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Abstract
Background: The responses to interleukin 1 (IL-1) in human chondrocytes constitute a complex
regulatory mechanism, where multiple transcription factors interact combinatorially to
transcription-factor binding motifs (TFBMs). In order to select a critical set of TFBMs from genomic
DNA information and an array-derived data, an efficient algorithm to solve a combinatorial
optimization problem is required. Although computational approaches based on evolutionary
algorithms are commonly employed, an analytical algorithm would be useful to predict TFBMs at
nearly no computational cost and evaluate varying modelling conditions. Singular value
decomposition (SVD) is a powerful method to derive primary components of a given matrix.
Applying SVD to a promoter matrix defined from regulatory DNA sequences, we derived a novel
method to predict the critical set of TFBMs.

Results: The promoter matrix was defined to establish a quantitative relationship between the IL-
1-driven mRNA alteration and genomic DNA sequences of the IL-1 responsive genes. The matrix
was decomposed with SVD, and the effects of 8 potential TFBMs (5'-CAGGC-3', 5'-CGCCC-3', 5'-
CCGCC-3', 5'-ATGGG-3', 5'-GGGAA-3', 5'-CGTCC-3', 5'-AAAGG-3', and 5'-ACCCA-3') were
predicted from a pool of 512 random DNA sequences. The prediction included matches to the
core binding motifs of biologically known TFBMs such as AP2, SP1, EGR1, KROX, GC-BOX, ABI4,
ETF, E2F, SRF, STAT, IK-1, PPARγ, STAF, ROAZ, and NFκB, and their significance was evaluated
numerically using Monte Carlo simulation and genetic algorithm.

Conclusion: The described SVD-based prediction is an analytical method to provide a set of
potential TFBMs involved in transcriptional regulation. The results would be useful to evaluate
analytically a contribution of individual DNA sequences.

Background
The use of microarrays has led to a significant number of
exciting discoveries establishing important links between
mRNA expression patterns and cellular states [1,2]. Math-

ematical and computational models have been developed
to understand and characterize the molecular mecha-
nisms underlying expression patterns [3,4]. However, it
remains difficult to discover and validate novel transcrip-
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tion-factor binding motifs (TFBMs) in the human
genome. The popular approach to identify TFBMs utilizes
sequence comparisons among co-expressed genes [5] or
across multi-species [6]. Although any consensus motif
can be searched among the co-regulated genes in hierar-

chical clusters [7,8], this approach is not aimed to build a
global model with multiple binding motifs. TFBM can be
inspected through phylogenetic footprinting [6,9,10], but
identifying orthologous genes and their associated regula-
tory regions are not always possible. Model-based
approaches, initially developed using yeast genome [3],
encounter difficulty in evaluating the astronomical
number of TFBM selections in the combinatorial problem
[11,12]. Although multiple binding motifs were selected
in the yeast dataset using a recursive formula, prediction
of TFBMs would be affected depending on the order of
selected motifs [3]. Some models lack statistical standards
for determining the number of TFBMs having combinato-
rial roles that are critical in expression patterns. Thus, a
predictive model that provides a comprehensive set of
TFBMs still needs to be developed.

The specific aim of the current study was to devise a model
for predicting known and de novo transcription factor
binding motifs from array-derived mRNA expression lev-
els by developing a unique principal component analysis.
We employed the responses of human chondrocytes to
interleukin-1 (IL-1) as a model system [13]. IL-1 is a pro-
inflammatory cytokine, and it stimulates not only inflam-
matory responses but also tissue degeneration [5]. More
than 100 microarray analyses have been conducted to
analyze IL-1-driven responses in various cell types, includ-
ing chondrocytes [14,15], and significant efforts have
been made to understand transcriptional mechanisms of
IL-1 response [16-18]. However, few of the previous stud-
ies have validated the global roles of multiple critical
TFBMs in downregulation or upregulation of a cluster of
genes.

In this principal component analysis, we introduced the
Akaike information criterion (AIC) test, singular value
decomposition (SVD), and a genetic algorithm (GA) to
predict and evaluate TFBMs from a pool of random DNA
sequences (Fig. 1). The predictive model was formulated
using state vectors, which represented a contribution of
potential TFBMs to the IL-1 responses. The promoter
matrix was defined to build the quantitative relationship
between the mRNA expression vector and the state vec-
tors, and a unique SVD procedure was applied to the pro-
moter matrix. Although one previous study defined the
mRNA expression level as a state variable, dynamical cor-
relations among the mRNA levels do not directly repre-
sent biological processes [19]. Here, a state variable was
defined as an activation level of each TFBM, and SVD was
used to link the primary components in the expression
vector to the influential TFBM candidates in the state vec-
tor through the eigen gene vectors and the eigen TFBM
vectors. The analytical prediction of TFBMs with SVD was
evaluated numerically using Monte Carlo simulation and
GA.

