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a PPG Signal Dataset Collected in 
Semi-Naturalistic Settings Using 
Galaxy Watch
Sangjun Park, Dejiang Zheng & Uichin Lee ✉

the widespread adoption of consumer-grade wearable devices, such as Galaxy Watch, has 
revolutionized personal health monitoring as they enable continuous and non-invasive measurement 
of key cardiovascular indicators through photoplethysmography (PPG) sensors. However, existing 
datasets primarily rely on research-grade devices, limiting the applicability of consumer-grade 
wearables in real-world conditions. to address this gap, this study presents GalaxyPPG, a dataset 
collected from 24 participants that includes wrist-worn PPG signals from a Galaxy Watch 5 and an 
Empatica E4, alongside chest-worn ECG data from a Polar H10. Data were captured during diverse 
activities in a semi-naturalistic setting, providing insights into the sensing performance of consumer-
grade wearables under motion- or stress-inducing activities. this dataset is designed to advance 
applications of PPG signals, such as HR tracking with diverse physical activities and HRV monitoring 
for stress detection. Additionally, we offer an open-source toolkit for data collection and analysis using 
Samsung Galaxy Watch, fostering reproducibility and further research leveraging this toolkit.

Background & Summary
The emergence and advancement of consumer-grade wearable devices such as smartwatches (e.g., Galaxy 
Watch, Apple Watch) have dramatically transformed personal health monitoring methods. In particular, pho-
toplethysmography (PPG) sensors embedded in smartwatches can continuously and non-invasively measure 
key cardiovascular indicators such as heart rate (HR) and heart rate variability (HRV), providing a valuable 
foundation for cardiovascular health management1. Moreover, the versatility of PPG signals enables the extrac-
tion of various physiological parameters, including oxygen saturation and respiratory rate. PPG sensing offers 
a substantial potential for broad digital healthcare applications, including sleep monitoring2 and stress assess-
ment3. This development has prompted clinical and research settings to actively explore a wide range of oppor-
tunities for leveraging consumer-grade wearable devices.

However, despite this potential, using PPG signals in everyday conditions faces a significant challenge from 
motion artifacts (MA)4. MAs occur when physical movements, such as walking, running, or changing wrist 
positions, alter the contact between the sensor and the skin and the movement of surrounding tissues, intro-
ducing irregular noise into the signal5. This complicates the stable extraction of key physiological indicators, 
such as heart rate, and can erode the inherent advantage of continuous monitoring that PPG provides. However, 
consumer-grade wearable devices, such as Galaxy Watch, have not been systematically validated to assess how 
MAs occur and affect data quality, often hindering clinical and research applications. Addressing this issue 
requires sustained research and verification efforts, including improvements in signal processing algorithms, 
noise reduction techniques, and data preprocessing strategies.

In the past, researchers introduced various datasets to address challenges like MAs and explore diverse 
PPG signal analysis applications. The IEEE Signal Processing Cup dataset6 focuses on accurate heart rate (HR) 
measurement in environments with intense physical activities, such as walking and running, where MAs are 
prevalent. PPG-DaLiA5, on the other hand, captures daily activities in semi-naturalistic environments, primar-
ily focusing on analyzing motion artifacts. WESAD3 focuses on physiological and behavioral sensing under 
stress-inducing stationary activities, such as interviewing. However, these datasets are tailored to their specific 
purposes and primarily rely on research-grade devices like the E4 wearable or custom-built PPG sensors for data 
collection. As a result, the applicability of consumer-grade wearable devices has not been adequately addressed.
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Building on these considerations, our dataset integrates multiple sensing modalities to enable robust valida-
tion of PPG signals in semi-naturalistic settings. Specifically, it comprises simultaneously collected data from 
24 participants wearing three devices: a Polar H10 chest-worn electrocardiogram (ECG) sensor, a wrist-worn 
Empatica E4 device commonly used in research contexts for PPG measurements, and a smartwatch, the 
Galaxy Watch 5. Data collection involved various everyday activities designed to introduce motion artifacts 
and a stress-inducing test to demonstrate potential applicability in stress detection and related domains. The 
Galaxy Watch was chosen because it officially supports PPG data export via Samsung Health Sensor Software 
Development Kit (SDK), making it a suitable platform for PPG sensor data collection and model evaluation. This 
collection setup allows for comparing and assessing signal quality across different devices and conditions, ulti-
mately contributing to a clearer understanding of PPG performance in real-world environments. Additionally, 
we have released research toolkits for Galaxy Watch data collection and analysis to facilitate similar experiments 
and enable other researchers to reproduce and extend this experimental framework (described in the Code 
Availability Section).

Methods
Physiological Sensor Data toolkit for Galaxy Watch. The authors developed a custom data acquisition 
toolkit to collect raw sensor data using the Galaxy Watch. The toolkit was implemented through the Samsung 
Health Sensor SDK7 (referred to as Samsung Privileged SDK at the time), officially provided by Samsung for 
assessing signals such as accelerometer, PPG, HR, and skin temperature. The implemented application consisted 
of two separate apps: one for the Galaxy Watch and another for the Android smartphone. The Galaxy Watch app 
allows users to start or stop data collection by selecting the data to be collected from HR/IBI, PPG, ACC, and skin 
temperature. The smartphone application was designed to monitor the data collection in real time. To support 
this, it included features to display the updated status of each sensor’s data, as shown in Fig. 1. Further, a timer 
was implemented to help researchers track elapsed time, and a tagging button was included to log timestamps 
for the activity transition during the experiment. After the experiment, the collected data could be exported and 
downloaded on the smartphone app as a zip file containing multiple CSV files.

Data Collection. Ethics Approval. Our study for building the GalaxyPPG dataset was approved by the 
Institutional Review Board (IRB) of the Korea Advanced Institute of Science and Technology (KH2024-109). 

