studies, perfectly complementary
siRNA duplexes biotinylated at both 3′ ends have been suc-
cessfully used for affinity purification of RISC from HeLa
cell extracts in vitro (Martinez et al. 2002). Here, because
the efficiency of modification might have been <100%, per-
haps RISC assembly intermediates were captured with 3′-bio-
tin only on the passenger strand of double-stranded siRNAs
loaded onto Ago.
As an alternative to 5′ or 3′ modification, adding biotin to

internal sites in a miRNA could be considered for affinity se-
lection. The central bases at miRNA positions 11–16 nt are
usually flexible in cocrystal structures (Elkayam et al. 2012;
Schirle and MacRae 2012), suggesting that biotin or other
modifications at these internal sites may be tolerated by not
interfering with essential miRNA interactions.

CONCLUSIONS

Our results show that 3′-biotinylated miR-27 does not effi-
ciently associate with Ago proteins in cells. Because Ago pro-
teins interact with miRNAs in a non-sequence-specific way
(Kuhn and Joshua-Tor 2013), our observations on biotin-
ylated miR-27 are likely to hold true for other miRNAs. We
conclude that many of the reported “targets” selected by bio-
tinylated miRNAs likely form base-pairing interactions with
the biotinylated miRNA independent of Ago. Thus, caution
should be exercised when interpreting results from biotin-
ylated miRNA-based pulldown assays. Direct experimental
evidence is needed to validate miRNA-mRNA/ncRNA target
interactions inside cells.

MATERIALS AND METHODS

MiRNAs

MiRNAs were chemically synthesized by several companies as
noted in Figure 1A: unmodified miR-27: 5′-/phosphate/UUCACA
GUGGCUAAGUUCCGC-3′; biotinylated miR-27: 5′-/phosphate/
UUCACAGUGGCUAAGUUCCGC/biotin/-3′; and miR-27∗: 5′-
GGAACUUAGCCACUGUGGAAG-3′. MiR-27 and miR-27∗ were
annealed prior to transfection according to Tuschl (2006).

3′-Biotinylated miRNAs are not loaded into Ago
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Cell culture and transfection

Jurkat T cells were grown in RPMI 1640 medium supplemented
with 10% fetal bovine serum, 1× penicillin/streptomycin and 2
mM L-glutamine. Two million Jurkat T cells were transfected
with 200 pmol synthetic miR-27, unmodified or biotinylated, per
cuvette using the Amaxa Cell Line Nucleofector kit V (program
X-05) from Lonza. Cells were harvested 24 h post-transfection for
anti-Ago immunoprecipitation.

Ago coimmunoprecipitation assay

Transfected cells were washed twice with 1× PBS and lysed in lysis
buffer (150 mM NaCl, 50 mM Tris-Cl pH 7.5, 0.5% NP-40, 1 mM
DTT, EDTA-free protease inhibitor cocktail [Roche] and RNase in-
hibitor [Roche]) for 15 min on ice. The lysate was passed through
a 25.5-gauge needle 20 times to ensure complete lysis, then spun at
16,000g for 15 min at 4°C. The second lysis buffer tested was com-
posed of 100 mM NaCl, 5 mM MgCl2, 20 mM Tris-Cl pH 7.5,
0.3% NP-40, 1 mM DTT, EDTA-free protease inhibitor cocktail
(Roche) and RNase inhibitor (Roche). Cells were lysed by passing
through a p200 tip, incubated on ice for 5 min, and spun at
10,000g for 10 min at 4°C. The supernatant was subjected to anti-
Ago immunoprecipitation as follows: Protein G beads (GE Health-
care) were exchanged into lysis buffer, blocked with 200 μg/mL gly-
cogen, 100 μg/mL yeast carrier RNA, and 2mg/mLBSA (NEB) at 4°C
for 30 min and washed twice in lysis buffer. About 30 μL of the
blocked beads were incubated with lysate (supernatant after the
16,000g or 10,000g spin) and 12 μg of anti-Ago antibodies (clone
2A8) (Nelson et al. 2007) or isotype-matched mouse IgG antibodies
as a control (anti-HA; clone 16B12; Covance) for 3 h at 4°C with ro-
tation. The beads were washed 2–3 times with the lysis buffer before
RNA extraction. RNAs were isolated from the lysate, the supernatant
after immunoprecipitation, and the beads by proteinase K digestion
at 65°C for 30 min, phenol extracted, and ethanol precipitated.

Northern blot analysis

RNAs were separated on a 15% denaturing polyacrylamide gel
and electrophoretically transferred to Hybond-N+ membrane (GE
Healthcare). Hybridization to 5′-[γ-32P]-labeled DNA oligonu-
cleotide probes (miR-27: 5′-GCGGAACTTAGCCACTGTGAA-3′;
miR-27∗: 5′-CTTCCACAGTGGCTAAGTTCC-3′; miR-16: 5′-
CGCCAATATTTACGTGCTGCTA-3′, from IDT) was carried out
in ExpressHyb (Clontech) overnight at 30°C following the manu-
facturer’s protocol. Membranes were then exposed to phosphor
screens, which were scanned on a Storm 860 Phosphorimager (GE
Healthcare).
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