Flowchart of the model-based analysis of transcription factor binding motifs (TFBMs)Figure 1
Flowchart of the model-based analysis of transcrip-
tion factor binding motifs (TFBMs). The mRNA expres-
sion data and the human genome sequence information were 
used to formulate the mathematical model. The putative 
TFBMs were selected through the Akaike Information Crite-
rion (AIC) analysis and the Singular Value Decomposition 
(SVD) eigen value analysis. The predicted TFBMs were evalu-
ated with the genetic algorithm (GA) numerical analysis and 
the Monte-Carlo simulation, and the model-based TFBM net-
work was linked to the known transcription factors and their 
binding motifs.
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Selection of 45 IL-1-responsive genes and AIC analysisFigure 2
Selection of 45 IL-1-responsive genes and AIC analysis. (A) Ratios of mRNA expression in chondrocytes. The grayscale 
columns marked "-" and "+" represent the mRNA levels without and with the IL-1 treatment, respectively. The color-coded 
column displays the logarithmic mRNA expression ratio (the mRNA level in cells treated with IL-1 to the untreated control 
level). The darker color indicates the greater alteration, and "red" and "green" illustrate up- and down-regulation, respectively. 
(B) Modeled mRNA ratios based on the 300-bp upstream regulatory DNA region. As TFBM candidates, 512 DNA fragments, 5 
bp in length, were considered. The mathematical models with (a) 1, (b) 2, (c) 4, (d) 8, (e) 16, and (f) 32 putative TFBMs are illus-
trated. (C) AIC analysis. The minimum AIC value was obtained when the number of TFBMs was 8.
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Results
Prediction and validation of novel and known TFBMs
were conducted using logarithmic ratios of the IL-1-driven
mRNA alterations in human chondrocytes (Fig. 1). First,
AIC was used to determine a statistically meaningful
number of TFBMs in the model. Second, the contribution
of each of the 512 TFBM candidates to the IL-1 responses
was evaluated by decomposing the promoter matrix with
SVD. Third, the SVD-based priority of TFBMs was evalu-
ated numerically by GA and Monte-Carlo simulation.
Fourth, a linkage was established among the predicted
and known TFBMs.

Messenger RNA ratios and AIC analysis
Using data obtained in primary cultures of human articu-
lar chondrocytes, 45 IL-1-responsive genes were selected
and the ratios of mRNA levels from IL-1-treated cells
against mRNA levels in untreated cells were calculated
from the list of IL-1-responsive genes in primary chondro-
cytes published by Vincenti and Brinckerhoff [13]. As
shown in Fig. 2A, the relative mRNA levels are represented
in a greyscale, and the logarithmic ratios are illustrated in
a green to red color code. The mRNA ratios for 33 genes
were positive (upregulation; indicated by green), while
the ratios for 12 genes were negative (downregulation;
indicated by red). Using Eq. (1) and the SVD procedure,
these logarithmic mRNA ratios were modelled against 1 to
32 TFBMs that were chosen from random DNA sequences
of 5 bp in length (Fig. 2B). As expected, the model error
decreased monotonically as the number of TFBMs
increased from 1 to 32. In order to estimate the proper
number of TFBMs in the model, AIC was calculated using

Eq. (2) (Fig. 2C). The minimum AIC was obtained with 8
TFBMs, which were used as models for further analysis.

SVD analysis
Using the SVD procedure, the promoter matrix H, built
from the 300-bp upstream flanking sequences, was factor-
ized into three matrices in Eq. (4). Using the eigen gene
vectors in U (Fig. 3A) and the eigen values in Λ (Fig. 3B),
the observed mRNA ratios were decomposed linearly with
definition of the weighing factors, ki (Fig. 3C), in Eq. (5).
Out of 45 eigen values, the primary and the secondary
eigen values were 133.4 and 64.6. Shannon entropy was
calculated as 0.65 [6], and the eigen values suggested a rel-
atively even spread distribution among the 45 eigen gene
vectors. Note that that Shannon entropy takes values
between 0 and 1, and a smaller value suggests that expres-
sion data are dominated by influential eigen values. Using
the weighing factors for each of the eigen TFBM vectors,
the most influential 8 TFBMs, whose contribution to the
expression levels of IL-1-responsive genes was predicted to
be larger than the others, were selected. First, the eigen
TFBM vectors (Fig. 4A) were derived as a complement of
the eigen gene vectors. Then, each TFBM candidate in the
eigen TFBM vectors was weighted by the same weighting
factors defined in Eq. (5). This weighting process pre-
dicted the contributions of TFBM candidates to the
observed value of z (Fig. 4B). Lastly, the overall signifi-
cance to the selected 45 genes was estimated by adding the
45 row elements in the eigen TFBM vectors (Fig. 4C). The
predicted TFBM candidates were 5'-CAGGC-3', 5'-
CGCCC-3', 5'-CCGCC-3', 5'-CACCG-3', 5'-GCGCC-3', 5'-
ATGGG-3', 5'-GGGAA-3', and 5'-CCGCG-3'.

