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In the musculoskeletal system, bone, tendon, and skeletal muscle integrate and act 
coordinately as a single multi-tissue unit to facilitate body movement. The development, 
integration, and maturation of these essential components and their response to injury 
are vital for conferring efficient locomotion. The highly integrated nature of these 
components is evident under disease conditions, where rotator cuff tears at the bone-
tendon interface have been reported to be associated with distal pathological alterations 
such as skeletal muscle degeneration and bone loss. To successfully treat musculoskeletal 
injuries and diseases, it is important to gain deep understanding of the development, 
integration and maturation of these musculoskeletal tissues along with their interfaces as 
well as the impact of inflammation on musculoskeletal healing and graft integration. This 
review highlights the current knowledge of developmental biology and wound healing in 
the bone-tendon-muscle multi-tissue unit and perspectives of what can be learnt from 
these biological and pathological processes within the context of musculoskeletal tissue 
engineering and regenerative medicine. Integrating these knowledge and perspectives 
can serve as guiding principles to inform the development and engineering of 
musculoskeletal grafts and other tissue engineering strategies to address challenging 
musculoskeletal injuries and diseases.

Keywords: bone, tendon, muscle, multi-tissue units, musculoskeletal developmental biology, wound healing, 
musculoskeletal tissue engineering, inflammation

INTRODUCTION

Bone, tendon, and skeletal muscle are essential components of the musculoskeletal system 
whose development, integration, and response to injury are vital for conferring efficient body 
movement. Specifically, joint motion occurs as a result of bone, tendon, and skeletal muscle 
coordinately acting as a single multi-tissue unit, muscle-generated contractile force is transmitted 
to compliant tendons, which efficiently stores and subsequently releases elastic strain energy 
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to result in bone movement. During development, these tissues 
are specified in a concerted manner, resulting in a highly 
integrated unit that further matures due to post-natal mechanical 
loading. This highly integrated nature is evident when injury 
is sustained. For example, in rotator cuff tears, although the 
bone-tendon interface or enthesis is often the site of injury, 
distal pathological alterations such as skeletal muscle degeneration 
in the form of fibrosis and fatty degeneration (Gilbert et  al., 
2018) as well as bone loss (Galatz et  al., 2005) have been 
reported. Inflammation is a crucial factor that determines the 
outcome of tissue healing as well as the response to medical 
devices such as grafts. As such, knowledge gleaned from 
developmental biology and wound healing can serve as guiding 
principles to inform the development and engineering of 
musculoskeletal grafts.

Musculoskeletal tissue engineering aims to apply combinations 
of cells, signaling molecules including growth factors and 
inflammation-modulating factors, and biomaterials to generate 
mechanically-robust and/or bioactive grafts/scaffolds for treatment 
of injured or diseased tissues. Within the context of this review, 
we  define a biomaterial as the base material or substance from 
which a scaffold or graft is fabricated. This means that a scaffold 
or graft is the engineered form of a biomaterial with the term 
“scaffold” being used in pre-clinical studies and “graft” being 
used in clinical settings. To appropriately utilize musculoskeletal 
development and wound healing knowledge and concepts, it 
is vital to recognize that the bone-tendon-muscle unit is a 
single functioning entity for locomotion (Ker et  al., 2011a,b; 
Wang et  al., 2021b). Therefore, understanding how these 
musculoskeletal tissues along with their interfaces develop, 
integrate, and mature (section “Brief Overview of Bone, Tendon, 
Muscle Development, Integration, and Maturation”) as well as 
the impact of inflammation on musculoskeletal healing and 
graft integration (section “Musculoskeletal Tissue Healing and 
Graft Integration”) is crucial. In addition, we  present our 
perspective of what can be learnt from these biological processes 
within the context of musculoskeletal tissue engineering and 
regenerative medicine (section “Perspective: What Can We Learn 
From Developmental Biology and Wound Healing for 
Musculoskeletal Tissue Engineering”) as well as potential treatment 
strategies (section “Outlook”). Integrating such knowledge will 
facilitate the development of rational and informed tissue 
engineering strategies for addressing challenging musculoskeletal 
injuries and diseases.

BRIEF OVERVIEW OF BONE, TENDON, 
MUSCLE DEVELOPMENT, INTEGRATION, 
AND MATURATION

Musculoskeletal Tissue Development and 
Integration
During embryonic development, the mesoderm is the prime 
contributor to musculoskeletal formation. The paraxial and 
lateral plate mesoderm, contribute toward somite and limb 
bud formation, respectively, which in turn are responsible for 

musculoskeletal formation in the trunk (primarily somitic in 
origin) and appendicular skeleton (primarily limb bud in origin; 
Figure  1; Cserjesi et  al., 1995; Schweitzer et  al., 2001; Wolpert 
et  al., 2002; Mitchell and Sharma, 2005; Thomopoulos et  al., 
2010; Berendsen and Olsen, 2015; Endo, 2015; Jensen et  al., 
2018). The details for embryonic development of musculoskeletal 
tissue are comprehensively described in other excellent book 
chapters and reviews (Walker, 1991; Wolpert et al., 2002; Mitchell 
and Sharma, 2005; Schweitzer et  al., 2010; Huang, 2017).

