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IgG antibodies (Abs) mediate their effector functions through the interaction with Fcγ 
receptors (FcγRs) and the complement factors. The main IgG-mediated complement 
activation pathway is induced through the binding of complement C1q to IgG Abs. This 
interaction is dependent on antigen-dependent hexamer formation of human IgG1 and 
IgG3 to increase the affinity for the six-headed C1q molecule. By contrast, human IgG4 
fails to bind to C1q. Instead, it has been suggested that human IgG4 can block IgG1 and 
IgG3 hexamerization required for their binding to C1q and activating the complement. 
Here, we show that murine IgG1, which functionally resembles human IgG4 by not 
interacting with C1q, inhibits the binding of IgG2a, IgG2b, and IgG3 to C1q in vitro, and 
suppresses IgG2a-mediated complement activation in a hemolytic assay in an antigen- 
dependent and IgG subclass-specific manner. From this perspective, we discuss the 
potential of murine IgG1 and human IgG4 to block the complement activation as well 
as suppressive effects of sialylated IgG subclass Abs on FcγR-mediated immune cell 
activation. Accumulating evidence suggests that both mechanisms seem to be respon-
sible for preventing uncontrolled IgG (auto)Ab-induced inflammation in mice and humans. 
Distinct IgG subclass distributions and functionally opposite IgG Fc glycosylation patterns 
might explain different outcomes of IgG-mediated immune responses and provide new 
therapeutic options through the induction, enrichment, or application of antigen-specific 
sialylated human IgG4 to prevent complement and FcγR activation as well.

Keywords: complement, c1q, igG4, igG, igG hexamer, igG glycosylation, immunosuppression, murine igG1

iNtrODUctiON

IgG antibodies (Abs) mediate their effector functions through the interaction with Fcγ receptors 
(FcγRs) and the complement system. The different IgG subclasses thereby differ by their specifici-
ties and affinities to the classical activating and inhibitory FcγRs (1–5). Furthermore, the effector 
function of IgG Abs depends on the type of IgG Fc glycosylation pattern. Non-(a)galactosylated IgG 

Abbreviations: Ab, antibody; BCR, B cell receptor; BDCA-2, blood dendritic cell antigen 2; DC-SIGN, dendritic cell-specific 
ICAM-3-grabbing non-integrin; DCIR, dendritic cell inhibitory receptor; IC, immune complex; FcγR, Fcγ receptor; OVA, 
ovalbumin; RBC, red blood cell; sv, swich variant; SIGN-R1, specific ICAM-3-grabbing non-integrin-related 1; TNBS, 
2,4,6-trinitrobenzenesulfonic acid or picrylsulfonic acid; TNP, 2,4,6-trinitrophenyl.
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Abs are associated with pro-inflammatory functions, such as IgG 
autoAbs in rheumatoid arthritis patients, whereas galactosylated 
and sialylated IgG Abs have reduced inflammatory and even 
immunosuppressive potential (6–19). IgG Fc sialylation reduces 
the affinity to the classical FcγRs and, instead, promotes interac-
tion with members of the sugar-binding C-type lectin receptor 
family (6–8, 13, 14, 19).

In the context of the complement activation, IgG Abs of dif-
ferent subclasses show highly diverse affinities to the complement 
C1q molecule, which initiates the classical complement pathway 
(3, 20–23).

Antigen-dependent hexamer formation of six monomeric 
human IgG1 or IgG3 Abs through non-covalent Fc:Fc interac-
tions, such as polymeric IgM, favors the interaction with one six-
headed C1q molecule leading to complement activation (22–27). 
Upon hexamerization, only one Fab arm of each IgG Ab interacts 
with the antigen. The other Fab arm is positioned in the plane of 
the Fc hexamer (22, 23).

By contrast, human IgG4 fails to activate the complement 
through C1q binding (22, 25). It has been suggested that human 
IgG4 might still be able to form hexamers, but subclass-specific 
sequence differences affect orientation of the loops in the CH2 
domain, which in turn alters the position of the C1q-binding site 
and therewith prevents the interaction with C1q (3, 28).

On the other hand, human IgG4 as well as IgA might prevent 
the hexamer formation of human IgG1 and IgG3 and ultimately 
C1q binding by steric interference (25, 28–32).