SVD analysis for the 45 IL-1-responsive genesFigure 3
SVD analysis for the 45 IL-1-responsive genes. (A) Forty-five eigen genes in the matrix U in H = UΛVT. (B) Eigen values, 
λ1, λ2,..., λ45, in the matrix Λ. (C) Weighting factors, ki, for the i-th eigen gene.
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GA analysis, Monte-Carlo simulation, and leave-one-out 
test
In order to evaluate the selection of 8 TFBMs based on the
above principal component analysis, the numerical search
for TFBM candidates was conducted with the GA analysis.
Starting with 200 digital chromosomes in Eq. (6), includ-
ing the chromosome for the SVD solution, the population
of chromosomes was evolved for 104 generations. During
evolution, the model error was reduced through artificial
chromosome recombinations and mutations (Fig. 5A).
The sum square error for the mRNA ratios was 15.94 (SVD
solution) and 7.55 (GA solution). These values were
smaller than the Monte-Carlo results of 58.97 ± 8.61 (N =
10,000) using a random selection of TFBMs (Fig. 5B). The
GA solution reduced the error of the SVD solution by
52.6% by retaining five SVD-driven TFBMs and introduc-
ing three new TFBMs, 5'-CGTCC-3', 5'-AAAGG-3', and 5'-
ACCCA-3' (Fig. 5C).

In order to further examine the SVD-based model, we con-
ducted a leave-one-out test. In this test, (N - 1) genes were
used to build a model and one gene was used to validate
the model through any difference between the observed
and the predicted expression levels. The process was
repeated N times (N = 45) by removing one gene at a time.
The model error for a complete set of leave-one-out tests
was 33. To evaluate significance of the leave-one-out
model error, Monte-Carlo analyses were conducted using
two datasets. In the first dataset the elements in the pro-
moter matrix was reshuffled, and in the second dataset the
order of mRNA expression levels was randomized. The

model error was 108 ± 31 (mean ± s.d.) and 93 ± 23 for
the first and the second datasets, respectively (Fig. 6).

Linkage to known TFBMs
The 8 TFBM candidates obtained from the GA analysis
were graphically linked to the known TFBMs (Fig. 7). The
GA-based TFBMs are represented by 8 boxes in the first
column, and each box is linked to the biologically known
TFBMs such as AP2, SP1, EGR1, etc. For instance, 5'-
CGCCC-3', one of the TFBMs predicted by GA, is part of
consensus sequences of SP1, EGR1, KROX, GC-BOX, and
ABI4.

Discussion
In this report, we have presented a predictive model and
its validation using the transcriptional responses to IL-1 in
human chondrocytes as a model system. From a pool of
512 random DNA sequences of 5 bp in length as potential
TFBM candidates, the SVD analysis and the GA simulation
both identified 8 TFBMs. Five out of 8 TFBM candidates
were identical in both analyses, and several of the known
TFBMs, including AP2, EGR1, GC-BOX, SP1, NFκB, and
LEF1, coincided with the predicted TFBMs.

Prior to application to the mammalian gene expression in
the current study, the described approach was examined
to build a model for a Ras/cAMP signal transduction path-
way in yeast. This pathway is well characterized in yeast,
and a cAMP responsive element (CRE; 5'-[A/G][A/C][T/
C]GCAGT-3'), which is conserved in eukaryotes, is known
to be involved. The SVD-based approach with 5-bp
sequences predicted a part of CRE (5'-AATGC-3') together
with two yeast-specific binding motifs such as 5'-AGGGG-
3' (binding motif for MSN2/MSN4; stress responsive ele-
ment) and 5'-ACCGG-3' (binding motif for LEU3). Since
both MSN2 and LEU3 are differentially expressed in
response to Ras activation [5], the results allowed us to
apply this principal component approach to the current
study on the human IL-1 responses (see additional file).

In the prediction phase of TFBM analysis, we demon-
strated that the SVD analysis prioritized the contribution
of individual TFBM candidates, and the GA algorithm was
employed to evaluate independently the SVD solution.
SVD is computationally inexpensive, and the results are
reproducible since no random parameters are involved. It
is straightforward to incorporate the effects of degenerate
binding sequences by modifying a linear combination of
the eigen TFBM vectors and adding contributions from
redundant sequences in the final SVD procedure. More
specifically, to any TFBM candidate there are 15 degener-
ate motifs with one base-pair mismatch and the contribu-
tion of these degenerate sequences can be included in the
model with an appropriate weighting factor. The standard
computational complexity of SVD procedure is estimated

SVD-based selection of TFBMsFigure 4
SVD-based selection of TFBMs. (A) Eigen TFBM vectors 
in the matrix VT in H = UΛVT. (B) Weighted eigen TFBM vec-
tors with the weighting factor, ki. (C) Putative TFBMs pre-
dicted from the SVD analysis.
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as O(m2n) or O(mn2) [20]. The complexity can be reduced
to O(mn) by implementing the average algorithm or
employing parallel computing [21]. GA is a heuristic
solver suitable for searching efficiently the suboptimal

solutions. There are 1.1 × 1017 combinations to predict 8
TFBMs from 512 candidates in this study. It is virtually
impossible to evaluate all combinations, although either
SVD- or GA-based TFBM prediction is not globally opti-

GA analysis and Monte-Carlo simulationFigure 5
GA analysis and Monte-Carlo simulation. (A) Evolution of the model error in the GA analysis during 10,000 generations. 
(B) Model error in Monte-Carlo simulation. The labels, a and b, indicate the error in the GA analysis and the SVD analysis, 
respectively. (C) Comparison between the GA-predicted TFBMs and the SVD-predicted TFBMs.
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mal in terms of minimization of the prediction error. A
predicted 5-bp TFBM can represent more than one motif
longer than 5 bp sequences.