During trunk musculoskeletal development, somites are 
initially comprised of sclerotome and dermomyotome regions 
only but subsequently subdivide into the sclerotome, syndetome, 
myotome, and dermatome, which contribute toward bone, 
tendon, muscle, and skin elements, respectively (Cserjesi et  al., 
1995; Schweitzer et  al., 2001; Wolpert et  al., 2002; Mitchell 
and Sharma, 2005; Thomopoulos et  al., 2010; Berendsen and 
Olsen, 2015; Endo, 2015; Jensen et al., 2018). Patterning signals 
including Sonic hedgehog (SHH; Fan and Tessier-Lavigne, 1994; 
Bumcrot and McMahon, 1995; Musumeci et al., 2015), Noggin 
(Berendsen and Olsen, 2015; Musumeci et al., 2015), Wingless/
Integrated (Wnt), Neutrophin, and Fibroblast growth factor 
(FGF) as well as transcription factors including paraxis, paired 
box protein (PAX)-1, and PAX-9 are crucial to somite 
development (Love and Tuan, 1993; Smith and Tuan, 1995; 
Barnes et  al., 1996a,b, 1997; LeClair et  al., 1999; Alexander 
and Tuan, 2010). Within the sclerotome, cells form mesenchymal 
condensations that contribute to skeletal formation indirectly 
(via cartilaginous endochondral bone formation) or directly 
(via intramembranous bone formation; Berendsen and Olsen, 
2015). Disrupting Pax1 expression using antisense 
oligonucleotides or valproic acid disrupts sclerotomal 
differentiation to cause skeletal defects (Love and Tuan, 1993; 
Smith and Tuan, 1995; Barnes et  al., 1996a,b, 1997; LeClair 
et al., 1999; Alexander and Tuan, 2010). As somite development 
progresses, a group of cells migrate away from the dorso-lateral 
edges of the dermomyotome toward the original boundary of 
the sclerotome and dermomyotome (Musumeci et  al., 2015). 
This action segregates the dermomyotome into myotome and 
dermatome regions, and cells within this region undergo rapid 
muscle differentiation (Musumeci et  al., 2015). Concurrently, 
muscle progenitor cells also undergo long-range migration to 
the limb buds, where they contribute toward appendicular 
muscle formation (Cossu et  al., 1996; Musumeci et  al., 2015). 
As the somite matures, a new domain termed the syndetome 
forms at the interface of sclerotome and myotome. Within 
the syndetome, tendon specification is initiated with the 
expression of scleraxis (Scx), a basic helix–loop–helix transcription 
factor that marks a tendon/ligament progenitor population and 
is subsequently present in terminally-differentiated tendon/
ligament cells (Cserjesi et  al., 1995; Brent et  al., 2003). SCX 
is also known to upregulate tenomodulin (TNMD), a 
transmembrane protein found in tenocytes (Shukunami et  al., 
2006) as well as collagen type I, a main component of the 
tendon extracellular matrix (ECM; Lejard et  al., 2007). 
Interactions among the abutting musculoskeletal compartments 
are crucial for further tissue development with transforming 
growth factor (TGF) and FGF signals from these regions 
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regulating Scx expression and musculoskeletal integration (Brent 
and Tabin, 2004; Brent et  al., 2005; Pryce et  al., 2009). For 
example, mouse embryos with null mutations in Myogenic 
factor-5 (Myf5) and Myogenic differentiation 1 (MyoD) are 
devoid of skeletal muscle and their absence results in disruption 
of tendon development (Brent et  al., 2005).

During development of the appendicular musculature and 
skeleton, the lateral plate mesoderm forms the limb bud, which 
contributes to bone and tendon elements, while migrating muscle 
cells originating from the myotome contribute to muscle elements 
(Cserjesi et  al., 1995; Schweitzer et  al., 2001; Wolpert et  al., 
2002; Mitchell and Sharma, 2005; Thomopoulos et  al., 2010; 
Berendsen and Olsen, 2015; Endo, 2015; Jensen et  al., 2018). 
Homeobox (Hox) transcription factor genes are important to 
this process and contribute toward patterning in the developing 
limb to define the stylopod (Hox10), zeugopod (Hox11), and 
autopod (Hox13) structures, which eventually give rise to the 
humerus/femur, radius and ulna/tibia and fibula, and hand/
foot bones, respectively (Pineault and Wellik, 2014). Similar to 
its role in trunk skeletogenesis, Pax1 is also involved in formation 
of limb skeletal elements where it is initially expressed in the 
anterior proximal margin of limb buds (LeClair et  al., 1999). 
Skeletal formation of the limb is subsequently orchestrated Sex 
determining region Y (SRY)-box 9/Sox9-positive mesenchymal 
cartilage progenitors that form condensations within the limb 
bud and undergo sequential endochondral ossification to form 
bone (Pineault and Wellik, 2014). As previously mentioned, 

limb skeletal muscle originates from cells within the somites, 
which then migrate to the developing limb bud (Cossu et  al., 
1996; Musumeci et  al., 2015). These progenitor cells delaminate 
from the dorso-lateral region of the developing dermomyotome, 
become transiently inhibited from differentiating by expression 
of Pax3 (Relaix et  al., 2005), and subsequently express Tyrosine 
protein kinase met (C-Met; Cossu et  al., 1996), a Hepatocyte 
growth factor (HGF) receptor. When HGF is expressed by 
mesenchymal cells of the limb bud, these muscle progenitors 
migrate toward these regions (Musumeci et  al., 2015) and 
subsequently differentiate into muscle (Chevallier et  al., 1977). 
Tendon progenitors arise from the lateral plate mesoderm and 
its specification is independent of muscle (Kieny and Chevallier, 
1979). These tendon progenitors express Scx, and its protein 
levels are negatively- and positively-regulated by bone 
morphogenetic protein (BMP) and Noggin signaling, respectively 
(Schweitzer et  al., 2001). Further musculoskeletal development 
of these tissues is interdependent. For example, removal of 
tendon primordia disrupts limb muscle formation (Kardon, 
1998), whereas loss of limb muscle only results in transient 
tendon formation (Kieny and Chevallier, 1979). Other studies 
have also shown that the tendon/ligament marker Scx is crucial 
for musculoskeletal integration (Yoshimoto et al., 2017). Indeed, 
a population of cells positive for both Scx and Sox9 are found 
at the interface between tendon and as-yet unmineralized bone, 
which contributes to eventual formation of the bone-tendon 
interface (Blitz et al., 2013; Sugimoto et al., 2013). For example, 
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FIGURE 1 | Graphic overview of musculoskeletal development in the trunk and limbs. (A) The fertilized zygote transitions through several embryonic structures 
before forming the blastula, which contains the two-layered embryonic or germ disk consisting of epiblast and hypoblast. (B) As development proceeds, a 
tri-laminar gastrula structure consisting of ectoderm, mesoderm, and endoderm layers is formed. (C) Further during gastrulation, the mesoderm subdivides into the 
paraxial, intermediate, and lateral plate mesoderm. (D) Subsequently, somites are formed from paraxial mesoderm. The somite further subdivides into the 
sclerotome, syndetome, myotome, and dermatome regions, which contribute toward cartilage and bone, tendon, muscle, and skin elements, respectively. (E) The 
lateral plate mesoderm gives rise to the limb bud, which forms the cartilage/bone and tendon elements of the appendicular skeleton, while migrating myoblasts from 
the myotome contribute toward muscle elements.
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Scx has been shown to regulate Bmp4 expression in tendon 
cells and this in turn subsequently directs formation of bone 
ridges at the deltoid tuberosity of humeral bone, which provides 
a stable anchoring point and stress dissipation for musculoskeletal 
tissue attachment (Blitz et  al., 2009).

Thus, bone and tendon formation in the limb is derived 
from lateral plate mesoderm, whereas muscle formation originates 
from migrating precursors of paraxial mesoderm-derived somite.