Fig. 1 Interface of the Galaxy Wearable Logger toolkit: The smartphone app (left) and Galaxy Watch app (right) 
facilitate synchronized data collection, including PPG, heart rate, and acceleration signals, enabling seamless 
logging for research and analysis.

https://doi.org/10.1038/s41597-025-05152-z


3Scientific Data |          (2025) 12:892  | https://doi.org/10.1038/s41597-025-05152-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

Prior to data collection, all participants were informed about the purpose and procedures of the study, and pro-
vided written informed consent for both participation and data sharing.

Recruitment. We recruited participants through our campus’s online bulletin board. Participants are restricted 
to right-handed, physically healthy adults aged 18–65, especially those with no history of heart conditions or 
cardiovascular issues. Based on the recruitment, 24 participants (12 females) with a mean age of 23.3 (SD = 2.0; 
range = 20-29) participated in our experiment.

Collection Setup. Participants wore the Polar H10 to measure ECG signals and the Galaxy Watch 5 and 
Empatica E4 on both wrists to measure PPG signals, as depicted in Fig. 2. Due to physical constraints, wearing 
both devices on the same wrist was not appropriate. Therefore, the two devices were attached to opposite wrists, 
and to minimize noise caused by differences in wrist placement, the Galaxy Watch 5 and Empatica E4 positions 
were counterbalanced by randomizing the placement for each participant. For the Polar H10, a same-gender 
researcher assisted with fitting the device and ensured it was properly secured before data collection began. Data 
from the Polar H10 was collected using the Polar Sensor Logger app8, and Empatica E4 data was collected using 
the E4 realtime app9.

To replicate daily wear conditions, participants were instructed to wear the Galaxy Watch 5 and Empatica E4 
snugly, ensuring a proper fit without causing discomfort. After confirming that all devices were properly worn 
and operational, participants were given a 5-minute adaptation period, as suggested by Luca et al.10, to mitigate 
potential undesired effects caused by tension or unfamiliarity with the equipment. The collection was conducted 
in the laboratory shown in Fig. 2. A series of tasks requiring monitoring and interaction were performed while 
participants viewed the screen. To ensure the smooth progress of the data collection, the setup was designed to 
allow the experimenter to observe the same screen as the participant. Physical activities such as walking and 
running during the experiment were conducted using a treadmill.

Collection Procedure. The data collection was conducted with two primary objectives, both focused on the 
PPG signals from the Galaxy Watch: (1) to measure physiological responses to social stress scenarios (as exam-
ples of stationary activities) and (2) to assess how much noise (motion artifacts) affects these signals during 
everyday activities. To achieve both objectives, the collection process was conducted in two consecutive phases: 
the first phase involved measuring physiological responses in both social stress situations and neutral condi-
tions, followed by the second phase, which focused on diagnosing the effects of various daily movements on 
PPG signals. The overall procedure followed the steps outlined in Fig. 3.

Before starting data collection, we explained the data collection procedure and obtained IRB consent from 
the participants. We assisted participants in wearing all three devices and ensured that they were function-
ing properly before beginning. Additionally, a 5-minute adaptation period was provided to account for initial 
adjustment before the experiment commenced.

Phase 1 To induce social stress, the Trier Social Stress Test (TSST)11 and the Sing-a-Song Stress Test 
(SSST)12 were adapted and applied. Both tests were selected for their proven effectiveness in reliably inducing 
social-evaluative stress. The TSST has been widely used in prior work, including the WESAD dataset3, to induce 
stress during physiological signal tracking. Similarly, the SSST has been validated in multiple studies13,14 as a 
practical and effective method for eliciting stress responses, particularly in settings where a simpler or more 
scalable protocol is desirable. To establish a baseline for physiological responses under neutral conditions, two 
neutral activities were conducted: baseline3 and screen reading12. The neutral and stress conditions were con-
ducted sequentially without time intervals, such as prior studies3,10. To minimize carryover effects between TSST 
and SSST, a 5-minute meditation was provided after the stress-inducing tasks to help participants return to a 
neutral state. To minimize the effects of motion artifacts during this phase, participants were instructed to min-
imize hand movements as much as possible. However, it is worth noting that participants occasionally moved 

Fig. 2 Experimental setup showing the placement of devices on the participant (left) and the laboratory 
environment (right). Devices attached to the participant: (1) Polar H10 (ECG), (2) Empatica E4 (PPG), 
and (3) Galaxy Watch 5 (PPG). The positions of the Empatica E4 and Galaxy Watch 5 were randomized for 
balance. Most activities were conducted at the desk, while walking, jogging, and running were performed on 
the treadmill.
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their hands unconsciously, particularly during the SSST and TSST tasks. The detailed procedure for each activity 
is described below: 

 1. Baseline: Participants were seated on a chair and allowed to rest for 3 minutes after the adaptation period.
 2. SSST: During the SSST, stress was induced by asking participants to sing a song. Participants were given 

30 seconds to understand the instructions and think about a song they wanted to sing. In the next 
30 seconds, they were asked to sing the chosen song. To assess their stress levels, participants were asked 
to report the degree of stress they experienced immediately after the task using a 7-point Likert scale. 
Specifically, they were asked: “Please rate your level of stress about the task that just took place using a scale 
of 1 to 7, where 1 means not at all and 7 means very much.”

 3. Meditation: After completing the stress-inducing test (i.e., SSST and TSST), a meditation program lasting 
approximately 5 minutes was provided to help participants return to a neutral state3.

 4. Screen Reading: Participants were instructed to read approximately 15 pre-prepared neutral sentences 
silently. This activity was conducted for 3 minutes.