The use of mathematical and computational procedures
such as AIC, SVD, and GA have been used previously to
analyze the behaviour of complex biological systems
[22,23]. In prediction of TFBMs from the microarray data,
however, the described usage here is unique in a novel
state-variable representation. Since many genes are regu-
lated by multiple TFBMs, a statistical standard such as AIC
may be used appropriately to validate the number of
TFBMs that are meaningful in array-derived data. The pre-
vious use of SVD has been limited to clustering expression
patterns in the eigen gene space [22,24]. The unique fea-
ture of the described predictive model is to link the eigen
gene space to the eigen TFBM space by applying SVD to
the promoter matrix defined from TFBMs. Evolutionary
algorithm such as GA has been used to estimate the values
of parameters [25,26]. We employed GA to select the set
of TFBMs from an artificial chromosome that is composed
of on/off switches for 512 random DNA sequences.

The predictive model in this study generated many testa-
ble hypotheses on known TFBMs, as well as novel TFBM
candidates, and led us to the analysis of transcription fac-
tors. Five out of the 8 TFBM candidates were linked to
known transcription factors. Among them, AP2 is known
to be involved in stress responses [27] and LEF1 is known
to be involved in a wnt signalling pathway [28]. However,

neither AP2 nor LEF1 is reported to be responsive to IL-1.
EGR1 increases expression of inflammatory cytokines and
is involved in IL-1-induced downregulation of the type II
collagen promoter in chondrocytes [29], and the GC-box
is a widely distributed promoter component. The binding
site of SP1 is recognized by SP3, which may oppose posi-
tive effects of SP1 [30]. NFκB is a pivotal transcription fac-
tor that is both induced at the mRNA level, as shown here,
and activated by proinflammatory cytokines [31-33].
However, the relatively long degenerate consensus
sequence of its binding site 5'-GGG(A/G)(C/A/T)T(T/
C)(T/C)CC-3'requires a further linkage analysis to the pre-
dicted TFBM of 5'-GGGAA-3'. In a separate study, the pro-
moter competition assay was conducted to evaluate the
role of the SVD-selected TFBMs using three IL-1-respon-
sive genes, LIF, NFκB2, and IRF1 [34]. In the assay, the
stimulatory effects of 5'-CAGGC-3' and 5'-CGCCC-3', as
well as the inhibitory effects of 5'-CCGCC-3', 5'-CACCG-
3', and 5'-GCGCC-3', were consistent to the SVD predic-
tion. In order to further validate the stimulatory role of 5'-
CAGGC-3', a gel shift assay was conducted. As predicted,
incubation with the nuclear extracts isolated from the IL-
1-treated cells retarded the mobility of the DNA fragment
containing 5'-CAGGC-3' (see additional file).

The described state-variable formulation of the predictive
model can be extended to include redundancy in TFBM
consensus sequences, temporal mRNA profiles, and inter-
actions of TFBMs with transcription factors and cofactors.
Short motifs such as 5 bp TFBMs in this study may present

Leave-one-out testFigure 6
Leave-one-out test. (A) Model error with a randomized promoter matrix. The mean and s.d. of sum square error is 108 ± 
31 (N = 1,000), and the label "a" indicates the error with the original promoter sequences. (B) Model error with randomized 
gene expression ratios. The mean and s.d. of sum square error is 93 ± 23 (N = 1,000), and the label "b" indicates the error with 
the original gene expression ratios.
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less specificity, but the described SVD procedure can
increase specificity easier than any combinatorial search
algorithm such as GA. The model can be extended to pre-
dict a dynamical state of TFBMs associated with the regu-
lation of the temporal mRNA expression profiles [23].
Interactions among TFBMs through transcription factors
and cofactors can be implemented through the nonlinear
version [35].

Conclusion
Identification of TFBMs in the human genome is critically
important in the post Human Genome Project era [36].

Although experimental evaluation is mandatory to gain
biological insights from the model-based predictive
results, an analytical model at nearly no computational
cost would be useful to provide initial conditions for
numerical optimization or predict a set of potential tar-
gets for experimental verification. Although the prediction
is dependent on definition of regulatory regions, the
described model-based analysis allowed us to gain a new
biochemical insight on the IL-1 responses by integrating
the SVD procedure and Akaike information criterion. In
conclusion, the current study on gene responses to IL-1
demonstrates that application of the primary component

Linkage between the predicted TFBMs and the biologically known TFBMsFigure 7
Linkage between the predicted TFBMs and the biologically known TFBMs. Eight TFBMs, derived from the GA anal-
ysis, were linked to the known biological motifs with the list of consensus sequences. The abbreviations are R (A, G), Y (C, T), 
K (G, T), W (A, T), S (C, G), B (C, G, T), D (A, G, T), H (A, C, T), V (A, C, G), and N (A, C, G, T). The binding factors (tran-
scription factors) to the consensus sequences are included.
Page 8 of 12
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analysis would predict and validate the novel and known
TFBMs from the microarray data using genomic DNA
information.