To explore the extent of this suggested inhibition, we studied 
whether murine IgG1, which functionally resembles human IgG4 
by not interacting with C1q, can prevent the interaction of the 
murine C1q-binding IgG2a, IgG2b, and IgG3 subclasses with C1q 
and therefore block the complement activation.

We further discuss the potential of murine IgG1 and human IgG4 
to inhibit the complement activation as well as how different IgG 
Fc glycosylation patterns and IgG subclasses affect IgG Fc receptor 
interactions during IgG-mediated immune responses, which may 
be exploited for development of novel therapeutic strategies.

MAteriALs AND MetHODs

reagents
For the experiments described below, 2,4,6-trinitrophenyl (TNP)-
coupled Ficoll (TNP-Ficoll) was purchased from Biosearch 
Technologies (Petaluma, CA, USA). 2,4,6-trinitrobenzenesulfonic 
acid or picrylsulfonic acid (TNBS)-solution was purchased from 
Sigma-Aldrich (St. Louis, MO, USA).

Production of Monoclonal igG Abs
The TNP-specific monoclonal hybridoma IgG1 (clone H5) (10, 11,  
19, 33, 34) and IgG1, IgG2a, and IgG2b class-switch variant (sv; 
with identical VDJ sequences) (19) Abs as well as the ovalbumin 
(OVA)-specific IgG1 (clone 4C9) (10) Abs were produced, puri-
fied and verified as described (19).

c1q eLisA
96-well ELISA plates were coated with 10 µg of TNP-Ficoll per 
milliliter overnight and subsequently incubated with the indicated 

combinations of monoclonal anti-TNP IgG subclass Abs in PBS 
containing 0.1% TWEEN 20 (Sigma-Aldrich). Unbound Abs 
were removed with PBS containing 0.05% TWEEN 20, and 
wells were incubated with human serum from healthy voluntary 
donors diluted 1:20 in HBSS with Ca2+ and Mg2+ (Gibco® by 
LifeTechnologies, Paisley, UK) containing 0.1% TWEEN 20 for 
1 h at room temperature. Unbound serum C1q was removed with 
PBS containing 0.05% TWEEN 20, and bound C1q was detected 
with HRP-labeled polyclonal sheep anti-human C1q IgG Abs 
(AbD Serotec, Bio-Rad, UK) and TMB substrate (BD Bioscience 
San Diego, CA, USA) at OD 450 nm. As a negative control, unspe-
cific serum C1q binding was detected in TNP-Ficoll-coated wells 
without anti-TNP IgG Abs (OD at 450 nm was below 0.09).

Preparation of tNP-Labeled red Blood 
cells (rBcs)
2,4,6-Trinitrophenyl labeling of human RBCs from healthy 
voluntary donors was performed in cacodylate buffer (pH 6.9) 
containing 0.4% TNBS-solution (both from Sigma-Aldrich) for 
1  h at room temperature. Subsequently, the cells were centri-
fuged, resuspended in PBS containing 1 mg/ml of glycylglycine 
(Sigma-Aldrich) and washed with PBS. TNP-coupled RBCs were 
stabilized in citrate-phosphate-dextrose solution containing 
adenine (Sigma-Aldrich) and stored up to 4 weeks at 4°C. TNP-
coupling to RBCs was verified by flow cytometry with murine 
anti-TNP IgG2a (sv) and FITC-labeled anti-murine IgG2a 
(Bethyl Laboratories, Montgomery, TE, USA) Abs (Figure S1E in 
Supplementary Material).

Hemolysis Assay
2,4,6-Trinitrophenyl-coupled RBC suspensions (109 cells/ml) 
were prepared as described (35). 50  µl of cells was sensitized 
with the indicated concentrations and combinations of one or 
two monoclonal anti-TNP IgG subclass Abs for 30 min at 37°C. 
To avoid unwanted agglutination, the highest non-agglutinating 
concentration was determined (22.5 µg/ml for IgG2a) (data not 
shown). Unbound Abs were removed by washing the samples 
first with GVB° and then GVB++ (with Ca2+ and Mg2+) buffer 
(ComplementTechnology, Tyler, TX, USA). Anti-TNP IgG 
subclass Ab-sensitized TNP-labeled RBCs were incubated with 
human serum from healthy volunteers diluted 1:3 in GVB++ 
buffer to induce complement-mediated RBC lysis. Complement 
activation and RBC lysis were stopped after 30 min at 37°C by 
adding 1 ml of ice cold 0.9% NaCl. Samples were centrifuged at 
2,000 g for 5 min at 4°C and free hemoglobin in the supernatant 
was measured at 414 nm. The degree of RBC lysis (in %) was set in 
relation to a positive control lysis with H2O (100%). As a negative 
control, non-IgG sensitized TNP-coupled RBCs were incubated 
with the same serum-GVB++ preparation resulting in less than 
4% lysis compared with the H2O-induced lysis. The induction of 
the classical complement pathway in this lysis assay was verified 
by blocking Ca2+ with EGTA (data not shown).