 5. TSST: Participants were asked to imagine themselves in a job interview scenario, following the procedure 
described by Allen et al.11. The experimenter acted as the interviewer, asking questions about the partici-
pant’s motivation for applying and follow-up questions based on their responses. Participants were given 
a brief explanation of the scenario and 3 minutes to prepare their answers. The interview itself lasted for 
three minutes. As in the SSST, participants reported their stress levels on a 7-point Likert scale.

Phase 2 In the second phase, we aimed to assess the influence of everyday activities on the quality of PPG 
signals. Everyday scenarios could induce motion artifacts from arm movements, including keyboard and mobile 
typing, standing, walking, jogging, and running, as shown in previous literature6,10. We selected activities to 
represent different types of motion: wrist movements (i.e., keyboard typing, mobile typing, walking), physical 
activities (i.e., jogging and running), and postural changes (i.e., standing). Similar to Phase 1, at least a 2-minute 
break was provided between activities to minimize order effects. At the beginning of the second phase, partici-
pants were informed that they no longer needed to restrict their arm movements and could act as they would in 
their everyday lives. The detailed procedure for each activity is described below: 

 1. Keyboard Typing: Participants typed the text displayed on the screen using a keyboard, and this activity 
lasted for 3 minutes. We selected and utilized neutral sentences from a Wiki site about watches, following 
the approach of Brouwer et al.12.

 2. Mobile Typing: Participants typed the text displayed on the screen using a smartphone, and this activity 
also lasted for 3 minutes.

 3. Standing: Participants were instructed to stand still, and this activity lasted for 3 minutes.
 4. Treadmill: Participants walked (4-6 km/h), jogged (6-8 km/h), and ran (8-10 km/h) on a treadmill for 

2 minutes each, with rest periods provided between activities.
 5. Rest: Participants were given approximately a 2-minute break between activities to ensure the independ-

ence of each activity. For the same reason, adequate rest periods were provided after intensive physical 
activities (e.g., walking and jogging) to ensure recovery.

Data Records
The GalaxyPPG dataset15 is available at Zenodo (https://doi.org/10.5281/zenodo.14635823) and organized as 
shown in Figure 4. At the top level of the directory, there is a file containing metadata about the participants, 
such as demographic details and experimental conditions. The data for each participant is stored in individual 
subfolders named according to participant IDs (e.g., P01, P02, up to P24). Within each participant’s folder, the 
data is further organized by the devices used to collect physiological signals: Empatica E4, Galaxy Watch 5, and 
Polar H10. A detailed description of each file is provided below:

Empatica E4. For the E4 data, each record includes timestamps in UTC+0000 with microsecond precision. 

•	 ACC: Accelerometer data was collected at 32 Hz. The x, y, and z axes are recorded in 1/64 g-units.
•	 BVP: Blood Volume Pulse data processed from the Empatica E4 at 64 Hz. This data is primarily used to 

extract HR/HRV features instead of raw PPG data.
•	 HR: Heart rate data calculated by the Empatica E4 at 1 Hz, recorded in beats per minute (bpm).
•	 IBI: Inter-beat interval data calculated by the Empatica E4 with precision in microseconds.
•	 TEMP: Skin temperature data collected from the Empatica E4 at 4 Hz, recorded in degrees Celsius.

Fig. 3 Illustration of the overall data collection protocol, which consists of preparation and two main phases.
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Galaxy Watch. Galaxy Watch data includes timestamps in UTC+0000 with millisecond precision 
(i.e., timestamp) and when the data was saved due to batching (i.e., dataReceived). 

•	 ACC: Accelerometer data was collected at 25 Hz, recording x, y, and z axes. The values were converted to m/s2 
using the formula specified in the SDK manual: 9.81/(16383.75/4.0)*value.

•	 HR: Heart rate data calculated by the Galaxy Watch 5 at 1 Hz, recorded in bpm. The status field is also 
included to denote the status of HR. Further, the IBI data is also included as a list, with error indicators (-1 for 
error and 0 for normal) accompanying the measurements.

•	 PPG: Raw photoplethysmogram (PPG) data was collected at 25 Hz.
•	 SkinTemp: Skin temperature data collected once per minute, including ambient and body temperatures, 

recorded in degrees Celsius.

Polar H10. For Polar H10 data, each record includes timestamps provided by the sensor with nanoseconds 
precision and the smartphone in UTC+0900 with milliseconds precision. 

•	 ACC: Accelerometer data was collected at 200 Hz, with x, y, and z axes recorded in mg.
•	 ECG: Electrocardiogram data collected at 130 Hz, recorded in mV.
•	 HR: Heart rate data was calculated at 1 Hz, recorded in bpm.
•	 IBI: Inter-beat interval data was recorded in millisecond precision.

others

•	 Meta: This file contains metadata, including demographic information (e.g., age and gender) and experimen-
tal conditions for the participants. The results of the self-reported perceived stress, measured on a 7-point 
Likert scale, are described in the TSST and SSST fields. The wrist position where participants wore the Galaxy 
Watch is stated in the “GalaxyWatch” field.

•	 Event: For each participant, there is a log file for the timestamp of activity changes during the experiment. The 
session field describes the activity, and the status field describes ENTER and EXIT markers.

technical Validation
Our technical validation of the dataset consists of the following five components: (1) comparison between 
GalaxyPPG and existing public datasets, (2) analysis of dataset completeness, (3) evaluation of the physiological 
validity of PPG signals, (4) analysis of signal differences based on wrist placement, and (5) analysis supporting 
the dataset’s ecological validity and highlighting its value by demonstrating that activity-induced noise is com-
mon in wrist-worn PPG devices.

First, we compared GalaxyPPG with existing public datasets to illustrate how it complements them and 
contributes to a more comprehensive understanding of PPG signals in real-life contexts. Second, to assess the 
completeness of the dataset, we analyzed the outlier rate and sampling rate for each sensor modality.