Methods
Determination of mRNA ratios
The mRNA expression data for the IL-1-responsive genes
in primary cultures of human articular chondrocytes were
obtained from the lists published by Vincenti and Brinck-
erhoff [13]. The logarithmic ratios of mRNA levels in IL-
1β (10 ng/ml)-treated chondrocytes to control mRNA lev-
els were determined for 45 IL-1-responsive genes, whose
transcription initiation site was identifiable in the Gen-
Bank sequences or by the PEG program [37,38]. The loga-
rithmic ratio makes it easy to characterize both
upregulation and downregulation to the control level,
and it has been widely used to model array-derived
expression data in yeast and human [3,39]. The described
SVD-based approach is effective for modelling both
upregulated and downregulated genes, and the positive
and negative values represent the upregulated and down-
regulated genes, respectively (Fig. 2A).

Definition of promoter matrix
Prior to mathematical formulation, a promoter matrix
HnxM was defined, where n was the number of the IL-1-
responsive genes and M was the total number of TFBM
candidates. The element hij in HnxM represented the
number of appearance of the j-th TFBM candidate on the
5'-end flanking region, 300 bp in length in the current
study, of the i-th IL-1-responsive gene. The length of 300
bp was determined to minimize the least-square model
error from the upstream regions of 100 bp to 5000 bp
with a 100-bp interval. In this study, 512 TFBM candidates
(M = 512), 5-bp DNA sequences including 5'-AAAAA-3',
5'-AAAAC-3', etc., were initially screened without consid-
ering polarity of DNA strands, and the critical TFBMs were
selected by the SVD-based procedures described below.
Since the length of motifs varies from 5 to 30 bp in
TRANSFAC database, the 5-bp sequences were chosen as a
potential core binding motif and their linkage to known
motifs with redundancy was considered using TRANSFAC
database.

Formulation
Using the promoter matrix Hnxm, the mRNA level of each
IL-1-responsive gene was modelled [40]:

z= Hnxmx  (1)

where z was the mRNA expression vector representing the
logarithmic mRNA ratios for the 45 IL-1-responsive genes,
and x was the state vector representing the role of TFBM
candidates in achieving the observed values in z. Note that
we used M as the total number of TFBM candidates (M =

512 in this study), m as the number of TFBMs in the SVD-

based model, and  as the estimate of m based on Akaike
information criterion below.

Akaike information criterion
In order to avoid underfitting or overfitting the mRNA
ratios with TFBM candidates, AIC was defined and used as
an indicator of statistical measure [41]:

where L( , m) was the likelihood function, and  was

the estimate of x. The value of  was determined using the

singular value decomposition procedure described below.
The likelihood of the expression vector, z, with the esti-

mate of the state vector, , was calculated:

where σ2 was a model error variance. Prior to constructing
the final SVD-based model, a set of preliminary models
for m = 1, 2, ..., M were built using the singular value
decomposition procedure, and AIC(m) was minimized by

treating m as a parameter. Note that AIC( ) ≤ AIC(m) for

m = 1, 2, ..., M, and  = 8 in this study.

Singular value decomposition (SVD)
SVD is a matrix decomposition technique which can be
applied to any rectangular matrix. It decomposes a matrix
into two orthogonal matrices and one eigenvalue matrix.
Two orthogonal matrices represent the column and the
row spaces in the original matrix, and the eigenvalue
matrix relates these two spaces. In order to evaluate the
contribution of 512 potential TFBMs to the IL-1
responses, the promoter matrix HnxM was factorized using
SVD:

HnxM = UnxnΛnxMVMxM
T  (4)

where Unxn(u1, u2, ..., un) was defined as the eigen gene
matrix, ΛnxM(λ1, λ2, ..., λn;OnXM-n) was a matrix containing
n eigen values in the first n column vectors, and VMxM(v1,
v2, ..., vM) was defined as an eigen TFBM matrix. Note that
Unxn and VMxM are orthogonal and therefore Unxn

T Unxn =
Inxn and VMxMVMxM

T = IMxM. In the Unxn space, the mRNA
expression vector, z, can be expressed as a linear combina-
tion of the orthogonal vectors u1, u2,..., un and the eigen
values λ1, λ2,...,λn with ki (i = 1, 2, ..., n):

m̂

AIC m L x m m( ) log ( , )= − + ( )2 2 2

x̂ x̂

x̂

x̂

L x m z H x z H x
n

nxm
T

nxm( , ) ( ) exp{ ( ) ( )}= − − − ( )
−

2
1
2

32 2 2πσ σ

m̂

m̂
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Determination of ki was achieved by projecting the vector
z to λiui direction. Therefore, taking an inner product
between z and λiui gave ki.

Since ui and vi are the associated bases in the gene space
and the TFBM space respectively, the factor ki (i = 1, 2,...,
n) for describing the expression in gene space can be used
to model the contribution of individual TFBMs in the
TFBM space. For instance, let us consider one extreme case
where z was parallel to u1. Then, a contribution of TFBMs
to z would be proportional to v1 and not affected by the
other vi (i ≠ 1) since the eigenvalue matrix ΛnxM does not
have any non-diagonal components. Therefore, the ele-
ments in v1 would be used to indicate potential impor-
tance of M TFBM candidates. In a general case, the SVD
procedure allowed us to evaluate n pairs of ui and vi
through λi and ki without conducting any combinatorial
search. In order to model the gene space using the
observed mRNA expression of z, the orthogonal vectors
(u1, u2,..., un) are linearly combined using ki (i = 1, 2,..., n).
In order to model the TFBM space, a linear combination
of the orthogonal vectors (v1, v1,..., vn) is made.