Role of Mechanical Forces in 
Musculoskeletal Tissue Maturation
In addition to the specification, development, and integration 
of bone, tendon, and muscle, maturation of these musculoskeletal 
tissues occurs both in utero and postnatally. For obvious reasons, 
mechanical forces play a substantial role in muscle, tendon, 
and bone maturation. While this topic is broad, excellent 
reviews of this subject include those by Felsenthal and Zelzer 
(Felsenthal and Zelzer, 2017; mechanical forces during 
musculoskeletal development), Mammoto et  al. (Mammoto 
et al., 2012), Jansen et al. (Jansen et al., 2015; mechanosensitive 
mechanisms), Geoghegan et  al. (Geoghegan et  al., 2019; bone 
mechanobiology), and Lavagnino et al. (Lavagnino et al., 2015; 
tendon mechanobiology), as well as Fischer et  al. (Fischer 
et al., 2016) and Schiaffino et al. (Schiaffino et al., 2013; muscle 
mechanobiology; Figure  2).

One area of rapid advancement is the Hippo network, a 
highly conserved pathway associated with organ size regulation, 
mediated in part, by two transcriptional co-activators – 
Yes-associated protein (YAP) and Transcriptional co-activator 
with PDZ-binding motif (TAZ). YAP/TAZ activity is defined 
by its intracellular locations – nuclear YAP/TAZ is active as 
exemplified by culturing cells on a stiff substrate, which often 
results in a spread cell morphology; cytoplasmic YAP/TAZ is 
inactive as exemplified by culturing cells on a soft substrate, 
which often results in a rounded cell morphology. At the 
cellular level, musculoskeletal actors including osteoblasts, 
osteocytes, tenocytes, myocytes, and various progenitors are 
highly sensitive to mechanical forces, contributing toward the 
overall and final properties of the tissue. However, details of 
the relevant intracellular signaling mechanisms that transduce 
mechanical cues remain largely unclear. Recent studies have 
shown that YAP and TAZ are regulated by ECM elasticity 
and cell geometry (Dupont et  al., 2011; Wada et  al., 2011). 
Crucially, the control of YAP/TAZ subcellular localization by 
mechanical cues is highly conserved among different cell types 
such as adult tissue-derived mesenchymal stem cells (MSCs), 
which contribute toward musculoskeletal differentiation and 
tissue homeostasis. Indeed, the shifting of MSC differentiation 
from osteogenic (rigid substrate) to adipogenic (soft substrate) 
lineage is governed by YAP/TAZ activity (Dupont et  al., 2011; 
Seo et  al., 2013). Also, there is increasing evidence that YAP/
TAZ signaling is implicated in multiple events of the 
musculoskeletal system, including the regulation of endochondral 
bone ossification and fracture healing (Deng et  al., 2016; Li 
et al., 2018), articular cartilage maintenance (Deng et al., 2018b), 
collagen secretion from tendon fibroblasts (Yeung et  al., 2015), 
and promotion of muscle growth (Fischer et  al., 2016; 

Huraskin et  al., 2016; Stearns-Reider et  al., 2017). Future 
investigations are expected to elucidate how YAP/TAZ regulates 
and transduces various mechanical stimuli into intracellular 
signaling in these musculoskeletal cell types.

Like their tissue counterparts, the interfaces of musculoskeletal 
tissues are mechanosensitive and remain highly dynamic throughout 
life. For example, bone-tendon/bone-ligament interfaces, such as 
the medial collateral ligament and periodontal ligament, migrate 
with skeletal growth (Wang et al., 2013, 2014) and biomechanical 
loading (Lin et  al., 2017), respectively, while the architecture and 
composition of muscle-tendon interfaces are highly responsive 
to exercise-induced loading (Jakobsen et  al., 2017).

At the bone-tendon/bone-ligament interface or enthesis, four 
classically-distinct regions are defined – bone, mineralized 
fibrocartilage, unmineralized fibrocartilage, and tendon regions 
(Yang and Temenoff, 2009). Recent work has shown a greater 
degree of nuance, with a gradual transition in both mineral 
accumulation (Moffat et  al., 2008; Genin et  al., 2009; Schwartz 
et  al., 2012) and organization of collagen fibers (Genin et  al., 
2009; Rossetti et  al., 2017) observed across this interface. 
Together, these interfacial features not only mediate attachment 
of flexible tendon to rigid bone but also act to minimize the 
risk of tissue rupture and detachment by reducing stress 
concentrations. Growth factors and ECM components associated 
with the development and maturation of the humeral bone-
supraspinatus tendon interface include TGF-β s, such as TGF-β1 
and TGF-β3, as well as various fibrous collagen types, such 
as collagen types I, II, and X (Galatz et  al., 2007).

Postnatal development of this interface is initiated at the 
tendon-epiphyseal cartilage/unmineralized bone interface by 
Hedgehog-responsive cells expressing the transcription factor 
Gli1 (Schwartz et  al., 2015). For some entheses, these cells 
are synonymous with a Scx- and Sox9-positive embryonic cell 
population identified in prior studies (Blitz et al., 2013; Sugimoto 
et  al., 2013; Felsenthal et  al., 2018), and eventually divide into 
two subpopulations – one of which contributes toward formation 
of mineralized fibrocartilage and eventually becomes 
non-responsive to Hedgehog signaling, while the other contributes 
toward formation of unmineralized fibrocartilage and retains 
its responsiveness to Hedgehog signaling (Schwartz et al., 2015).

Muscle loading plays a crucial role in enthesis development, 
as botulinum toxin-induced muscle paralysis can alter Hedgehog 
signaling and disrupt enthesis maturation as well as biomechanical 
properties (Derwin et  al., 2006; Deymier et  al., 2019). Muscle 
unloading for 21 days affected both structure and biomechanical 
properties of musculoskeletal tissue units at multiple hierarchical 
levels (Deymier et al., 2019). At the macro scale, supraspinatus 
tendon tensile strength and bone-tendon interfacial toughness 
were decreased by 36.6–66.7% and 70.0–74.3%, respectively, 
whereas ultimate load and stiffness remained unaffected in 
muscle-unloaded samples (Deymier et  al., 2019). At the 
nanometer scale, the level of bioapatite carbonate across the 
unloaded bone-tendon interface was decreased by 6.25%, which 
when coupled with changes in bioapatite crystal orientation 
led to decreased total energy dissipation (Deymier et al., 2019). 
As such, the resulting loss of organization in unloaded 
musculoskeletal tissue units across multiple length scales 
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increased injury risk via a decreased ability to absorb energy 
prior to material failure (Deymier et  al., 2019).

When fully-formed, bone-tendon/bone-ligament interfaces 
may be  “stationary,” whereas others such as those found in 
the medial collateral ligament migrate with skeletal growth 
(Wang et  al., 2013, 2014). During this process, load-induced 
Parathyroid hormone-related protein (PTHRP) causes bone 
resorption above the interface to form an unmineralized tract 
(Wang et  al., 2013, 2014). This unmineralized region specifies 
the future destination of the migrating interface, and migration 
to this site occurs as a result of coupled osteoclast- and 
osteoblast-driven bone resorption and formation, respectively 
(Wang et  al., 2013, 2014). Together, these studies highlight 
the dynamic nature of bone-tendon/bone-ligament interface.