statistical Analysis
Statistical analyses were performed using GraphPad Prism 
software. Student’s t-test was used for comparing two groups or 
one-way ANOVA for comparing more than two groups: P-values 
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FiGUre 1 | Murine IgG1 prevents C1q binding and complement activation by IgG2a, IgG2b, or IgG3 antibodies (Abs) in an antigen-specific manner.  
(A) Schematic description of the C1q ELISA applied in panels (B,c) and Figure S1 in Supplementary Material. 2,4,6-Trinitrophenyl (TNP)-Ficoll-coupled 96-well 
plates were incubated with different concentrations of one or two anti-TNP monoclonal IgG subclass Abs [anti-TNP IgG1 (clone H5; red), IgG3 (clone 9A6; gray)  
as well as IgG1 (orange), IgG2a (blue), and IgG2b (green) class-switch variants (sv; with identical VDJ sequences)] and subsequently with C1q-containing serum; 
C1q was detected with an anti-C1q-HRP-coupled secondary Ab system. (B,c) Mean of the resulting C1q ELISA values measured at 450 nm (OD450) with the 
indicated (μg/ml) single or paired anti-TNP IgG subclass Abs (n = 2). IgG subclass-specific half-maximal effective concentrations (EC50; ×) were calculated by the 
interpolated subclass-specific C1q-binding curves in panel (c) (R2 > 0.99). (D) Schematic description of the applied red blood cell (RBC)-lysis assay. TNP-coupled 
RBCs (Figure S1E in Supplementary Material) were incubated with one or two anti-TNP monoclonal IgG subclass Abs or an anti-ovalbumin IgG1 (clone 4C9) Ab  
and subsequently treated with serum containing C1q and further complement components. (e) Exemplary hemolysis approach with centrifuged TNP-coupled  
RBCs after reaction with serum, serum plus anti-TNP IgG2a or H2O as a positive control (100% lysis). (F,G) Mean of the resulting RBC lysis [measured hemoglobin 
(OD 414 nm) in the supernatant of centrifuged RBCs], which was calculated as the percentage of H2O-induced positive control RBC lysis (100%; maximum of the 
y-axes) with the indicated (μg/ml) single or paired IgG subclass Abs (n = 2). The results from one of at least two independent experiments are presented.
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below 0.05 were considered statistically significant (*P  <  0.05, 
**P < 0.01, and ***P < 0.001). EC50 values were calculated using 
a non-linear regression with the variable slope model.

resULts

Murine igG1 Prevents complex Formation 
of igG2a, igG2b, and igG3 With c1q
To investigate antigen-dependent interference between non- 
C1q-binding murine IgG1 and C1q-binding IgG2a, IgG2b, and 
IgG3 subclasses for C1q binding, we used TNP-specific murine 
monoclonal IgG1 (clone H5), IgG3 (clone 9A6), and IgG1, IgG2a, 
and IgG2b class-switch variant (sv; with identical VDJ sequences) 
Abs (10, 19, 33, 34, 36, 37). Incubation of plate-bound TNP-
Ficoll with different concentrations of single TNP-specific IgG 

subclasses and serum as a source of C1q showed preferential bind-
ing of C1q to IgG2a (sv), but also to IgG2b (sv) and IgG3 (9A6). 
The calculated half-maximal effective concentrations (EC50) of 
the interpolated IgG subclass-specific C1q-binding curves in this 
approach were 1.1 µg/ml for IgG2a (sv), 4.3 µg/ml for IgG2b (sv), 
and 12.5–12.9  µg/ml for IgG3 (9A6), although the EC50 value 
for IgG3 could not directly be compared with the values for the 
switch variants IgG2a and IgG2b due to differences in their VDJ 
sequences (Figures 1A–C; Figure S1 in Supplementary Material). 
The two monoclonal IgG1 clones (sv and H5) failed to interact 
with C1q in this approach (Figures 1A–C).