Based on the above rationale, we evaluated the linear
combination of the eigen TFBM vectors in a form of

. This vector a plays the similar role of zin Eq.

(5). M elements in a indicates the role and the contribu-
tion of M TFBM candidates. The positive/negative value
suggests a stimulatory/inhibitory role, and a larger abso-
lute value implies a stronger contribution. Therefore, the

procedure to select  TFBMs is to choose a set of top 

TFBMs whose value in a is larger than other (512 - )
TFBMs. To include redundancy in TFBM consensus
sequences, a weighted linear combination of elements in
a can be used. In summary, the principal component anal-
ysis allows us to identify the principal expression compo-
nents using the eigen gene vectors and to predict the
principal TFBM using the eigen TFBM vectors. With the
weighting factors defined from the observed value of z, the
vector a indicates the predicted contribution of individual
TFBM candidates to the observed expression pattern.

Genetic Algorithm (GA) and Monte Carlo simulations
In order to evaluate the SVD-based prediction of TFBMs,
the numerical simulations with GA were conducted using
the procedure described previously [42]. In a chromo-
some-like bit map, 512 TFBM candidates were embedded:

C = [c1, c2,..., c512]  (6)

where each chromosomal element took "1" and "0" for
inclusion and non-inclusion in the model, respectively.

Note that  for any chromosome, and the pro-

moter matrix was constructed based on the value of each
chromosomal element ci. Two hundred chromosomes

represented the population, and one chromosome in the
first generation corresponded to the SVD selection. In
each generation, 100 chromosomes with smaller errors
were recombined, and the other 100 chromosomes with
larger errors were mutated. The model error was defined

as , and the state variable, x, was estimated

using a least-square scheme:

Note that n = 45 and m =  = 8 in GA. Monte Carlo sim-
ulation was also performed to evaluate numerically the

SVD- and GA-based selection of TFBMs [42]. A set of 
TFBMs was randomly chosen from 512 TFBM candidates,
and the error distribution associated with the randomly
selected TFBMs was compared to the error in the model-
based prediction. The simulation was conducted 10,000
times.

Linkage map among TFBMs
The 8 TFBM candidates, derived from the GA analysis,
were linked to the biologically known TFBMs. We evalu-
ated the 5-bp core consensus sequences identical to the
known TFBMs using TRANSFAC database [43]. Since the
motifs in the database ranges up to 30 bp, it is possible
that a 5-bp TFBM candidate corresponds to multiple
motifs in the database. Namely, the state vector could rep-
resent the combined role of binding motifs when the pre-
dicted motifs are shared among transcription factors.

Additional material

Acknowledgements

z k ui i i
i

n
= ( )

=
∑ λ

1

5

a k vi i
i

n
=

=
∑

1

m̂ m̂

m̂

Additional File 1
• Part I – Experimental evaluation of the SVD-based model for IL1 
responses. • Part II – SVD analysis for yeast Ras/cAMP signaling path-
way.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-276-S1.doc]

c mi
i=
∑ =

1

512
ˆ

z - H xnxm
2ˆ

ˆ ( )x H H H znxm
T

nxm nxm
T= ( )−1 7

m̂

m̂

Page 10 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-6-276-S1.doc


BMC Bioinformatics 2005, 6:276 http://www.biomedcentral.com/1471-2105/6/276
We thank Ying Bai, Sonsy Zachariah, Hui Sun, and Hui Zhao for the data 
collection and technical support. This study was supported by NIH 
RR17012, and Indiana 21st century research and technology fund (to H.Y.), 
and NIH AR46977, and a Veteran's Administration Merit Award (to 
M.P.V.).

References
1. de Jong H: Modeling and simulation of genetic regulatory sys-

tems: a literature review.  J Comput Biol 2002, 9(1):67-103.
2. Lockhart DJ, Winzeler EA: Genomics, gene expression and

DNA arrays.  Nature 2000, 405(6788):827-836.
3. Bussemaker HJ, Li H, Siggia ED: Regulatory element detection

using correlation with expression.  Nat Genet 2001,
27(2):167-171.

4. Conlon EM, Liu XS, Lieb JD, Liu JS: Integrating regulatory motif
discovery and genome-wide expression analysis.  Proc Natl
Acad Sci U S A 2003, 100(6):3339-3344.

5. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J,
Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris
K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P,
McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J,
Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-
Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sul-
ston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N,
Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin
R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt
A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S,
Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S,
Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA,
Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL,
Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB,
Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T,
Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett
N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M,
Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley
KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS,
Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T,
Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T,
Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T,
Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L,
Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer
M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G,
Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA,
Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood
J, Cox DR, Olson MV, Kaul R, Shimizu N, Kawasaki K, Minoshima S,
Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser
J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia
N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bai-
ley JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge
CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T,
Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hay-
ashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS,
Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin
EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T,
Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J,
Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-
Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe
KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A,
Wetterstrand KA, Patrinos A, Morgan MJ, Szustakowki J, de Jong P,
Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ: Initial
sequencing and analysis of the human genome.  Nature 2001,
409(6822):860-921.

