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� Abstract
Eosinophils are granular leukocytes that play a role in mediating inflammatory
responses linked to infection and allergic disease. Their activation during an immune
response triggers spatial reorganization and eventual cargo release from intracellular
granules. Understanding this process is important in diagnosing eosinophilic disorders
and in assessing treatment efficacy; however, current protocols are limited to simply
quantifying the number of eosinophils within a blood sample. Given that high optical
absorption and scattering by the granular structure of these cells lead to marked image
features, the physical changes that occur during activation should be trackable using
image analysis. Here, we present a study in which imaging flow cytometry is used to
quantify eosinophil activation state, based on the extraction of 85 distinct spatial fea-
tures from dark-field images formed by light scattered orthogonally to the illuminating
beam. We apply diffusion mapping, a time inference method that orders cells on a tra-
jectory based on similar image features. Analysis of exogenous cell activation using
eotaxin and endogenous activation in donor samples with elevated eosinophil counts
shows that cell position along the diffusion-path line correlates with activation level
(99% confidence level). Thus, the diffusion mapping provides an activation metric for
each cell. Assessment of activated and control populations using both this spatial
image-based, activation score and the integrated side-scatter intensity shows an
improved Fisher discriminant ratio rd = 0.7 for the multivariate technique compared
with an rd = 0.47 for the traditional whole-cell scatter metric. © 2019 The Authors. Cyto-

metry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of

Cytometry.
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Automated analysis of single-cell data, using multivariate approaches with imaging
platforms, was first reported over 20 years ago by Beksaç et al. (1). Today, there is a
growing appreciation of this approach (2) as the use of machine learning algorithms
has become widespread (3,4). However, the majority of reported studies focus at the
whole cell level and the identification of the cell type (5,6), even though this may
well involve the extraction of intracellular morphology metrics (7). Here, we report
on the use of diffusion mapping, a time inference algorithm to provide a trajectory
of cells based on image features measuring their intracellular state (8). The aim is to
profile the status of eosinophils by their granular substructure and visualize in a
low-dimensional space. Eosinophils are specialized myeloid cells that play a central
role in allergy and infection; hence, better strategies for enumerating and function-
ally evaluating them are critical to disease diagnosis and monitoring (9). They are
terminally differentiated, end-stage cells that when fully matured contain cytoplas-
mic, crystalline granules, which are both storage and secretory organelles (10–13).
These granules have a unique ultrastructural morphology (14) and their contents are
secreted upon stimulation with a number of physiological stimuli such as cytokines
and chemokines (15). Release occurs by extracellular secretion of intact granules or
by progressive emptying of specific granule contents in the absence of granule-
to-granule or granule-to-plasma membrane fusions via a process termed piecemeal
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degranulation (PMD) (16,17). This activation of eosinophils
by molecular stimuli is associated with changes to the mor-
phology and spatial distribution of the granules as they
release proteins from their core matrix and are transported to
the cell surface. Given the submicrometer size of these granu-
lar structures, the dynamics of eosinophil activation are typi-
cally studied by electron microscopy (18). Here, we present
studies in which optical microscopy, implemented using an
imaging flow cytometer, is used to obtain multiple morpho-
logical feature measurements (19). Multivariate analysis of
these features provides a quantitative assessment of the
eosinophil-activation state that is determined by the optical
transmission and scattering properties of the intracellular
granules.

Current, commonly used blood diagnostics rely on the sim-
ple measure of eosinophil count (20,21) to discern the presence
of anomalous immune system activity (22–24). However, the
activation status of the cells is intimately linked to the progress
and current status of allergic and inflammatory disease (25). It is
not only, therefore, the prevalence of eosinophils that is impor-
tant, their functional state must also be considered. Quantifica-
tion of the degree of eosinophil activation can be obtained
through the use of fluorescently labeled CD-specific antibodies
(25–27). Here, we demonstrate that label-free profiling of
the activation state of each eosinophil is also possible from
side-scatter (dark-field) images, taken with an Imagestream
cytometer (Merck, Darmstadt, Germany), from peripheral blood
samples obtained from healthy human donors. The analysis data
are obtained by multivariate quantification of 85 image features
extracted from pixel-level measurements of cell scatter, collected
orthogonal to the illumination source (see Supporting Informa-
tion for full details of the 85 features). This label-free, image-
based determination of eosinophil activation-status is validated
by the comparison of traditional and imaging cytometry metrics
in a control cell set and the one exposed to the stimulatory
agent, eotaxin (28).