At the muscle-tendon interface, three distinct regions, tendon, 
myotendinous junction (MTJ), and muscle, are formed (Yang 
and Temenoff, 2009). Together, these interfacial features not 
only mediate attachment of flexible tendon to the contractile 
force generation apparatus in skeletal muscle but also act to 
minimize the risk of tissue rupture and detachment by reducing 
stress concentrations.

Unlike the bone-tendon interface, these distinct regions are 
already formed during embryonic development and have already 
undergone in utero maturation to some extent. For example, 
the myotendinous interface of zebrafish embryos remodels from 
an ECM milieu that is originally rich in fibronectin to one 
that is laminin-rich (Jenkins et  al., 2016). Laminins are crucial 
in this respect as they play important roles in both skeletal 
muscle integrity and force transmission (Holmberg and Durbeej, 
2013). This is important as in utero muscle loading, such as 
kicking movements, are vital to regulation of musculoskeletal 
tissue mechanical properties, including tendon (Pan et al., 2018).

During postnatal maturation of the muscle-tendon interface, 
an increase in tissue complexity is observed (Nagano et  al., 
1998). For example, the ends of skeletal muscle fibers in Chinese 
hamsters undergo morphogenesis from relatively simple cone-
shaped structures into complex structures with an increased 
number of finger-like projections and clefts. Such dynamic 
changes are likely a response to increased muscle loading and 
are echoed in studies, where different exercise regimens result 
in the remodeling of muscle-tendon organization and structure 
(Curzi et  al., 2016; Rissatto Sierra et  al., 2018).

A

C

B

FIGURE 2 | Structural components, and mechanobiological response and gene regulation in the multi-tissue musculoskeletal unit. (A) A schematic illustration of 
multi-tissue musculoskeletal unit containing bone, tendon, muscle, bone-tendon enthesis, and myotendinous junction (MTJ). The proper formation of tendon, 
muscle, and the attachment between them requires mechanical load. (B) Different mechanical inputs regulate Yes-associated protein (YAP) activity. YAP is localized 
to the nucleus and active under mechanical conditions that lead to high intracellular tension. (C) Mechanically regulated key signaling pathways, factors and genes 
involved in musculoskeletal system development. MTJ, myotendinous junction. Adapted with permission from Felsenthal and Zelzer (2017).
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In summary, both embryonic and post-natal development 
contribute toward the specification, maturation, and integration 
of bone-tendon-muscle units. Embryonic processes are primarily 
responsible for initiating cell differentiation and early multi-
tissue patterning, whereas post-natal processes, under the 
influence of biomechanical loading, guide and regulate the 
maturation and remodeling of musculoskeletal interfaces.

MUSCULOSKELETAL TISSUE HEALING 
AND GRAFT INTEGRATION

General Overview of Wound Healing
To effectively integrate engineered musculoskeletal grafts, it is 
important to understand the role of wound healing. In general, 
wound healing is comprised of four sequential but overlapping 
stages – hemostasis, inflammation, proliferation, and maturation 
(Marieb, 1999).

Briefly, wound healing first commences with hemostasis, 
which initiates inflammation, recruits cells, and mediates wound 
closure. During this phase, platelet activation and degranulation 
results in: (1) the initiation of coagulation via increased expression 
of cell surface protein αIIb/β3 (which exhibits high affinity 
for fibrinogen to form the provisional ECM) as well as the 
secretion of adenosine diphosphate (ADP) and von Willebrand 
factor, which aid in platelet adhesion and aggregation; (2) the 
release of a multitude of growth factors that orchestrate 
inflammation and recruit cells including but not limited to 
fibroblasts, immune cells such as macrophages, and stem cells, 
which participate in wound healing and regeneration (Marieb, 
1999; Aurora and Olson, 2014; Eming et  al., 2014; Manning 
et al., 2014). Second, inflammation establishes the initial wound 
microenvironment by removing both pathogens and damaged 
cells (Marieb, 1999; Aurora and Olson, 2014; Eming et  al., 
2014; Manning et  al., 2014), as well as via the secretion of 
inflammatory mediators that attract stem and progenitor cells 
for subsequent tissue repair (Rustad and Gurtner, 2012). Third, 
proliferation regenerates tissue-resident cells via granulation 
tissue formation and myofibroblast-mediated wound contraction 
(Marieb, 1999; Aurora and Olson, 2014; Eming et  al., 2014; 
Manning et  al., 2014). Fourth, tissue remodeling removes 
transient cells and ECM, reorganizing and closing the wound 
to re-establish native tissue (Marieb, 1999; Aurora and Olson, 
2014; Eming et  al., 2014; Manning et  al., 2014). However, if 
the injury is severe or chronic, such as in the case of tendinopathy, 
healing may be incomplete with the formation of mechanically-
weaker scar tissues as well as the persistence of aberrant 
inflammatory conditions (Marieb, 1999; Aurora and Olson, 
2014; Eming et  al., 2014; Manning et  al., 2014). Thus, wound 
healing is a crucial consideration for simultaneous engineering 
and integration of multiple musculoskeletal tissue grafts.

Importance of Inflammation in Tendon, 
Skeletal Muscle, and Bone Healing
Given its aforementioned role in establishing the initial wound 
microenvironment, inflammation has emerged as a crucial 

consideration for musculoskeletal regeneration. For example, 
inflammatory cells such as macrophages were increased at the 
muscle-tendon interface following exercise (Jakobsen et  al., 
2017). Presumably, these macrophages are responsible for 
orchestrating tissue repair and adaptation as part of the body’s 
homeostatic program. Indeed, macrophages have been reported 
to organize the wound microenvironment for regenerating 
entire limbs in model organisms such as the adult salamander 
(Godwin et  al., 2013).