6. Thompson W, Palumbo MJ, Wasserman WW, Liu JS, Lawrence CE:
Decoding human regulatory circuits.  Genome Res 2004,
14(10A):1967-1974.

7. Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT,
Roskin KM, Schwartz M, Sugnet CW, Thomas DJ, Weber RJ, Haussler
D, Kent WJ: The UCSC Genome Browser Database.  Nucleic
Acids Res 2003, 31(1):51-54.

8. Gupta M, Liu JS: Discovery of Conserved Sequence Patterns
Using a Stochastic Dictionary Model.  In Journal of the American
Statistical Association Volume 461. Issue 55-66 98 ; 2003. 

9. Grad YH, Roth FP, Halfon MS, Church GM: Prediction of similarly
acting cis-regulatory modules by subsequence profiling and

comparative genomics in Drosophila melanogaster and
D.pseudoobscura.  Bioinformatics 2004, 20(16):2738-2750.

10. Sharan R, Ovcharenko I, Ben-Hur A, Karp RM: CREME: a frame-
work for identifying cis-regulatory modules in human-mouse
conserved segments.  Bioinformatics 2003, 19 Suppl 1:i283-91.

11. Keles S, van der Laan M, Eisen MB: Identification of regulatory
elements using a feature selection method.  Bioinformatics 2002,
18(9):1167-1175.

12. Xu Y, Selaru FM, Yin J, Zou TT, Shustova V, Mori Y, Sato F, Liu TC,
Olaru A, Wang S, Kimos MC, Perry K, Desai K, Greenwald BD, Kra-
sna MJ, Shibata D, Abraham JM, Meltzer SJ: Artificial neural net-
works and gene filtering distinguish between global gene
expression profiles of Barrett's esophagus and esophageal
cancer.  Cancer Res 2002, 62(12):3493-3497.

13. Vincenti MP, Brinckerhoff CE: Early response genes induced in
chondrocytes stimulated with the inflammatory cytokine
interleukin-1beta.  Arthritis Res 2001, 3(6):381-388.

14. Heller RA, Schena M, Chai A, Shalon D, Bedilion T, Gilmore J, Wool-
ley DE, Davis RW: Discovery and analysis of inflammatory dis-
ease-related genes using cDNA microarrays.  Proc Natl Acad Sci
U S A 1997, 94(6):2150-2155.

15. Elliott SF, Coon CI, Hays E, Stadheim TA, Vincenti MP: Bcl-3 is an
interleukin-1-responsive gene in chondrocytes and synovial
fibroblasts that activates transcription of the matrix metal-
loproteinase 1 gene.  Arthritis Rheum 2002, 46(12):3230-3239.

16. Chadjichristos C, Ghayor C, Kypriotou M, Martin G, Renard E, Ala-
Kokko L, Suske G, de Crombrugghe B, Pujol JP, Galera P: Sp1 and
Sp3 transcription factors mediate interleukin-1 beta down-
regulation of human type II collagen gene expression in
articular chondrocytes.  J Biol Chem 2003, 278(41):39762-39772.

17. Francois M, Richette P, Tsagris L, Raymondjean M, Fulchignoni-Lataud
MC, Forest C, Savouret JF, Corvol MT: Peroxisome proliferator-
activated receptor-gamma down-regulates chondrocyte
matrix metalloproteinase-1 via a novel composite element.
J Biol Chem 2004, 279(27):28411-28418.

18. Imamura T, Imamura C, Iwamoto Y, Sandell LJ: Transcriptional Co-
activators CREB-binding protein/p300 increase chondrocyte
Cd-rap gene expression by multiple mechanisms including
sequestration of the repressor CCAAT/enhancer-binding
protein.  J Biol Chem 2005, 280(17):16625-16634.

19. Gardner TS, di Bernardo D, Lorenz D, Collins JJ: Inferring genetic
networks and identifying compound mode of action via
expression profiling.  Science 2003, 301(5629):102-105.

20. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani
R, Botstein D, Altman RB: Missing value estimation methods for
DNA microarrays.  Bioinformatics 2001, 17(6):520-525.

21. Chuang HYH, Chen L: Efficient Computation of the Singlular
Value Decomposition on Cube Connected SIMD Machine:
Reno.   ; 1989:276-282. 

22. Alter O, Brown PO, Botstein D: Singular value decomposition
for genome-wide expression data processing and modeling.
Proc Natl Acad Sci U S A 2000, 97(18):10101-10106.

23. Liu Y, Sun HB, Yokota H: Regulating gene expression using opti-
mal control theory.  Proc 3rd IEEE Sym Bioinfo Bioeng 2003:1-3.

24. Holter NS, Mitra M, Maritan A, Cieplak M, Banavar JR, Fedoroff NV:
Fundamental patterns underlying gene expression profiles:
simplicity from complexity.  Proc Natl Acad Sci U S A 2000,
97(15):8409-8414.

25. Holland JH: Adaptation in natural and artificial systems.  Ann
Arbor , The University of Michigan Press; 1975. 

26. Li L, Weinberg CR, Darden TA, Pedersen LG: Gene selection for
sample classification based on gene expression data: study of
sensitivity to choice of parameters of the GA/KNN method.
Bioinformatics 2001, 17(12):1131-1142.