The remaining three analyses focused on deriving physiological metrics from the PPG signals—heart rate 
(HR), heart rate variability (HRV), and peak matching rate (PMR; the proportion of ECG peaks captured in the 
PPG signal)—and validating them against ECG-derived ground truth values.

In the third analysis, we evaluated the accuracy of these physiological metrics during sedentary baseline 
activities to confirm the physiological relevance of the PPG signals. In the fourth, we investigated whether the 
wrist on which each device was worn affected the measurement outcomes, given that the study design required 
participants to wear one device on each wrist. In the fifth analysis, we compared physiological metrics extracted 
from the E4 and Galaxy Watch to show that the observed signal variability reflects realistic noise commonly 
found in wrist-worn devices. Furthermore, by applying common filtering techniques and demonstrating that 
such noise cannot be easily removed, we highlight the need for more advanced algorithms in real-world envi-
ronments and emphasize the value of this dataset for their development and validation.

Fig. 4 Directory structure for the GalaxyPPG dataset, organized into a hierarchical format. The root directory 
contains participant information (Meta) and a data folder. Each participant folder (e.g., P01, P02, P24) includes 
subdirectories for data collected from different devices: Empatica E4, GalaxyWatch, and Polar H10. Each device 
folder contains corresponding sensor data files (e.g., ACC for accelerometer data, HR for heart rate, etc.).
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Dataset Comparison. We compared the GalaxyPPG dataset with existing datasets that include synchro-
nized PPG and ECG recordings. Three widely used PPG datasets are selected, as summarized in Table 1: IEEE 
Signal Processing Cup 2015 datasets (IEEE_Training and IEEE_Test)6, the WESAD dataset3, and PPG-DaLiA5. 
The IEEE datasets serve as foundational benchmarks in PPG heart rate estimation research, while WESAD pro-
vides multimodal data for stress and affect detection under controlled laboratory conditions. PPG-DaLiA rep-
resents a more recent effort to capture daily activities. This selection enables us to evaluate GalaxyPPG across 
different scenarios, ranging from traditional controlled experiments to affective computing applications and nat-
uralistic data collection approaches.

The existing datasets differ in their experimental design and scope.

•	 The IEEE datasets, widely used as benchmarks, employ a device configuration consisting of a single wrist-
worn device with dual-channel PPG (515 nm sampling at 125 Hz) and an accelerometer. Their data collec-
tion protocols are focused and brief: the IEEE Training dataset includes 12 participants, each performing a 
5-minute treadmill exercise session. In contrast, the IEEE Test dataset contains recordings from 10 subjects 
performing arm movements and rehabilitation exercises.

•	 WESAD is a multimodal dataset for affective computing research, featuring physiological and motion data 
collected from 15 participants. Data collection used a carefully designed protocol to generate three distinct 
affective states: neutral, stress (using the Trier Social Stress Test), and amusement. The sensing backbone 
of the dataset consists of a chest-worn RespiBAN Professional device that records ECG at 700 Hz, comple-
mented by an Empatica E4 wrist device that captures BVP and acceleration data at varying sampling rates. As 
in our dataset, WESAD distinguishes itself by integrating stress and emotion detection paradigms, establish-
ing it as a valuable resource for developing affect recognition systems.

•	 PPG-DaLiA represents a more recent approach that focuses on capturing activities of daily life. Using Empat-
ica E4 and RespiBAN devices for BVP and ECG recordings, this dataset includes 15 subjects performing 
various activities under semi-controlled conditions. Although it mainly analyzes motion artifacts, its scope 
includes eight daily activities such as cycling, driving, and working.

•	 GalaxyPPG builds upon and extends previous approaches in several key aspects. First, it employs a com-
prehensive three-device configuration: the commercial device Galaxy Watch 5 (providing PPG at 25 Hz, 
accelerometer data at 25 Hz, and temperature data at 1/60 Hz), the Empatica E4 (capturing BVP at 64 Hz, 
accelerometer data at 32 Hz, and temperature data at 4 Hz), and the Polar H10 (recording ECG at 130 Hz as 
ground truth). In contrast to earlier datasets focusing exclusively on physical tasks (e.g. IEEE) or controlled 
stress conditions (e.g., WESAD), GalaxyPPG broadens the experimental scope by incorporating both phys-
ical activities and psychological stress tests, along with the natural transitions between them. This dataset 
includes data from 24 participants. In comparison, the WESAD and PPG-DaLiA datasets each contain data 
from 15 participants, and the IEEE Training and Test datasets contain data from 12 and 10 participants, 
respectively.

Heart rate distributions To quantitatively compare these datasets, we analyzed their heart rate distributions, 
as summarized in Table 2. We segmented the heart rate ranges into 20 bpm intervals from 0 to 200 bpm to reveal 
distribution patterns across different activity types. This segmentation allows us to examine how heart rates clus-
ter during various daily activities; for instance, the 60–80 bpm range typically corresponds to light activities like 
sitting or walking, whereas ranges above 120 bpm generally reflect more intense physical exertion16. This anal-
ysis is essential for understanding the physiological range and variability captured by each dataset, highlighting 
how the distribution patterns align with each dataset’s intended purpose. Notably, GalaxyPPG, WESAD, and 
PPG-DaLiA contain significantly more samples (35,691; 22,478; and 64,697, respectively) than the IEEE datasets 
(1,768 and 1,328), providing a richer data pool for analysis.