With respect to tendon injury, many inflammation-associated 
mediators and cell types have been identified. These include 
Interleukins (ILs; IL-1β, IL-6, IL-10, IL-17A, IL-21, and IL-33), 
Tumor necrosis factor-alpha (TNF-α), Substance P, and alarmin 
molecules, as well as neutrophils, macrophages, mast cells, 
lymphocytes, fibroblasts, tenocytes, and stem/progenitor cells 
(Jensen et  al., 2018; Tang et  al., 2018; Vinhas et  al., 2018). 
While the precise roles and contributions of these signaling 
molecules and immunocytes remain unclear and are actively 
being studied (Tang et al., 2018), it is evident that an unbalanced 
inflammatory response is detrimental, and is associated with 
rotator cuff overuse injuries (Perry et al., 2005) and tears (Yadav 
et al., 2009). It is also worth noting that the majority of rotator 
cuff tears involve tendinopathic changes. For example, 
pro-inflammatory-associated IL-1β treatment has been shown 
to increase expression of ECM-destructive enzymes including 
matrix metalloproteinases (MMPs) such as MMP-1, MMP-3, 
MMP-13 as well as aggrecanase-1 in human tenocytes (Tsuzaki 
et  al., 2003), which positively correlate with increased rotator 
cuff tear size and severity (Shindle et  al., 2011). However, this 
does not imply that direct inhibition of pro-inflammatory 
responses will thus lead to improved tendon healing. For 
example, non-steroidal anti-inflammatory drugs, including 
indomethacin and celecoxib, are often prescribed after 
orthopaedic procedures to alleviate pain. In an acute rat rotator 
cuff injury study, depressing the inflammatory response using 
indomethacin or celecoxib also retarded tendon healing with 
decreased collagen organization and inferior biomechanical 
properties (Cohen et  al., 2006).

Both classically pro- and anti-inflammatory responses are 
necessary for tendon healing. Following tendon tissue damage, 
alarmin molecules such as High-mobility group box 1 (HMGB1) 
along with other pro-inflammatory molecules, including 
caspase-1, IL-1β, receptor for advanced glycation end products, 
Toll-like receptors (TLRs) such as TLR-2 and TLR-4, and 
triggering receptor expressed on myeloid cells were upregulated 
at early time points (1–2  weeks) and subsequently declined 
(3–4  weeks), which correlated well with the healing response 
(Thankam et  al., 2018). Although, the secretion of 
pro-inflammatory molecules such as IL-1β is associated with 
ECM-degradation, such effects are presumed to be  beneficial 
for tendon remodeling and repair when induced at moderate 
levels (Yang et  al., 2005). Stromal cell-derived factor-1, an 
associated downstream mediator of pro-inflammatory IL-1β 
(Akbar et  al., 2017), then mediates the next phase of wound 
healing by facilitating infiltration of pro-regenerative M2 
macrophages and bone marrow-derived stem cells into 
supraspinatus muscle (Tellier et  al., 2018). At later stages of 
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tendon healing, anti-inflammatory-associated IL-10 is expressed 
(Ricchetti et al., 2008; Sugg et al., 2014) and promotes proliferation 
and migration of tendon-derived stem cells concurrently with 
inhibition of tenocyte differentiation (Deng et al., 2018a). Taken 
together, these studies demonstrate that a delicate balance 
between tissue-destructive pro-inflammatory and tissue-
reconstructive anti-inflammatory responses is crucial for 
chemotaxis and expansion of musculoskeletal stem/progenitor 
cells into physiologically relevant numbers sufficient for effecting 
tendon modeling and repair (Figure  3). When this delicate 
balance is disrupted, such as in the case of persistent 
inflammation, chronic ECM degradation leads to disorganized 
tendon ECM organization and results in mechanically weak 
scar tissue formation.

Similar to tendon, inflammation also has catabolic and anabolic 
effects on skeletal muscle and bone. An over-exuberant 
pro-inflammatory response induces bone resorption (Goldring, 
2015) and muscle wasting (Londhe and Guttridge, 2015), which 
are linked to the pathophysiology of joint diseases, including 
rheumatoid arthritis and seronegative spondyloarthropathies 
(Goldring, 2015; Londhe and Guttridge, 2015). Similar 
inflammatory mediators, including TNF-α, IL-1β, IL-4, and IL-10, 

as well as cell types, including macrophages, T cells, B cells, 
fibroblasts, osteoblasts, osteoclasts, myocytes, and musculoskeletal 
stem/progenitor cells, are involved (Goldring, 2015; Londhe and 
Guttridge, 2015; Turner et  al., 2018; Figure  3).

As such, inflammation-associated catabolic and anabolic 
events can affect patients afflicted by musculoskeletal disease 
or injury. In rheumatoid arthritis, joint-resident synovial 
fibroblasts, by virtue of their immune-associated cell receptors 
and chemokine secretion, can both respond to and promote 
inflammation (Turner et  al., 2018). This response allows them 
to modulate leukocyte infiltration as well as the activity of 
bone-building osteoblasts and bone-resorbing osteoclasts, 
respectively, to perturb bone remodeling (Turner et  al., 2018). 
This is important in the context of rotator cuff repair, since 
the number of shoulder arthroplasty patients with rheumatoid 
arthritis is increasing (Leroux et al., 2018), and increased rotator 
cuff tear severity is positively correlated with increased synovium 
inflammation (Shindle et  al., 2011). Similarly, in rotator cuff 
muscles, increased macrophage density (10–100-fold relative 
to healthy tissue) has been observed (Gibbons et  al., 2017). 
Presumably, these increased macrophage numbers contribute 
toward fatty atrophy and fibrosis of skeletal muscle tissue via 

A

B

FIGURE 3 | Inflammation-related responses resulting from tendon injury. (A) Unbalanced pro-inflammatory and anti-inflammatory response in injured tendon affects 
tendon healing by secreting inflammatory factors and cells. (B) Tendon injury also leads to bone and muscle damage through inflammation-associated catabolic and 
anabolic events.
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Ras homolog gene family member A (RhoA) signaling (Davies 
et al., 2017). Rebalancing pro- and anti-inflammatory responses 
via application of anti-inflammatory drugs such as Licofelone 
(Oak et al., 2014) and Simvastatin (Davis et al., 2015) decreased 
muscle fibrosis. Thus, a crucial balance between pro- and anti-
inflammatory is also necessary to prevent atrophy/degeneration/
retraction of skeletal muscle and bone components of a 
musculoskeletal unit.

Importance of Inflammation in Integration 
of Clinical Grafts and Devices
In addition to their anabolic and catabolic effects on 
musculoskeletal tissues, inflammation also plays a pivotal role 
in considering the efficacy of medical devices such as sutures, 
suture anchors, and grafts. Such inflammation-associated 
responses share similarities with but are ultimately distinct 
from those involved in disease progression or normal wound 
healing. For example, in an acute rabbit supraspinatus tendon 
resection model, non-absorbable sutures induced higher levels 
of inflammation relative to absorbable and partially-absorbable 
sutures (Su et  al., 2018). This increased pro-inflammatory 
response was associated with poorer biomechanical properties 
and incomplete bone-tendon healing (Su et al., 2018). Similarly, 
severe pro-inflammatory responses associated with either tendon 
grafts (Walton et  al., 2007) or suture anchors (Barber, 2007; 
Cobaleda Aristizabal et  al., 2014; Joo Han et  al., 2015) have 
also led to failed rotator cuff repairs, requiring patients to 
undergo revision surgeries.