MATERIALS AND METHODS

Cell Extraction and Preparation
Human peripheral blood was collected from healthy volunteers
into heparinized Vacuettes™ (Greiner Bio-one, Frickenhausen,
Germany). Blood was processed within 30 min of collection. All
samples were collected with informed written consent, and ethi-
cal approval was obtained from Wales Research Ethics Commit-
tee 6 (13/WA/0190).

Eosinophil Activation in Whole Blood
Whole blood (500 μl/tube) was exposed to a stimulus known
to induce piecemeal degranulation—100 ng/ml exotoxin
(CCL11)(BioLegend, San Diego, CA), for 2 or 5 h at 37�C.
Untreated samples were also included. After incubation,
200 μl of blood was removed, red blood cells were lysed, and
the sample was then fixed (BD CellFix™, Becton Dickinson,
Belgium).

Image Acquisition by Imaging Flow Cytometry
The sample volume for imaging flow cytometry was 50 μl. The
Imagestream 100 (Merck, Darmstadt, Germany) platform was
used to capture images. The Imagestream 100 provided 10,000
cell events from which eosinophils were gated postacquisition.
For each cell, images of brightfield, dark field (90� to illumina-
tion), and fluorescence (488-nm excitation, 505–560-nm emis-
sion band) were collected. The fluorescent channel was used to
identify unstained eosinophils within a blood leukocyte popula-
tion as they are identified by a marked autofluorescence signal
in comparison with other leukocytes (29). This signal is gener-
ated by the high concentration of flavin adenine dinucleotide
localized within the cytoplasmic granules (30). After image
acquisition, the IDEAS 6.0 software tool (Merck, Darmstadt,
Germany) was used for initial data analysis of whole cell inten-
sity in each of the three collection channels.

Imaging Cytometer settings: Sample volume: 50 μl. Flow
diameter: 10 μm. Velocity of flow: 66 ms−1. Resolution: 1 μm.
Magnification: ×40. Camera sensitivity: 32 on all channels.
Camera gain: 1. Brightfield LED intensity: 36 mW. Darkfield
laser intensity: 40 mW. 488-nm laser intensity: 60 mW.

Image Analysis
Following initial sample gating to select single, focused cells, all
eosinophil cell images were exported from the IDEAS software
environment for detailed analysis, as tagged image format files.
Multivariate analysis was based on extraction of pixel-related
features in the side-scatter image. The Cellprofiler open source
software platform (31) was used to obtain a set of 85 image met-
rics reporting on signal intensity, radial distribution, image gran-
ularity, and image texture (full Cellprofiler pipeline available in
Supporting Information). Diffusion mapping of the data set to
reduce dimensionality to a 2-D plot was implemented using an
open-source MATLAB code (Laurens van der Maaten, Delft
University of Technology).

Software Availability
The designed workflow software is open source and freely
available:

Cellprofiler: www.cellprofiler.org/imagingflowcytometry
Multivariate analysis: https://lvdmaaten.github.io/drtoolbox/

RESULTS

Whole Cell Analysis
Identification of eosinophils within the leukocyte population is
based on whole cell parameters of integrated autofluorescence
and side-scatter intensity. A typical scatter plot is shown in
Figure 1A; the high optical scattering coefficient and fluores-
cent protein content of the eosinophil granules produce a clear
clustering of these cells in the upper right quadrant, discrimi-
nating them from the other leukocyte subgroups (validation of
the gating using CD markers is presented in Supporting infor-
mation). Bright-field images of gated eosinophils are presented
in Figure 1B, together with the scatter and the autofluorescence
signals. The intracellular granules appear as dark spots within
the bright field (transmission mode) as the illuminating light
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beam is scattered away from the optical path. The other chan-
nels confirm the spatial correspondence of these dark spots to
the scatter and fluorescence image maxima. To explore the link
between the activation state and the optical properties of cells,
samples were exposed to a known activation agent—eotaxin
(17,32)—for a 2-h period. This produced a statistically relevant
increase of ~10% in the mean scatter intensity per cell (Fig. 2).
Thus, the biological and morphological changes in eosinophils,
which occur upon activation, clearly affect the optical proper-
ties of these cells.