27. Grether-Beck S, Buettner R, Krutmann J: Ultraviolet A radiation-
induced expression of human genes: molecular and photo-
biological mechanisms.  Biol Chem 1997, 378(11):1231-1236.

28. Eastman Q, Grosschedl R: Regulation of LEF-1/TCF transcrip-
tion factors by Wnt and other signals.  Curr Opin Cell Biol 1999,
11(2):233-240.

29. Tan L, Peng H, Osaki M, Choy BK, Auron PE, Sandell LJ, Goldring MB:
Egr-1 mediates transcriptional repression of COL2A1 pro-
moter activity by interleukin-1beta.  J Biol Chem 2003.

30. Philipsen S, Suske G: A tale of three fingers: the family of mam-
malian Sp/XKLF transcription factors.  Nucleic Acids Res 1999,
27(15):2991-3000.
Page 11 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11911796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11911796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10866209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10866209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11175784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11175784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12626739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12626739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11237011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11237011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15466295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15466295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12217908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12217908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12067993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12067993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12067993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11714393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11714393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11714393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9122163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9122163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12483727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12483727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12483727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12888570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12888570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12888570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15090544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15090544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15722556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15722556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15722556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12843395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12843395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12843395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10963673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10963673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10890920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10890920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10890920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9426182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9426182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9426182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10209158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10209158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10454592
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10454592


BMC Bioinformatics 2005, 6:276 http://www.biomedcentral.com/1471-2105/6/276
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

31. Vincenti MP, Coon CI, Brinckerhoff CE: Nuclear factor kappaB/
p50 activates an element in the distal matrix metalloprotei-
nase 1 promoter in interleukin-1beta-stimulated synovial
fibroblasts.  Arthritis Rheum 1998, 41(11):1987-1994.

32. Ding GJ, Fischer PA, Boltz RC, Schmidt JA, Colaianne JJ, Gough A,
Rubin RA, Miller DK: Characterization and quantitation of NF-
kappaB nuclear translocation induced by interleukin-1 and
tumor necrosis factor-alpha. Development and use of a high
capacity fluorescence cytometric system.  J Biol Chem 1998,
273(44):28897-28905.

33. Barnes PJ, Karin M: Nuclear factor-kappaB: a pivotal transcrip-
tion factor in chronic inflammatory diseases.  N Engl J Med
1997, 336(15):1066-1071.

34. Sun HB, Malacinski GM, Yokota H: Promoter competition assay
for analyzing gene regulation in joint tissue engineering.
Front Biosci 2002, 7:a169-74.

35. Sun HB, Liu Y, Qian L, Yokota H: Model-based analysis of matrix
metalloproteinase expression under mechanical shear.  Ann
Biomed Eng 2003, 31(2):171-180.

36. Collins FS, Green ED, Guttmacher AE, Guyer MS: A vision for the
future of genomics research.  Nature 2003, 422(6934):835-847.

37. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith
HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P,
Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng
XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor
Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA,
Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M,
Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern
A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington
K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill
M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di
Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W,
Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z,
Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov
GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nussk-
ern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang
A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J,
Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W,
Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik
A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead
M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML,
Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K,
Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes
C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C,
Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D,
McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nel-
son K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rod-
riguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C,
Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S,
Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-
Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ,
Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T,
Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V,
Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu
A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang
YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D,
Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A,
Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S,
Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C,
Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J,
Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck
J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T,
Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu
D, Wu M, Xia A, Zandieh A, Zhu X: The sequence of the human
genome.  Science 2001, 291(5507):1304-1351.

38. Davuluri RV, Grosse I, Zhang MQ: Computational identification
of promoters and first exons in the human genome.  Nat Genet
2001, 29(4):412-417.

39. Liu Y, Yokota H: Modelling and idenification of transcription-
factor binding motifs in human chondrogenesis.  Systems Biol-
ogy 2004, 1(1):85-92.

40. Qian L, Liu Y, Sun HB, Yokota H: Systems analysis of matrix met-
alloproteinase mRNA expression in skeletal tissues.  Front Bio-
sci 2002, 7:a126-34.

41. Akaike H: A new look at the statistical model identification.
IEEE Transactions on Automatic Control 1974, AC-19:716-723.

42. Liu Y, Yokota H: Modelling and identification of transcription-
factor binding motifs in human chondrogenesis.  Systems Biol-
ogy 2004, 1(1):85-92.

43. Wingender E, Dietze P, Karas H, Knuppel R: TRANSFAC: a data-
base on transcription factors and their DNA binding sites.
Nucleic Acids Res 1996, 24(1):238-241.
Page 12 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9811054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9811054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9811054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9786892
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9786892
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9786892
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9091804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9091804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12133815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12133815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12627825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12627825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12695777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12695777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11181995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11181995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12045007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12045007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8594589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8594589
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Messenger RNA ratios and AIC analysis
	SVD analysis
	GA analysis, Monte-Carlo simulation, and leave-one-out test
	Linkage to known TFBMs

	Discussion
	Conclusion
	Methods
	Determination of mRNA ratios
	Definition of promoter matrix
	Formulation
	Akaike information criterion
	Singular value decomposition (SVD)
	Genetic Algorithm (GA) and Monte Carlo simulations
	Linkage map among TFBMs

	Additional material
	Acknowledgements
	References