For these circumstances, it is challenging to ascertain a 
single underlying cause of failure. However, an important 
consideration is the non-autogenic nature of these clinical 
devices (Barber, 2007; Walton et al., 2007; Cobaleda Aristizabal 
et  al., 2014; Joo Han et  al., 2015; Su et  al., 2018), which can 
induce different levels of inflammation. Indeed, xenogenic grafts 
induced an adverse pro-inflammatory response (Walton et  al., 
2007), whereas allogenic grafts had minimal levels of 
inflammation (Snyder et  al., 2009). In addition, scaffolds and 
clinical grafts can also be  broadly divided into biological, 
synthetic, or biosynthetic (hybrid of biological and synthetic) 
in origin. Typically, synthetic scaffolds are favored for their 
ease of production and reproducible attributes such as mechanical 
properties, which is important for facilitating joint locomotion, 
but have traditionally been considered as strong inducers of 
chronic inflammation and the foreign body response relative 
to their biological counterparts (Crupi et  al., 2015; Saleh and 
Bryant, 2018; Zhou and Groth, 2018; Sadtler et  al., 2019). 
Indeed, in a muscle wound environment, synthetic materials 
(polyethylene and polyethylene glycol) elicited a type-1-like 
immune response with recruitment of a high proportion of 
neutrophils and CD86-positive pro-inflammatory macrophages, 
which was attributed to biomaterial stiffness, whereas a biological 
material (porcine urinary bladder ECM), elicited a type-2-like 
immune response with upregulation of Il4, Cd163, Mrc1, and 
Chil3 genes, which was attributed to damage-associated molecular 
patterns signaling (Sadtler et  al., 2019). Similarly, in a bone 
wound environment, inflammatory mediators such as TLR-4 
have been shown to play vital roles in mediating calvarial 

bone healing as well as bone graft-mediated calvarial repair 
(Wang et  al., 2015, 2017).

The magnitude of inflammation and the ensuing foreign 
body reaction are highly dependent upon immune cell-
biomaterial interactions which occur at the tissue/material 
interface (Anderson et  al., 2008). Following implantation of 
a clinical device, plasma proteins are adsorbed, or opsonized 
onto the biomaterial surface followed by complement activation, 
macrophage adhesion, and macrophage fusion into foreign 
body giant cells that mediate degradation (Anderson et  al., 
2008). If this opsonization process creates a detrimental or 
chronic wound microenvironment, device failure and impaired 
shoulder function will result (Walton et  al., 2007), whereas 
if a microenvironment conducive to regeneration is presented, 
graft remodeling and successful integration with host tissue 
will ensue (Snyder et  al., 2009). Contributing factors related 
to this include biomaterial stiffness, biomaterial surface 
chemistry, scaffold/graft topography, scaffold/graft degradation 
rate, and physico-chemical effect of degradation products, 
scaffold/graft porosity, and presence of inflammatory antigens 
such as α-galactosidase (Crupi et  al., 2015; Zhou and Groth, 
2018; Sadtler et  al., 2019). This has led to the development 
of diverse anti-inflammatory strategies, which include use of 
scaffold topography such as grooves to reduce immune cell 
pro-inflammatory response, modification of biomaterial 
surfaces to present weakly inflammatory functional chemical 
groups such as hydroxyls and carboxylic acids, use of anti-
fouling coatings, attachment of anti-inflammatory or 
immunomodulatory reagents, and removal of inflammatory 
antigens such as α-galactosidase via enzymatic treatment 
(Crupi et al., 2015; Zhou and Groth, 2018). Thus, these studies 
highlight the importance of biomaterial or scaffold/graft 
characteristics and their impact on inflammation, which 
ultimately determines successful engraftment of devices used 
in clinical repair.

Importance of Vascularization for Clinical 
Grafts and Devices
In tissue engineering, one major challenge for the long-term 
survival and function of clinical implants and devices is ensuring 
sufficient vascularization after implantation. There are two 
principal strategies are used – angiogenesis and inosculation. 
Angiogenesis focuses on stimulating the ingrowth of newly 
formed blood vessels into implanted constructs from the 
surrounding host tissue(s), whereas the inosculation requires 
a preformed microvascular networks generated within tissue 
constructs that subsequently develop interconnections with the 
host microvasculature (Laschke and Menger, 2012). Strategies 
to address this include modification of scaffolds/grafts to induce 
a mild proinflammatory response that may be  beneficial to 
vascularization, incorporation of signaling molecules that promote 
angiogenesis or blood vessel maturation such as FGF-2, PDGF, 
VEGF, TGF-β, Angiopoietin-1, and Angiopoietin-2, and 
incorporation of vascular or proangiogenic cells. The details 
of the vascularization process as well as the principles and 
strategies are extensively described by Laschke and Menger (2012) 
and Herrmann et  al. (2014).
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In particular, angiogenesis can also be  impacted by the 
magnitude of inflammation. In a recent study, mice were 
intraperitoneally administered with arthritic serum repeatedly, 
resulting in clinical manifestations of rheumatoid arthritis 
including prolonged systemic inflammation (Wang et al., 2021a). 
Following bone fracture injury, such mice exhibited fracture 
nonunion with reduced cartilaginous and bony callus formation, 
fibrotic scarring, and diminished angiogenesis (Wang et  al., 
2021a). Subsequent mechanistic studies showed that this reduced 
angiogenesis was attributed to downregulation of SPP1 and 
CXCL12  in chondrocytes (Wang et  al., 2021a). By employing 
a biodegradable polycaprolactone scaffold loaded with 
pro-angiogenic SPP1 and CXCL12, improved angiogenesis and 
osteogenesis, as evidenced by increased blood vessel count, 
increased bone area and higher biomechanical properties (torque) 
were achieved (Wang et  al., 2021a). In a similar vein, different 
scaffolds and grafts can present varying levels of angiogenesis 
and vascular ingrowth, which can be affected by the magnitude 
of inflammation. In a mouse subcutaneous implantation study, 
3D-printed poly(L-lactide-co-glycolide) and 3D-printed collagen-
chitosan-hydroxyapatite hydrogel scaffolds were directly compared 
(Rücker et al., 2006). Intravital fluorescence microscopy analyses, 
histological as well as immunohistochemical staining, and 
cytotoxicity assays showed that 3D-printed poly(L-lactide-co-
glycolide) scaffolds induced a mild pro-inflammatory response 
(slight increase in leukocyte recruitment), which was associated 
with increased angiogenesis and good microvascular ingrowth 
14 days post-implantation, whereas 3D-printed collagen-chitosan-
hydroxyapatite hydrogel scaffolds induced a severe 
pro-inflammatory response (around 15-fold increase of leukocyte-
endothelial cell interactions), which was associated with poor 
microvascular ingrowth to the scaffolds (Rücker et  al., 2006). 
Thus, scaffold or graft neovascularization, which is crucial to 
the long-term survival and function of an implant is dependent 
on a moderate pro-inflammatory response.