Importantly, the heart rate distribution in GalaxyPPG more accurately represents real-world scenarios, 
with 84.2% of measurements falling within the 60–100 bpm range, typically associated with everyday activities. 
In contrast, the IEEE datasets skew toward higher heart rates (average 135.95 and 115.39 bpm), reflecting 
their focus on intensive physical exercises such as treadmill running. WESAD’s narrower heart rate range 
(predominantly between 60–120 bpm) is particularly well-suited to its focus on affect and stress detection in 
controlled laboratory settings, whereas GalaxyPPG’s wider distribution better supports its aim of monitor-
ing naturalistic daily variations. While GalaxyPPG and PPG-DaLiA exhibit similar heart rate distributions 
(mean HR of 86.70 and 89.43 bpm, respectively), GalaxyPPG is unique in its inclusion of psychological stress 

Dataset Activities

Sensor Configuration Participants

Modalities PPG Device (n)

IEEE SP Cup (Training) Treadmill exercises ECG PPG ACC Wrist-worn 12

IEEE SP Cup (Test) Arm movements Rehabilitation ECG PPG ACC Wrist-worn 10

WESAD 3 affective states (neutral, stress, amusement) ECG PPG ACC TEMP Empatica E4 15

PPG-DaLiA 8 daily activities (cycling, driving, working, etc.) ECG PPG ACC TEMP Empatica E4 15

GalaxyPPG Stress tests (SSST, TSST) Physical activities 
Daily tasks (typing, screen reading) ECG PPG ACC TEMP Empatica E4 Galaxy 

Watch 5 24

Table 1. Comparison of PPG Datasets. Notes: ACC: Accelerometer; TEMP: Temperature sensor. SSST: Sing a 
Song Stress Test; TSST: Trier Social Stress Test.
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tests (TSST and SSST) and the incorporation of a consumer-grade wearable device (the Galaxy Watch) alongside 
research-grade sensors.

To illustrate the dynamic heart rate trends captured in our dataset, Fig. 5 presents the heart rate time 
series for participants P08 and P14 from the GalaxyPPG dataset. This figure visually demonstrates the data-
set’s capability to capture a wide range of physiological responses, from high-intensity physical challenges like 
running (140–160 bpm) to the more subtle variations induced by psychological stressors during TSST and 
SSST (60–100 bpm). Furthermore, it highlights the individual differences in cardiovascular responses to similar 
stimuli, underscoring the dataset’s rich potential for personalized health monitoring research.

Dataset Completeness analysis. To establish the dataset’s reliability and usability, we systematically 
assessed data completeness across all sensor modalities.

Note that it is important to acknowledge a data collection misconfiguration that affected participant P01: 
their Galaxy Watch data and corresponding event annotations were not recorded due to an error in the device 
configuration setup. While we have retained this participant’s other sensor data (from the Empatica E4 and 
Polar H10) for potential alternative uses, these records were excluded from the technical validation analyses 
presented in this paper. Additionally, we observed partial data loss from the Galaxy Watch during otherwise 
complete recording sessions: heart rate measurements were missing for participants P07 and P08, and skin tem-
perature data was absent for P02. These gaps were included in our missing rate calculations to accurately reflect 
real-world usage and data variability.

For the remaining recordings, we calculated the outlier rate for each sensor modality. Following the method-
ology proposed by Sukor et al.17, we defined a weak signal criterion based on the peak-to-peak amplitude relative 
to signal variance for PPG and ECG signals: 

σ
=






− < .
.

x x xWeakSignal ( ) 1, if max( ) min( ) 0 1 ,
0, otherwise (1)

x

 where x represents the non-NaN signal values and σx is the signal’s standard deviation.
For accelerometer data, we identified invalid measurements by checking for values exceeding 10 g, as the 

work by Lee et al.18 has shown that typical daily activities generally remain within 0.5 g to 10 g. Heart rate meas-
urements were considered valid if they fell within the physiologically reasonable 40–200 bpm range, following 
the criteria established by Bashar et al.19 We also incorporated the Galaxy Watch’s internal status codes, officially 
provided by the SDK and collected through our custom data collection tool, to identify periods when the device 
itself deemed the heart rate calculation unreliable.

As shown in Table 3, most of the sensor modalities demonstrated high data quality with low missing rates. 
The PPG, BVP, and ECG signals demonstrated high reliability with low missing rates, validating their use. 
However, the HR data from the Galaxy Watch showed a notably higher missing rate of 21.43% as heart rate 
measurements were missing for participants P07 and P08.

Data quality was further verified by analyzing the actual sampling rates achieved by each device. Table 4 
presents the measured sampling rates across the three wearable devices (E4, Galaxy Watch, and Polar H10) for 
various physiological and motion signals. The sampling rate and its standard deviation were calculated based 
on the time intervals between consecutive data points, using the complete set of samples from all participants.

Analysis shows that most signals were recorded near their specified rates, indicating generally reliable data 
acquisition. However, we observed some deviations between nominal and actual sampling rates. These dis-
crepancies are consistent with findings from previous studies of wearable sensor performance in real-world 
conditions, where factors such as processing overhead and power management can affect sampling behavior20.

Statistics GalaxyPPG WESAD PPG-DaLiA IEEE-D1 IEEE-D2

Total Samples 35,691 22,478 64,697 1,768 1,328

HR Range: 0–40 bpm 0 0 0 0 0

HR Range: 40–60 bpm 203 2,440 3,746 0 6

HR Range: 60–80 bpm 16,739 12,688 21,585 59 235

HR Range: 80–100 bpm 13,315 5,062 22,374 118 240

HR Range: 100–120 bpm 2,689 1,275 9,884 248 153

HR Range: 120–140 bpm 1,094 905 4,878 356 96

HR Range: 140–160 bpm 1,040 104 1,679 696 247

HR Range: 160–180 bpm 557 0 512 256 350

HR Range: 180–200 bpm 54 0 39 0 0

Average HR (bpm) 86.70 78.07 89.43 135.95 115.39

Standard Deviation of HR (bpm) 20.98 13.49 22.83 24.30 31.08

Table 2. Heart Rate Distribution and Statistics Across Different Datasets. Note: All datasets were analyzed 
using an 8-second sliding window with a 2-second step size. For the WESAD dataset, HR values were extracted 
from ECG signals during activities (baseline, stress, amusement, and meditation conditions). Undefined and 
ignored labels were excluded.
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Our data completeness analysis demonstrates that the dataset was reliably collected, with most sensor modal-
ities showing low missing rates and sampling rates consistently matching device specifications.