However, the combination of two different IgG subclasses 
showed that both IgG1 clones inhibited the binding of C1q to 
IgG2a, IgG2b, and IgG3 in a concentration-dependent manner 
(Figures 1A–C; Figure S1 in Supplementary Material). The IgG1 
clone H5 showed a stronger inhibition than the IgG1 sv clone 
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because of a higher affinity to TNP (measured by affinity ELISA; 
data not shown).

At an almost saturated C1q-binding dosage of IgG2a (5 µg/ml), 
C1q binding was inhibited about 2- or 10-fold by a 2-fold amount 
of the IgG1 sv or using IgG1 clone H5 of higher affinity, respec-
tively (Figure 1B; Figure S1A in Supplementary Material). At an 
IgG2a concentration (1.5 µg/ml) near its EC50, C1q binding to  
IgG2a was inhibited about 1.4-fold by a 2-fold amount of the IgG1 
clone H5 (Figure  1C; Figure S1B in Supplementary Material).  
At an almost saturated C1q-binding dosage of IgG2b (10 µg/ml),  
C1q binding was downregulated about 4- or 9-fold by only 1.5-fold 
amount of the IgG1 sv or the IgG1 clone H5, respectively (Figure 
S1C in Supplementary Material). At IgG3 concentrations (12 or 
16 µg/ml) near its EC50 value, C1q binding was even inhibited 
threefold to fourfold by adding only half the dose of the IgG1 
clone H5 (Figure S1D in Supplementary Material).

In summary, the weaker was the C1q-binding potential of an 
IgG subclass, the more efficient was the inhibition by the IgG1 
Abs and the higher was the concentration of IgG2a, IgG2b, or 
IgG3, the stronger was the dose-dependent C1q-binding inhibi-
tion by IgG1.

By contrast, a combination of IgG2a with IgG2b further 
enhanced C1q binding compared with IgG2a alone and a 
combi nation of IgG2a with IgG3 (at a concentration at which 
IgG3 showed almost no C1q binding) or IgG2b with IgG3 did 
not reduce C1q binding compared with IgG2a or IgG2b alone 
(Figure  1C; Figure S1A–D in Supplementary Material). Thus, 
the murine IgG1 subclass exclusively inhibited binding of C1q to 
murine IgG2a, IgG2b, and IgG3.

Murine igG1 Prevents c1q-Mediated 
complement Activation by igG2a
Next, we investigated in  vitro whether murine IgG1 can also 
inhibit complement-mediated lysis of RBCs induced by the 
other murine IgG subclasses. TNP was conjugated to purified 
RBCs (Figure S1E in Supplementary Material), and these cells 
were incubated with one murine IgG subclass or a combination 
of two different IgG subclasses. Serum was used as a source of 
C1q and further complement components to induce RBC lysis 
and hemoglobin release (Figures 1D–G). Complement-mediated 
RBC lysis was calculated as the percentage of complete lysis of the 
same amount of cells with H2O (set 100%; the positive control) 
(Figures 1E–G).

IgG2a alone induced a dose-dependent C1q-mediated RBC lysis 
when applied in the concentration range between 2.5 and 22.5 µg/ml  
(the highest used non-agglutinating concentration) and reached up 
to 70% of positive control H2O lysis (Figures 1E–G and data not 
shown). IgG2b alone poorly induced RBC lysis in the concentration 
range between 7.5 and 22.5 µg/ml and reached no more than 8% of 
positive control H2O lysis (data not shown). Murine IgG1 and also 
IgG3 alone barely induced any RBC lysis in this setting (1–4% of 
positive control H2O lysis), which was in the range of the negative 
control, when no IgG applied (Figures 1F,G and data not shown). 
Because IgG2b and IgG3 failed to induce significant RBC lysis, we 
further tested how IgG1 affects IgG2a-mediated RBC lysis only.