In summary, both pro- and anti-inflammatory responses 
are essential for healing of musculoskeletal tissue units and 
contribute toward integration of medical devices including 
vascularization. Pro- and anti-inflammatory responses are 
primarily, although not exclusively, responsible for catabolic 
and anabolic tissue responses, respectively, and a coordinated 
as well as balanced inflammatory response is essential to 
successful biomaterial integration and tissue repair.

PERSPECTIVE: WHAT CAN WE  LEARN 
FROM DEVELOPMENTAL BIOLOGY AND 
WOUND HEALING FOR 
MUSCULOSKELETAL TISSUE 
ENGINEERING

Applicability
Concepts and knowledge generated from developmental biology 
and wound healing studies can aid the development and 
assessment of musculoskeletal tissue engineering strategies. In 
other words, information gained from developmental biology 

can offer a “cheat sheet” for assessing post-natal musculoskeletal 
differentiation as well as inspire novel therapeutic strategies 
to regenerate and repair injured musculoskeletal tissues (Tuan, 
2004; Huang et  al., 2015). For bone, growth factors such as 
BMPs, Wnts, and Indian Hedgehog have been identified as 
bone-promoting cues, while collagen type I, Runt-related 
transcription factor 2 (RUNX2), BMP-2, and BMP-6 serve as 
useful ECM and transcription factor markers to assess osteoblast 
differentiation (Wang et  al., 2020). For tendon, growth factors 
such as TGF-βs, FGF, BMPs, Wnts, and Connective tissue 
growth factor (CTGF) have been identified as tendon-promoting 
cues, while collagen types I and III, tenascin-C, TNMD, decorin, 
biglycan, SCX, mohawk (MKX), and Early growth response 1 
(EGR1) serve as useful ECM and transcription factor markers 
to assess tenocyte differentiation (Huang, 2017; Liu et al., 2017). 
For skeletal muscle, growth factors such as insulin-like growth 
factor-1, HGF, FGF-2, and PDGF have been identified as skeletal 
muscle-promoting cues (Syverud et  al., 2016), while collagen 
type I, laminins, myogenin, MYOD, MYF5 serve as useful 
ECM and transcription factor markers to assess myocyte 
differentiation (Holmberg and Durbeej, 2013; Syverud et  al., 
2016; Huang, 2017). In addition to identification of appropriate 
cues and markers, signaling pathways governing musculoskeletal 
tissue formation can be manipulated to develop novel therapies. 
For example, stable cartilage formation has been achieved using 
targeted chemical inhibition of the BMP pathway without 
affecting TGF-β signaling (Occhetta et  al., 2018). Similarly, 
stable cartilage formation has also been observed in vivo via 
application of the Wnt/β-catenin inhibitor XAV939 to manipulate 
Wnt signaling, which is crucial in the development, growth, 
and maintenance of both cartilage and bone (Deng et  al., 
2019). These studies demonstrate a remarkable achievement 
as prior attempts at stable chondrocyte differentiation typically 
result in a transient chondrocyte phenotype that rapidly proceeds 
toward a hypertrophic and mineralizing fate, eventually forming 
unwanted bone (Correa et al., 2015). Thus, integrating knowledge 
gleaned from developmental biology studies into tissue 
engineering approaches can prove valuable.

Wound healing studies can model injury-relevant settings 
for understanding the pathophysiological process as well as 
evaluating novel therapeutic strategies. For understanding 
pathophysiological processes, various models have been utilized. 
In rats, the supraspinatus tendon passes under an enclosed 
arch similar to humans (Soslowsky et  al., 1996). This similarity 
in shoulder anatomy makes the rat ideal for modeling rotator 
cuff diseases such as subacromial impingement, whereby friction 
between the rotator cuff tendons and the coracoacromial arch 
during muscular movement leads to pain and reduced range 
of joint motion. In rabbits, detachment of the rotator cuff 
tendon(s) resulted in prominent fatty degeneration of skeletal 
muscle (Abdou et  al., 2019), and has been used to simulate 
chronic rotator cuff tears to study the effect of hypercholesterolemia 
on skeletal muscle fatty degeneration and bone-to-tendon healing. 
Indeed, use of such models identified αSMA-positive cells as 
primary contributors to scar formation (Moser et  al., 2020), 
which may pave the way for identification of new therapeutic 
targets. For evaluating novel therapeutic strategies, similar animal 
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models have been used. For example, both rats and rabbits 
have been used to evaluate the effect of growth factors, such 
as FGF-2, Platelet-derived growth factor-BB (PDGF), and TGF-β1, 
on musculoskeletal tissue healing for rotator cuff repair (Tokunaga 
et  al., 2015a,b, 2017; Arimura et  al., 2017). Also, when coupled 
with appropriate outcome measurements, animal models can 
be used to understand why therapeutics may result in unfavorable 
outcomes. For example, biomechanical, biochemical, and 
proteomics studies showed that application of adipose-derived 
stromal cells with tenogenic BMP-12  in a fibrin-based scaffold 
for intrasynovial tendon repair amplified unfavorable responses 
including inflammation, stress response, and matrix degradation, 
leading to poor healing (Gelberman et  al., 2016). Such studies 
highlight the need for avoidance of negative local reactions in 
cell- and growth factor-based therapies.

Thus, knowledge derived from developmental biology and 
wound healing studies can guide both the development and 
assessment of therapies for musculoskeletal tissue engineering 
and regenerative medicine by identifying musculoskeletal 
regenerative cues, differentiation markers, and potential 
therapeutic targets as well as facilitate evaluation of such 
therapies in injury-relevant models.

Limitations
Despite the tremendous advances and insights gleaned from 
developmental biology and wound healing studies, there are 
noteworthy limitations. Thus, great care must be  taken in 
interpreting their results and integrating this information in 
translational medicine efforts for two reasons.