Signal Processing. The comparative analysis of heart rate (HR) and heart rate variability (HRV) derived 
from PPG and ECG signals plays a key role in establishing the technical validity of this dataset. Prior to presenting 
the results, we briefly outline the methods used to compute HR and HRV, as summarized in Fig. 6.

Preprocessing. PPG signals were preprocessed using a two-stage approach (Fig. 6). First, we applied temporal 
segmentation using 8-second windows with 2-second overlaps between consecutive windows. The selection 
of an 8-second window duration has been a common choice in the literature, as demonstrated in prior stud-
ies21–24. Furthermore, Baek et al.25 provided empirical evidence supporting the reliability of HRV calculations 
even within relatively short time windows, validating our choice of an 8-second duration for both HR and HRV 
analysis. For the second stage, we applied specific filtering techniques tailored to each device’s characteristics. 
The Galaxy Watch PPG signals underwent bandpass filtering within the 0.5–4 Hz frequency range, a crucial step 
for mitigating baseline wander artifacts4. The Empatica E4’s BVP signals may not require additional filtering due 
to their internal preprocessing algorithms26. However, the same bandpass filter was also applied to the E4’s BVP 
signals for comparison with the Galaxy Watch PPG signals.

Denoising. Various algorithms have been developed to address motion artifacts in PPG signals, utilizing 
diverse signal processing techniques. While modern techniques often combine multiple principles for better 
performance27, we can identify four primary theoretical foundations that form the basis of most methods: signal 
decomposition, iterative reconstruction, adaptive filtering, and statistical estimation. Although many successful 

Fig. 5 Comparison of heart rate variations across different activities for two participants (P08 and P14).

Galaxy Watch 5 Empatica E4 Polar H10

PPG ACC HR BVP ACC HR ECG ACC HR

0.14 0.04 21.43 0.01 2.93 0.00 0.62 0.56 0.06

Table 3. Missing rate (%) of each signal.

Device Signal Expected (Hz) Measured (Hz) Total Samples

Galaxy

PPG 25.00 24.90  ±  0.06 1,851,318

ACC 25.00 24.90  ±  0.06 1,851,318

HR 1.00 1.00  ±  0.01 67,810

TEMP 0.02 0.02  ±  0.00 1,085

E4

BVP 64.00 64.00  ±  0.01 4,759,074

ACC 32.00 32.00  ±  0.01 2,379,533

HR 1.00 1.00  ±  0.00 74,365

TEMP 4.00 4.00  ±  0.00 297,437

Polar

ECG 130.00 130.49  ±  0.10 9,703,051

ACC 200.00 202.37  ±  0.95 15,048,539

HR 1.00 1.00  ±  0.01 74,361

Table 4. Cross-device Sampling Rate Analysis.

https://doi.org/10.1038/s41597-025-05152-z


9Scientific Data |          (2025) 12:892  | https://doi.org/10.1038/s41597-025-05152-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

algorithms integrate multiple processing techniques, we classify them based on their principal framework to 
facilitate systematic comparison.

Signal decomposition methods break down PPG signals into separate components to isolate motion arti-
facts from the underlying physiological signal. The Singular Value Decomposition (SVD) technique presented 
in Reddy et al.28 exemplifies this approach, using matrix factorization to separate the original signal into dis-
tinct components that can be analyzed independently. TROIKA6 builds on this concept by employing Singular 
Spectrum Analysis (SSA) to decompose the signal, followed by sparse reconstruction to rebuild the cleaned 
signal.

Iterative reconstruction approaches, exemplified by the Iterative Method with Adaptive Thresholding 
(IMAT)29, primarily leverage signal sparsity through multiple reconstruction iterations. In each iteration, the 
algorithm applies increasingly precise thresholds to separate the true signal from noise, using spectral analysis 
to guide this refinement process.

Adaptive filtering methods continuously adjust their parameters based on changing signal conditions. The 
Kalman filtering approach30 implements this concept by maintaining a dynamic model of both the PPG signal 
and motion artifacts, continuously updating its estimates based on new measurements. Similarly, SpaMA22 pri-
marily employs adaptive spectral analysis while incorporating elements of signal decomposition to identify and 
remove motion-related components based on accelerometer data.

Statistical estimation techniques focus on spectral characteristics of signals and noise. The Wiener filter 
with Phase Vocoder (WFPV)31 exemplifies this approach, combining minimum mean square error filtering 
in the frequency domain with phase-based frequency refinement. While primarily operating in the frequency 
domain, WFPV incorporates adaptive elements to handle time-varying motion artifacts.

These methods (SVD for signal decomposition, IMAT for iterative reconstruction, Kalman filtering for adap-
tive estimation, and Wiener filtering for frequency-domain processing) were selected to evaluate the dataset’s 
technical validity, representing diverse approaches to artifact removal. While each method may incorporate 
complementary techniques, this selection provides a comprehensive evaluation. To ensure a fair comparison 
focused on the denoising capabilities relevant to HRV analysis, we implemented only the denoising compo-
nents of each algorithm. This was necessary because the original peak detection components were designed for 
frequency-domain HR estimation rather than the time-domain peak detection required for HRV. By using only 
the denoising components, we could apply a standardized peak detection method across all denoised signals, 
enabling a systematic comparison of temporal characteristics crucial for HRV measurement.