Both IgG1 clones inhibited IgG2a-induced RBC lysis. The 
IgG1:IgG2a ratio of 2:1 led to a 2.4- or 3-fold inhibition of the 

IgG2a-mediated lysis with the IgG1 sv or the IgG1 clone H5, 
respectively. By contrast, IgG2b enhanced IgG2a-induced RBC 
lysis, whereas IgG3 had no effect (Figures  1F,G and data not 
shown). Furthermore, the IgG1-mediated complement inhibition 
was antigen-specific, because antigen-unspecific, OVA-specific 
murine IgG1 failed to inhibit the IgG2a-mediated RBC lysis 
(Figure 1F).

Thus, the murine IgG1 subclass exclusively inhibited IgG2a- 
and C1q-dependent complement activation in the hemolysis 
assay, in an antigen-specific manner.

DiscUssiON

Murine igG1 and Human igG4 May inhibit 
Hexamer Formation of the Other igG 
subclasses and consequently their  
c1q Binding by steric interference
Human IgG1 and IgG3 Abs form hexamers via non-covalent 
Fc:Fc interactions in an antigen-specific manner to bind C1q. 
Although it has not been determined whether the murine IgG2a, 
IgG2b, and IgG3 Ab subclasses can also form hexamers to bind 
C1q and activate the classical complement pathway, we showed 
that murine IgG1 can prevent the interaction of C1q-binding 
murine IgG subclasses with C1q, as suggested for human IgG4 
(25). Dampening of C1q binding by murine IgG1 or human 
IgG4 might result from competition for antigen binding and/or 
from steric interference between antigen-bound murine IgG1 or 
human IgG4 and the other IgG subclasses to inhibit hexamer for-
mation of the latter Abs (25) (Figure 2A). The potential binding 
of murine IgG1 or human IgG4 to an antigen in close vicinity to 
the C1q-binding IgG subclasses might interfere with Fc:Fc con-
tact formation, potentially leading to reduced hexamerization, 
C1q binding, and complement activation (23, 25). Efficient steric 
interference may be dependent on antigen density and epitope 
specificity, as well as on affinity of murine IgG1 and human IgG4.

Human IgG4 exploits additional properties to modify 
immune responses, such as dynamic Fab-arm exchange, which 
results in formation of bispecific IgG4 Abs (38, 39), and the 
interaction with the Fc part of other IgG subclass Abs (40–45). 
Both mechanisms might also contribute to the human IgG4-
mediated suppression of the hexamer formation by other IgG 
subclasses; but it has not been yet demonstrated for murine IgG1.

The possibility that antigen-dependent steric interference by 
murine IgG1 or human IgG4 prevents the hexamer formation by 
other IgG subclasses might suggest a scenario, in which a single 
murine IgG1 or human IgG4 molecule is sufficient to reduce the 
hexamer formation of the other IgG subclass molecules, confer-
ring anti-inflammatory properties to murine IgG1 or human 
IgG4 via blocking the complement activation.

Anti-inflammatory Functions of Murine 
igG1 and Human igG4 in the context  
of Fcγr interactions
Fcγ receptor-mediated effector functions vary between IgG 
subclasses and depend on FcγR distribution on the surface 
of myeloid and lymphoid immune cells. Murine IgG1, as well 
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FiGUre 2 | Inhibitory potential of (sialylated) murine IgG1 and human IgG4. (A–c) Summary of our perspective about the inhibitory and therapeutic potential of 
(sialylated) murine IgG1 and human IgG4 (see text for details). IgG antibodies have one conserved N-glycosylation site at Asn 297 in each of their constant heavy 
chain regions. The biantennary core glycan structure that consists of four N-acetylglucosamine (GlcNAc) and three mannose residues can be further decorated with 
fucose, a bisecting GlcNAc and terminal galactose or galactose and sialic acid. (D) Average distribution of total human and mouse serum IgG Fc glycosylation 
patterns coupled to Asn 297 of total human serum IgG (IVIg; pooled intravenous immunoglobulin from healthy donors) and total murine serum IgG from 8- to 
10-week-old untreated female C57BL/6 wild-type mice were analyzed by high-pressure liquid chromatography [data from Epp et al. (19)].
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as human IgG4, show limited specificities and affinities to 
the classical activating FcγRs and preferably interact with the 
classical IgG inhibitory receptor FcγRIIb, as compared with 
murine IgG2a and IgG2b as well as human IgG1 and IgG3 
(Figure 2B; Figure S2 in Supplementary Material) (1–5, 46, 47). 
Thus, both the IgG subclass distribution and the expression 
levels of classical activating and inhibitory FcγRs determine 
the balance between activating and inhibitory signals in the  
target cells.