First, within the context of developmental studies, there are 
intrinsic differences between non-adult and adult musculoskeletal 
cells as well as their tissue environments. For example, it is 
widely known that adult tendons have incomplete healing, which 
entails scar tissue formation (Longo et al., 2008, 2011), whereas 
fetal or neonatal tendons exhibit scarless wound healing 
(Andarawis-Puri et  al., 2015; Galatz et  al., 2015; Howell et  al., 
2017). In a mouse Achilles tendon resection study, improved 
neonatal healing was attributed to recruitment of Scx-positive 
cells, which are absent in adults (Howell et  al., 2017). In lieu 
of Scx-positive cells, smooth muscle α-actin-positive cells mediated 
wound healing via fibrovascular scar tissue formation, leading 
to impaired musculoskeletal function (Howell et  al., 2017). 
Transplantation of wounded adult and fetal sheep tendons into 
immunocompromised adult mice demonstrated that fetal cells 
exhibited superior intrinsic healing capacities (Favata et  al., 
2006). Wounded fetal tendons demonstrated both wound closure 
and recovery of tendon biomechanical properties including peak 
stress, peak load, modulus, and stiffness relative to unwounded 
controls, while wounded adult tendons did not (Favata et  al., 
2006). Also, fetal or postnatal tissue-specific microenvironments 
differ from that in adult tissue and can alter the wound healing 
response. These differences include high cellularity and low 
ECM content in developing tendons, which stand in stark 
contrast to the hypocellular and predominantly ECM-based 
nature of adult tendons (Dahners, 2005). For example, subtle 
compositional differences in the ECM of developing tendons 
such as lysyl oxidase-mediated collagen crosslinking increased 

mechanical properties such as stiffness (Marturano et al., 2013), 
which can affect tenogenic differentiation (Schiele et  al., 2013). 
Another major difference in tissue environment includes 
differences in the inflammatory microenvironment between 
non-adult and adult tendon (Galatz et al., 2015). To-date, direct 
comparisons between adult and fetal tendon inflammation have 
not been reported, but in related musculoskeletal systems such 
as articular cartilage, improved wound healing is typically 
associated with lower inflammatory response (Ribitsch et  al., 
2018). However, more studies are needed to identify potential 
inflammatory factors associated with improved wound healing 
(Galatz et  al., 2015). This is because the relationship between 
cells and their tissue environments is highly dynamic and 
interdependent. For example, dermally-derived fetal fibroblasts 
exhibited greater regenerative potential relative to their adult 
counterparts (Tang et  al., 2014). Using a 2  mm mouse Achilles 
tendon defect model, tendon cell sheets engineered from fetal 
cells demonstrated improved biomechanical properties, such as 
higher stiffness and tensile modulus, as well as tissue organization, 
such as increased tissue birefringence and collagen fibril size 
(Tang et  al., 2014). Improved tendon healing in this scenario 
was attributed to increased fetal fibroblast proliferation and 
decreased immunocyte presence at the injury site concomitant 
with decreased expression of pro-inflammatory cytokines 
including IL-1β, IL-6, and CD44 (Tang et al., 2014). Such studies 
highlight the need for careful interpretation of findings from 
developmental studies for therapeutic development.

Second, knowledge gleaned from the study of animal models 
has limitations. Developmental and wound healing studies have 
used a vast array of model organisms to advance our 
understanding of tendon biology. These include invertebrates 
such as drosophila (Schweitzer et  al., 2010), vertebrates such 
as fish (Chen and Galloway, 2014, 2017), chick (Schweitzer 
et  al., 2001; Edom-Vovard et  al., 2002; Edom-Vovard and 
Duprez, 2004; Havis et  al., 2016), and mice (Thomopoulos 
et  al., 2007; Schweitzer et  al., 2010; Schwartz et  al., 2012, 
2013, 2015, 2017; Huang et al., 2015; Havis et al., 2016; Huang, 
2017). However, species-specific differences may limit the 
applicability of growth factors identified for musculoskeletal 
tissue engineering. For example, it has been suggested that 
FGF signaling is important for tendon development in chick 
but less so for mouse (Havis et  al., 2016). Also, TGF-β3 is 
implicated in tendon development (Liu et  al., 2017) but its 
application resulted in more disorganized scar tissue relative 
to repair only and carrier only controls (Manning et al., 2011). 
In addition, there is growing recognition that the hierarchical 
nature of tendon organization in smaller animal models such 
as rats, while useful for studying musculoskeletal biology, do 
not mimic those seen in larger organisms, such as horse or 
humans, owing to their lack of high load-bearing fascicles 
(Lee and Elliott, 2018). Also, it is imperative to both devise 
an appropriately relevant injury model for evaluation. For 
example, severe rotator cuff tears are typically chronic in nature 
(Gartsman, 2009). As such, chronic injury models, such as 
those which entail skeletal muscle fatty degeneration (Gupta 
and Lee, 2007), are more ideal for evaluating a therapy meant 
to address large-to-massive injuries. At the same time, it is 
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important to carefully interpret animal model studies that 
employ acute injuries for an intervention meant to address a 
chronic wound. Such studies highlight the need for careful 
design of studies and interpretation of their results.

Thus, developmental biology and wound healing studies can 
offer tremendous insights that aid musculoskeletal tissue 
engineering and regenerative medicine, but factors such as 
intrinsic differences between non-adult and adult cells and 
microenvironment, species-specific differences, and relevance 
of wound model must be  carefully considered.

OUTLOOK

In summary, developmental and wound healing studies can 
serve as useful inspirations to engineer multi-tissue, 
musculoskeletal units. Most importantly, it is evident that 
musculoskeletal development and integration of bone, tendon, 
and muscle tissues are highly interdependent, while common 
inflammatory and anti-inflammatory signals mediate healing 
of these tissues as well as integration of clinical grafts. Collectively, 
such inquiries have advanced our understanding of 
musculoskeletal biology by identifying useful markers of 
musculoskeletal differentiation and promising cues for therapeutic 
development. However, integrating this knowledge for 
translational applications requires careful consideration of 
differences in embryonic or postnatal development with adult 
wound healing as well as the limitations of animal models 
used for studying developmental biology and simulating injury. 
Overcoming such differences will greatly advance efforts to 
engineer or regenerate multi-tissue musculoskeletal units.
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GLOSSARY

Terms Definitions

ADP Adenosine diphosphate
BMP Bone morphogenetic protein
CTGF Connective tissue growth factor
EGR1 Early growth response 1
ECM Extracellular matrix
FGF Fibroblast growth factor
HGF Hepatocyte growth factor
HMGB1 High-mobility group box 1
HOX Homeobox
IL Interleukin
MMP Matrix metalloproteinase
MKX Mohawk
MYOD Myogenic differentiation 1
MYF5 Myogenic factor-5
PTHRP Parathyroid hormone-related protein
PAX Paired box protein
PDGF Platelet-derived growth factor
RHOA Ras homolog gene family member A
RUNX2 Runt-related transcription factor 2
SCX Scleraxis
SHH Sonic hedgehog
SOX9 SRY (Sex determining region Y)-box 9
TNMD Tenomodulin
TGF Transforming growth factor
TAZ Transcriptional co-activator with PDZ-binding motif
TLR Toll-like receptor
TNF-α Tumor necrosis factor-alpha
C-Met Tyrosine protein kinase met
VEGF Vascular endothelial growth factor
WNT Wingless/integrated
YAP Yes-associated protein
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