Subcellular Analysis: Multivariate Image Feature
Mapping
Our purpose was to avoid predetermined analysis approaches
using predefined feature measures, and therefore, we adopted

an open search for a reporting metric based on multiple
parameters, extracted from the cell images. A panel of typical
images is shown in Figure 3A. The scatter channel was cho-
sen for feature extraction, as it is less susceptible to optical
phase artifacts. These appear in a subset of bright-field images
in the form of bright or dark halos around the cell (33) and
are due to small deviations of cell position within the flow
stream. A linear mapping of the 85 image features to a
3-dimensional PCA plot is shown in Figure 3B. This clearly
shows a shift in cell position as activation via eotaxin changes
the granular attributes of individual cells. While the PCA pro-
vides good population-level discrimination between control and
activated samples, detailed analysis of single cells is limited, for
this is a linear data reduction technique, and so cannot capture
the full complexity of the cell trajectory within the geometry of
the multivariate feature manifold (34). We therefore adopted a
nonlinear, diffusion mapping approach. Diffusion mapping is a
time inference or pseudotime algorithm in which the Euclidean
distance separation of data points within the multivariate space is
equated to a mathematical probability function (35). The mani-
fold of point-to-point distances is thus captured within a proba-
bility matrix, whose eigenfunctions can be used as coordinates for
low-dimensional representation. Conceptually, the approach is
well suited to the analysis of dynamic cell populations (36) as it is
assumed that they “diffuse” through the multidimensional state
space as their structural or functional form alters. In relation to
the activation of eosinophils, it is the changes in their granular
morphology that alter the image metrics and, hence, move the
cell position within the multivariate space.

The data matrix for the diffusion mapping contained the
combined image feature metrics from five samples: three with
differing eosinophil counts (1.9%, 3.1%, and 9.0% of WBC total)
and no exogenous activation, and two further samples from the
1.9% eosinophil donor, subjected to 2- and 5-h eotaxin exposure.
By pooling the data in this way, we maximize the occupancy of
the state space and provide the diffusion-mapping algorithm
with the best possible representation of the potentiality of cell

Figure 1. (A) scatter plot of side-scatter intensity versus autofluorescence intensity for an untreated, control sample. The eosinophil

population is identified by the solid red circle. The shift typically induced by exposure to an activating agent is shown by the dashed red circle.

(B) Typical side scatter, brightfield, and autofluorescence images of five eosinophils. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 2. Mean side-scatter intensity of eosinophil cell samples

following a 2-h exposure to eotaxin. Measurements are scaled to

give unity value for the control (untreated) sample, error bars

show the s.e.m. (n = 1,075, total cell count acquired from three

separate measurement of the donor sample). [Color figure can be

viewed at wileyonlinelibrary.com]
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status. This also allows us to use the results of the mapping to
make direct comparisons between all cells. The presentation of
the results is split into two subplots to maintain clarity. The
results of the diffusion mapping for eosinophils exogenously
activated with eotaxin, for differing duration, are shown in
Figure 4A. Cells lie along a curved trajectory within the 2-D
space with increasing eotaxin exposure producing a rightward
shift of cells relative to the control sample. Given that the three
data sets are from a single donor sample and have undergone a
unified mapping within the multivariate space, we correlate cell
position along the 2-D trajectory of Figure 4A to the degree of
activation. Statistical testing of the data, using a two-sample,
Kolmogorov–Smirnov test, indicates 99.9% probability that the
three samples come from different distributions. As elevated
blood eosinophil count is a biomarker of eosinophilic activity
(37), the diffusion map should also differentiate samples from
donors with different eosinophil numbers, that is, profile an
endogenously activated cell set. The results in Figure 4B confirm
that this is the case with high-count samples sitting further along
the trajectory. Thus, the position of each cell along the diffusion
path, from the y-intercept zero point, can be used as a measure
of the relative activation status of the cell. Histograms of this
“activation index” are shown in Figure 4C and are consistent

with elevated levels of cell activation in samples exposed to an
activation agent or in samples from donors with elevated eosino-
phil counts. Inspection of the relative influence of the 85, image
metrics on the diffusion map shows that the 2-D representation
is primarily determined by 16 texture measurements (Haralick
indices), eight measurements of intensity (e.g., mean, median,
std. dev., lower quartile %), and a granularity measure.

Figure 4. (A) Diffusion map of gated eosinophil populations for

exogenous activation with eotaxin, 1.9% eosinophil sample

(untreated control—black; 2 h exposure—cyan; 5 h exposure—

red). Black dashed line is a guide to the eye of the diffusion path.