Mechanistically, crosslinking of IgG Abs with classical 
activating FcγRs induces phosphorylation of their own or their 
associated Fc receptor gamma (FcRγ)-chain intracellular immu-
noreceptor tyrosine-based activation motif (ITAM) (Figure S2  
in Supplementary Material) and activation of the target cell 
(Figure S2 in Supplementary Material) (2). However, additional 
IgG-mediated crosslinking of the inhibitory FcγRIIb can lead 
to the phosphorylation of its intracellular immunoreceptor 
tyrosine-based inhibition motif (ITIM) and thereby inhibition 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


6

Lilienthal et al. Inhibitory Potential of IgG Subclasses

Frontiers in Immunology | www.frontiersin.org May 2018 | Volume 9 | Article 958

of cell activation (Figure S2 in Supplementary Material) (2).  
In general, the phosphorylation of an ITIM motif always depends 
on upstream ITAM phosphorylation, for example, here, of acti-
vating FcγR (Figure S2 in Supplementary Material) (2).

Moreover, FcγR-mediated pro- or anti-inflammatory effector 
functions of murine and human IgG Abs are effected by the IgG Fc 
N-glycosylation pattern at Asn 297 in the CH2 region. Enriched 
amounts of non-(a)galactosylated IgG (auto)Abs are associated 
with pro-inflammatory effector functions of the IgG Abs and 
(auto)immune disease severity, such as IgG autoAbs in patients 
with rheumatoid arthritis, whereas galactosylated and sialylated 
IgG Abs possess reduced inflammatory and even immunosup-
pressive potential (Figure 2D) (6–12, 14, 17–19, 34, 48). IgG Fc 
galactosylation and sialylation seems to alter the conformation of 
the Fc portion and ultimately shifts its affinity from the classical 
FcγRs toward the so-called type II FcRs that mediate inhibitory 
signaling. Several sugar-binding C-type lectin receptors belong 
to the type II FcRs, including murine specific ICAM-3-grabbing 
non-integrin-related 1 (SIGN-R1) and its human homolog den-
dritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN); 
CD209, murine dendritic cell inhibitory receptor (DCIR), and 
CD23 (Figure 2B; Figure S2 in Supplementary Material) (4, 7, 8, 
12–15, 18, 19, 49–53).

SIGN-R1 and DC-SIGN have originally been identified as 
receptors that recognize carbohydrates of some bacteria, e.g., S. 
pneumonia (4, 7, 14, 51). SIGN-R1 and DC-SIGN contain neither 
an ITAM nor an ITIM motif and the induction of inhibitory 
signals by sialylated IgG Abs via these receptors is yet unclear 
(Figure S2 in Supplementary Material).

Dendritic cell inhibitory receptor interacts with glycans of 
both pathogenic and endogenous origins and has, in contrast 
to SIGN-R1/DC-SIGN, an intracellular ITIM motif (4, 13, 
49, 50, 54). However, it is still unknown whether sialylated 
IgG immune complexes (ICs) crosslink DCIR with ITAM-
containing classical FcγRs or other ITAM-containing recep-
tors to deliver inhibitory signals (Figure S2 in Supplementary 
Material).

CD23 is known as the low-affinity IgE receptor present on 
some immune cells, including B lymphocytes. However, also sia-
lylated IgG Abs can crosslink CD23, which leads to up-regulation 
of FcγRIIB expression (Figure S2 in Supplementary Material)  
(4, 14, 15, 55). The induced inhibitory signals by CD23 might be 
mediated by crosslinking of CD23 with the B cell receptor (BCR) 
and thereby modulating the BCR signal.

The structure of the IgG Fc glycan has different impact on 
the effector functions of the different IgG subclasses: it strongly 
influences functional properties of murine IgG1, less of IgG2b, 
but barely of IgG2a (10, 11, 19, 34, 48).

Recent studies have shown that sialylated antigen-specific 
murine IgG1 Abs can be used to induce antigen-specific immune 
tolerance, making such Abs a potential therapeutic tool to treat 
inflammatory immune diseases in an antigen-specific manner 
(10–12, 16).