Peak Detection. We employed HeartPy32,33 for ECG and PPG calculation in the validation process, an 
open-source framework that has become a popular tool in physiological signal processing research34–36. HeartPy 
implements a time-domain approach that combines adaptive thresholding with moving averages, enabling the 
detection of cardiac events even in noisy conditions. The framework is suitable for extracting both R peaks from 
ECG signals and systolic peaks from PPG signals, as illustrated in Fig. 7. A post-processing function inspired by 
Allen’s methodology37 was implemented to validate peaks through adaptive thresholding and interpolate poten-
tial missed beats. This peak detection capability, validated extensively on real-world physiological data, allows 
for reliable calculation of various HRV metrics from IBI.

ECG signal analysis accuracy depends on the filtering parameters used during preprocessing, as demon-
strated by Altay et al.38. This relationship between filtering frequency bands and QRS detection has been exten-
sively investigated by Elgendi et al.39, who showed that a broader 5–40 Hz bandwidth effectively preserves QRS 
complex morphology. While Sadhukhan et al.40 established that optimal R-peak detection typically occurs 
within a narrower 5–15 Hz range, we found that applying this single fixed band could limit detection accuracy 

Fig. 6 Overview of the PPG signal processing pipeline. The pipeline consists of four main stages: (1) preprocessing 
with window segmentation and bandpass filtering, (2) motion artifact reduction using four different denoising 
approaches (IMAT, Kalman, Wiener, and SVD), (3) peak detection using the HeartPy framework, and (4) HR/HRV 
measurement calculation. Each stage is designed to improve signal quality progressively and extract meaningful 
cardiovascular parameters.
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across our diverse dataset segments. Therefore, an adaptive filtering approach was implemented, evaluating mul-
tiple bandpass configurations (5–15 Hz to 5–40 Hz in 5 Hz increments) for each 8-second window to optimize 
HeartPy’s peak detection performance while maintaining physiological validity. Filter settings for each window 
have been documented in the code for transparency and reproducibility.

To assess how well the systolic peaks in PPG signals (from E4 and Galaxy Watch) correspond to the refer-
ence ECG R-peaks (from Polar H10), we evaluated the correspondence between ECG R-peaks (ground truth 
from Polar H10) and PPG systolic peaks (from E4 and Galaxy Watch). We identified the closest ECG R-peak 
for each PPG systolic peak within a 0.5-second window. This window width was chosen based on typical Pulse 
Transit Time (PTT) values in healthy individuals, as PTT rarely exceeds 500 ms from the R-wave to peripheral 
pulse arrival41. Once a PPG peak is matched to an ECG R-peak, it becomes unavailable for subsequent match-
ing, ensuring each peak is matched at most once. This approach accounts for the physiological Pulse Transit 
Time (PTT)42 between ECG R-peaks and PPG systolic peaks while maintaining the temporal sequence of car-
diac events. Detection accuracy was quantified using the Peak Matching Rate (PMR), calculated as the ratio of 
matched ECG peaks to the total number of ECG peaks per window.

Feature Extraction. We focused our analysis on two key cardiovascular parameters: HR and HRV. These met-
rics were chosen for their complementary nature in assessing cardiovascular function—while HR provides 
insight into overall cardiac activity, HRV offers a more nuanced view of autonomic nervous system regulation43.

Several HRV metrics reflecting different aspects of cardiac function were analyzed. The mean inter-beat 
interval (IBI) measures the average time between consecutive heartbeats, providing insight into overall heart 
rhythm. The Standard Deviation of NN intervals (SDNN) quantifies heart rate variability by measuring the 
variation between successive normal heartbeats. “NN intervals” represent the time between consecutive nor-
mal QRS complexes in the electrocardiogram, excluding abnormal beats. The Root Mean Square of Successive 
Differences (RMSSD) captures beat-to-beat variations and is particularly sensitive to short-term heart rate 
changes, making it valuable for assessing autonomic nervous system function. These metrics have demonstrated 
significant utility across various health monitoring applications, from evaluating cardiovascular health to assess-
ing mental stress responses44–46.

evaluation of Physiological Validity of PPG Signals. Physiological metrics were extracted from the 
PPG signals collected during the baseline activity (in which participants remained seated with minimal move-
ment) using the signal processing framework without applying denoising. These metrics were then compared 
with ECG-derived metrics to assess the physiological validity of the collected PPG signals.

As shown in Table 5, heart rate measurements during the baseline period were highly consistent across all 
devices: 75.89 bpm from the Galaxy Watch, 78.64 bpm from the E4, and 78.47 bpm from the Polar H10 refer-
ence. This consistency indicates the collected PPG signals are physiologically valid.

impact of Wrist Placement on Signal accuracy. To evaluate the impact of wrist placement on PPG 
signal accuracy, we conducted a paired t-test using the MAE of HR derived from simultaneously recorded signals 
from both devices. This approach naturally controls for inter-individual variability by comparing left and right 
wrist data from the same participant. Furthermore, the counterbalanced experimental design minimized the 
influence of device-specific differences, allowing the effect of wrist placement to be assessed more accurately. 
The analysis revealed no significant difference between the left and right wrists (Left: 15.88 ± 4.75 bpm; Right: 

Fig. 7 Illustrative examples of ECG and PPG signals collected from each device during baseline activity, 
including the detected peaks based on data from P02.
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15.26 ± 5.30 bpm; t(22) = 0.459, p = 0.651). This result suggests that wrist placement did not significantly affect 
the accuracy of HR measurement under the experimental conditions, thereby supporting the validity of the col-
lection setup.

analysis of activities to Support ecological Validity. Heart rate (HR) and heart rate variability (HRV) 
values were calculated from the PPG signals collected during each activity. Denoising techniques, including 
IMAT, Kalman, SVD, and Wiener filters, were applied, and the HR and HRV values obtained using the Wiener 
filter, which showed the greatest overall improvement in accuracy, are summarized in Table 6.