(B) Diffusion map for endogenous activation (3.1% eosinophil

sample—blue, 9.0% sample—green). [Each point corresponds to

a single cell, numbers per sample vary across the set within the

range: 215 < n < 302]. (C) Histograms of activation index,

obtained from diffusion maps, for all five samples (color coding

as per panels A and B). Points indicate histogram bin values, and

lines are Gaussian-fitting curves. [Color figure can be viewed at

wileyonlinelibrary.com]

Figure 3. (A) Representative images of three cells showing

brightfield; threshold-implemented binary darkfield, in which

granule morphology is evident; and darkfield intensity images,

which show the texture and intensity features. (B) PCA plot of

control (black) and eotaxin-treated (red) samples (exposure time

of 5 h). [Color figure can be viewed at wileyonlinelibrary.com]
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Given that whole cell intensity measures are playing
some role and that mean population scatter level correlates
with activation (see Fig. 2), the question may be raised as to
the value of undertaking cell imaging rather than traditional
flow cytometry. This is addressed in Figure 5, which shows a
comparison of activation measures based on the single metric
of side-scatter intensity (integrated image intensity) and mul-
tiple, spatially resolved metrics (diffusion map position). The
scatter plot in Figure 5A indicates a good correlation between

the different measures for the highly activated sample (5-h
eotaxin exposure). However, the correlation is considerably
weaker for the control sample data. Histograms of each met-
ric for control and eotaxin-exposed samples are shown in
Figure 5B and C. In both cases, the null hypothesis is rejected
at the P < 0.01 level (Kolmogorov–Smirnov test), but the
greater discriminatory power of the multivariate, activation
index produces a Fisher discriminant ratio, rd of 0.7 com-
pared with a value of 0.47 for side-scatter intensity alone.
These results indicate that for highly activated cells, where the
optical scattering is pronounced, side-scatter intensity can be
used as a reasonable surrogate of activation status. In less-
activated cells, however, the scattering is not enough to give
an unambiguous indication of cell activation, and in this case,
the additional information content provided by image analy-
sis leads to greater measurement resolution.

DISCUSSION

The aim of this study was to identify cell position within a
continuous activation status profile for granular leukocytes.
Related examples can be found in work reporting on the
quantitative tracking of cells through the continuum of the
cell cycle, either by nonlinear data clustering (3) or using deep
learning in neural networks (4). We employed diffusion map-
ping as this technique provides a means to track arbitrary
movement within a multivariate space. The diffusion map
produces Euclidean distances in an embedded space, which
approximate to diffusion distances in the data, and has
proven effective in analyzing evolution of cell state due to bio-
logical process, for example, stem-cell differentiation path-
ways (36,38). The analysis presented here on blood
eosinophils confirms that scatter-image features due to intra-
cellular granule content and distribution can be identified
using imaging cytometry and that diffusion mapping of these
does indeed allow quantitative profiling of the activation sta-
tus of cells across a population. This approach therefore adds
an additional diagnostic tool, over and above measurement of
eosinophil counts, and the technique is sensitive enough to
distinguish between activation histograms from donor sam-
ples in which the eosinophil count differs by just 1%.

Integration of signals from the microenvironment prefer-
entially activates different secretory pathways within eosino-
phils; discrete activation profiles measurable by image
analysis of peripheral blood eosinophils could therefore pro-
vide insight into disease phenotype (39) or endotype (37) and
response to treatment. Allergic disease, asthma, and parasite
infection have been the focus for eosinophil-related research
these past decades, but there is growing appreciation of their
contribution to host defense against bacteria and viruses, vari-
ous hypereosinophilic syndromes, autoimmune disease, can-
cer, and a range of eosinophilic gastrointestinal disorders that
are increasing in prevalence (40). There is a real need for
noninvasive methods of diagnosing these eosinophilic gastro-
intestinal disorders and for biomarkers for multiple eosino-
philic diseases. As an example, eosinophilic esophagitis is a
disease that has emerged in the past 30 years, is associated

Figure 5. (A) Scatter plot of side-scatter intensity versus activation

index (untreated control—black, rp = 0.54; 2 h exposure—cyan,

rp = 0.63; 5 h exposure—red, rp = 0.73). (B) Histograms of

activation index for untreated control (black) and sample exposed

to eotaxin for 5 h (red). Fisher discriminant ratio, rd = 0.70. (C)
Histograms of side-scatter intensity for untreated control (black)

and sample exposed to eotaxin for 5 h (red), rd = 0.47. [Color

figure can be viewed at wileyonlinelibrary.com]
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with food allergy, afflicts children and adults, and can be
diagnosed only by symptoms and histology of esophageal
biopsy (41). More nuanced phenotyping of peripheral blood
eosinophil activation status might limit the need for invasive
endoscopy for tissue sampling, especially in children.
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