In addition to the anti-inflammatory potential of sialylated 
murine IgG1, only galactosylation of murine IgG1 has also 
induced inhibitory signals in a mouse model of autoimmune 
hemolytic anemia and via crosslinking the C-type lectin receptor 

Dectin-1 (Clec7a) with the inhibitory receptor FcγRIIb (Figure 
S2 in Supplementary Material) (12, 34, 56). Dectin-1 recognizes 
bacterial carbohydrates and activates effector cells via an intra-
cellular ITAM-like (hemITAM) motif (34, 51, 57). However, in 
proximity to FcγRIIb, the ITAM-like motif of Dectin-1 induces 
phosphorylation of the ITIM motif of FcγRIIb and promotes 
inhibitory signaling (34). Recently, it has further been suggested 
that the galactose-binding receptor galectin-3 is additionally 
involved in this complex and directly interacts with galactosylated 
murine IgG1 and induces complex formation between Dectin-1 
and FcγRIIb (58). In humans, inhibitory effects of galactosylated 
IgG Abs have been described for the plasmacytoid dendritic 
cell-specific type II C-type lectin receptor blood dendritic cell 
antigen 2, which signals via the ITAM-containing FcRγ-chain as 
signaling molecule (59, 60).

It has still to be determined to which extent Fc glycosylation 
affects effector properties of human IgG molecules in a subclass-
dependent manner, but the current suggestion is that the effector 
function of all human IgG subclasses depends on the Fc glyco-
sylation pattern.

Interestingly, the hexamer formation of human IgG1 is 
dependent on the conserved IgG Fc glycosylation site (23) and 
human IgG1 Fc galactosylation favors C1q binding, as compared 
with agalactosylated as well as sialylated human IgG1 (61, 62).

Together, the observations mentioned before show that 
sialylated murine IgG1 and seemingly human IgG4 have an 
anti-inflammatory potential in the context of FcγR-mediated 
activation of the immune system.

igG subclass Distribution and Fc 
Glycosylation Pattern Determine the 
effector Function of igG Abs, Making 
sialylated Murine igG1 and Human igG4 
Attractive inhibitory (therapeutic) tools
In line with the above mentioned findings, it has recently been 
demonstrated that IgG1-deficient mice develop severe autoim-
mune conditions in different inflammatory autoimmune disease 
models (63, 64) as well as enhanced antigen-dependent IgG3 IC 
depositions in the kidneys (37). The autoimmune models used in 
these studies (63, 64), similar to other inflammatory autoimmune 
models, are apparently dependent on C1q and the complement 
activation as well as on classical FcγR-mediated immune cell 
activation (21, 61, 63–69). In future studies, it would be impor-
tant to explore the inhibitory potential of murine IgG1 and its Fc 
glycosylation status in terms of the complement activation and 
FcγR-mediated regulation of effector cells using various models 
of autoimmunity and inflammation.

In summary, the mentioned results show that the analysis of 
the IgG subclass distribution and Fc glycosylation pattern during 
an immune response provides important information about the 
inflammatory state of the immune reaction. It is still a common 
practice that inflammatory and autoimmune diseases are diag-
nosed only by analysis of total (auto)antigen-specific IgG Abs.  
We believe that the additional analysis of IgG subclass distribution 
and their Fc glycosylation patterns will be essential for under-
standing the current inflammatory status of antigen-specific 
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IgG-mediated immune response and associated pathologies. 
These data also suggest that murine IgG1 and human IgG4 Abs 
in particular might have the strongest inhibitory potential toward 
all other IgG forms, due to their possible inhibitory effect on both, 
complement and classical FcγR activation (Figure 2C).

Total IgG fraction in human serum mainly consists of human 
IgG1 and less of human IgG4 (IgG1  >  IgG2  >  IgG3  >  IgG4). 
Changes in this distribution of IgG subclasses as well as in their 
Fc glycosylation patterns will presumably have a strong impact on 
IgG-mediated immune responses.

For many years, the induction of human IgG4 (for instance, 
induced by allergen-specific immunotherapies) has been 
associated with the inhibition of IgE-mediated allergic immune 
responses (19, 70). However, in the presence of high doses of 
allergen IgG Abs can also induce allergic reactions (19). In this 
context, an inhibitory role of human IgG4 has been discussed 
(19, 29). Furthermore, the MHC-specific human IgG1/3 to 
IgG4 ratio might be a critical parameter that determines the 
risk of complement-mediated transplant rejection in patients 
after organ transplantation and blood transfusion (71). More 
in-depth analysis of the IgG subclass distribution and Fc gly-
cosylation might clarify inhibitory effects of human IgG4 in  
these studies.