However, even with filtering applied, activities involving moderate physical movement, such as jogging, still 
showed significant discrepancies in heart rate compared to ECG (Galaxy Watch: 98.29 bpm, E4: 97.88 bpm, H10: 
133.76 bpm). In HRV measurements, both the Galaxy Watch and E4 exhibited substantial differences from the 
ECG across all activities, with particularly large discrepancies in the SDNN and RMSSD values, though the E4 
showed somewhat better alignment in these metrics.

In summary, each device maintained a consistent sampling rate with a precision within 2% of the specified 
specifications, supporting the dataset’s completeness. A comparison between PPG from the Galaxy Watch and 
ECG during the baseline activity showed low error rates (3.80% for HR and 4.36% for IBI) with 92.08% of 
ECG-derived beats accurately detected in the PPG signal, confirming that PPG signal reflect physiologically 
valid. In addition, we confirmed that there was no significant effect of the wrist on which the wearable was worn.

Lastly, discrepancies between the PPG data from the Galaxy Watch and ECG were observed, but similar dif-
ferences were also noted with the E4 device, even after noise filtering. Considering that accurate measurements 
were obtained at baseline, this suggests that the discrepancies are not due to issues with the dataset collection 
setup, but rather motion artifacts commonly encountered with wrist-based PPG devices. Therefore, these obser-
vations do not represent a limitation of the dataset’s technical validity, but rather support the motivation for 
presenting this dataset, which aims to provide realistic physiological signals that reflect real-world conditions.

Usage Notes
This dataset was collected using a commercial wearable device, the Samsung Galaxy Watch, and includes PPG 
signals recorded during various activities. It is potentially helpful for research on motion artifacts in PPG sig-
nals. However, several limitations should be considered when utilizing the data. At the time of data collection, 
the Samsung Health Sensor SDK supported only single-channel PPG (green wavelength). As such, the dataset 
contains only green-channel PPG data. Although recent SDK updates now enable multi-wavelength data col-
lection, including infrared (IR) and red channels, this dataset does not include such multi-channel data. The 
dataset includes a variety of activity scenarios to reflect everyday daily movements, but it does not cover the full 
spectrum of real-life activities. For broader generalization, additional data collection in naturalistic settings, 
along with detailed activity tracking, may be necessary. It is also important to note that the dataset was collected 
in South Korea, and all participants were of East Asian descent. While exact skin color information was not 
explicitly recorded, participants are likely to correspond to Fitzpatrick skin types III-IV, which are typical for 
East Asian populations. Additionally, when using the dataset, please note that the PPG signals from the Galaxy 
Watch are provided as raw signals and must be inverted prior to analysis, as the device uses a reflective-type 
PPG sensor.

Activity

Polar H10 (ECG) Galaxy Watch (PPG) Empatica E4 (PPG)

HR IBI SDNN RMSSD HR IBI SDNN RMSSD PMR HR IBI SDNN RMSSD PMR

Baseline 78.47 775.09 40.86 41.63 75.89 810.40 136.25 185.79 92.08 78.64 781.07 103.83 137.15 96.03

Table 5. Comparison Across Activities and Devices Using HeartPy Algorithms without Denoising. (Metrics: 
HR in bpm, IBI/SDNN/RMSSD in ms, PMR in %).

Activity

Polar H10 Galaxy Watch E4

HR IBI SDNN RMSSD HR IBI SDNN RMSSD PMR HR IBI SDNN RMSSD PMR

Baseline 78.47 775.09 40.86 41.63 78.15 778.78 55.22 71.78 95.36 79.34 769.14 67.34 83.89 95.86

TSST 88.15 690.68 48.38 47.55 84.54 718.74 86.18 116.91 91.72 87.02 698.89 72.81 97.64 94.36

Screen Reading 79.17 769.01 37.58 38.81 79.09 770.27 57.38 75.34 94.87 82.26 744.55 67.33 84.78 95.85

SSST 94.64 647.14 42.64 44.42 89.50 685.51 93.85 129.55 90.68 92.38 662.09 77.87 102.16 94.19

Keyboard Typing 78.69 770.11 30.12 33.80 79.29 763.84 128.38 178.68 92.88 82.78 732.05 121.74 166.86 94.95

Mobile Typing 76.95 786.31 34.51 39.30 76.91 787.31 65.56 91.58 95.08 77.69 780.61 74.61 101.90 95.59

Standing 88.47 689.74 36.29 34.33 86.58 704.85 71.37 96.74 93.71 88.20 691.47 65.70 86.01 94.78

Walking 100.72 601.97 28.55 33.88 97.90 622.95 127.57 173.24 91.43 108.26 570.98 112.63 152.28 94.53

Jogging 133.76 457.00 45.80 60.98 98.05 641.19 145.71 194.88 72.95 97.88 643.80 135.18 179.12 72.67

Running 154.19 394.36 51.60 69.18 95.33 656.04 119.49 159.01 62.30 99.29 628.80 127.56 165.27 64.87

Table 6. Comparison Across Activities and Devices Using HeartPy Algorithms with Wiener Denoising. 
Metrics: HR in bpm, IBI/SDNN/RMSSD in ms, PMR in %.
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Code availability
We developed data collection applications for the Galaxy Watch and used them to compile the GalaxyPPG 
dataset, available at https://github.com/Kaist-ICLab/GalaxyPPG-Logger. The repository contains the version 
of the logger application used for the GalaxyPPG data collection to ensure scientific rigor. For future use, we 
are actively maintaining and updating the logger application. Please refer to the GitHub repository for detailed 
information. Additionally, technical validity assessments and data exploration were performed using Python 
scripts, which are available at https://github.com/Kaist-ICLab/GalaxyPPG-Supplementary-Code.
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