Blockade of C1q with designer molecules has been proposed 
as a potent approach to treat inflammatory diseases. However, 
the shift of antigen-specific T and B  cell responses to produce 
primarily sialylated human IgG4 or the application of enriched or 
in vitro-produced antigen-specific sialylated IgG4 Abs might be a 
promising alternative therapeutic approach to treat complement-
mediated inflammatory diseases and to inhibit FcγR-mediated 
inflammatory responses at the same time. Recent studies have 
indeed shown for the first time that enrichment of type XVII 
collagen (Col17)-specific human IgG4 autoAbs from autoim-
mune patients with bullous pemphigoid skin disease and their 
administration to humanized Col17 mice inhibited the comple-
ment activation and disease development by interfering with the 
other IgG subclasses (72).

cONcLUsiON AND PersPective

We showed that murine IgG1 inhibits C1q binding of IgG2a, 
IgG2b, and IgG3 and complement activation by murine IgG2a in 
an antigen-dependent manner, and suggested potential applica-
tion of these findings for human IgG4. We further outline other 
inhibitory functions of murine IgG1 and human IgG4 and stressed 
the importance of future analysis of IgG subclass distribution 
and Fc glycosylation patterns in developing novel therapeutic 
approaches. We conclude that antigen-specific sialylated murine 
IgG1 and human IgG4 Abs might be a promising therapeutic tool 
to inhibit complement activation and abolish FcγR-mediated 
inflammatory responses in inflammatory (autoimmune) 
diseases.
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FiGUre s1 | Inhibition of C1q binding to IgG2a, IgG2b, and IgG3 by IgG1. (A–D) C1q 
ELISA experiments as described and partially shown in Figures 1A–c with 
2,4,6-trinitrophenyl (TNP)-Ficoll-coated 96-well plates, which were incubated with 
different concentrations of one or two anti-TNP monoclonal IgG subclass Abs 
[anti-TNP IgG1 (clone H5; red), IgG3 (clone 9A6; gray) as well as IgG1 (orange), 
IgG2a (blue), and IgG2b (green) class-switch variants (sv; with identical VDJ 
sequences)] and subsequently with serum containing C1q that was detected with 
an anti-C1q-HRP-coupled secondary Ab system. The left figure parts in panels 
(A–D) show the single IgG2a (blue), IgG2b (green), or IgG3 (gray) OD 450 nm (OD 
450; left y-axes; each point: mean of n = 2) value binding curves and their 
interpolated binding curves with the percentage (right y-axes) of their maximal 
C1q binding [black; R2 of interpolation was >0.99; the top of the (interpolated) 
IgG subclass-specific curves was set to 100%, and the bottom of the curves was 
set to 0%]. The IgG subclass-specific half-maximal effective concentration (EC50) 
was calculated from the interpolated C1q-binding curves. To the indicated 
(dashed line) amounts of single IgG subclasses [(A) 5 µg/ml IgG2a; (B) 1.5 µg/ml 
IgG2a; (c) 10 µg/ml IgG2b; (D) 12 or 16 µg/ml IgG3], the indicated x-fold 
amounts of a second indicated anti-TNP IgG subclass were added. Their 
resulting OD 450 values and calculated percentages are presented in the right 
figure parts. (e) Verification of the TNP-coupling to red blood cell (RBC) as 
described in Figure 1D. TNP coupling to RBCs was verified by flow cytometry 
with murine anti-TNP IgG2a (sv) and FITC-labeled anti-murine IgG2a Abs. The 
results from one of at least two independent experiments are presented.

FiGUre s2 | Expression of IgG Fc interacting receptors by human and murine 
immune effector cells and their immunoreceptor tyrosine-based activation motif 
(ITAM)/immunoreceptor tyrosine-based inhibition motif (ITIM) signaling motifs. List of 
type I and type II IgG Fc receptors as mentioned in the text. The expression pattern 
of the individual receptors on different immune cell types has been described 
before (1–5, 7, 8, 12–15, 18, 19, 34, 46, 47, 49–54, 57–60). Abbreviations: BC, 
B cells; TC, T cells; NK, natural killer cells; Mo, monocytes; MΦ, macrophages.
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