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Abstract
Introduction: The corpus callosum serves the essential role of relaying cognitive in-
formation between the homologous regions in the left and the right hemispheres 
of	the	brain.	Cognitive	impairment	is	a	core	dysfunction	of	schizophrenia,	but	much	
of its pathophysiology is unknown. The aim of this study was to elucidate the asso-
ciation between microstructural abnormalities of the corpus callosum and cognitive 
dysfunction in schizophrenia.
Methods: We examined stepwise multiple regression analysis to investigate the re-
lationship	of	 the	 fractional	 anisotropy	 (FA)	of	 callosal	 fibers	 in	each	 segment	with	
z-scores of each brief assessment of cognition in schizophrenia subtest and cogni-
tive composite score in all subjects (19 patients with schizophrenia [SZ group] and 
19	healthy	controls	[HC	group]).	Callosal	fibers	were	separated	into	seven	segments	
based on their cortical projection using tract-specific analysis of diffusion tensor 
imaging.
Results: The	FA	of	callosal	fibers	in	the	temporal	segment	was	significantly	associated	
with z‐scores	of	token	motor	test,	Tower	of	London	test,	and	the	composite	score.	In	
the	SZ	group,	the	FA	of	callosal	fibers	in	the	temporal	segment	was	significantly	as-
sociated with the z‐score	of	the	Tower	of	London	test.	In	addition,	the	FA	of	callosal	
fibers in temporal segment showed significant negative association with the positive 
and	negative	syndrome	scale	negative	score	in	the	SZ	group.	Compared	to	the	HC	
group,	the	FA	in	temporal	segment	was	significantly	decreased	in	the	SZ	group.
Conclusion: Our results suggest that microstructural abnormalities in the callosal 
white matter fibers connecting bilateral temporal lobe cortices contribute to poor 
executive function and severe negative symptom in patients with schizophrenia.
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1  | INTRODUC TION

The	 disconnection	 hypothesis	 in	 schizophrenia	 (Friston,	 1999)	 is	
supported by repeated reports of abnormalities of white matter 
(WM)	 fibers	 that	connect	brain	 regions	 (Kubicki	&	Shenton,	2014;	
Samartzis,	 Dima,	 Fusar‐Poli,	 &	 Kyriakopoulos,	 2014;	 Wheeler	 &	
Voineskos,	2014).	The	corpus	callosum	(CC),	the	largest	commissural	
fiber	bundle	in	the	brain,	connects	the	left	and	the	right	hemispheres	
and	serves	an	essential	role	of	relaying	sensory,	motor,	and	cognitive	
information	between	the	homologous	regions	 (Huang	et	al.,	2005;	
Ribolsi,	Daskalakis,	 Siracusano,	&	Koch,	 2014).	Many	 studies	 have	
investigated abnormalities of the CC in schizophrenia with an aim 
of studying the disconnection between the two hemispheres (Isobe 
et	al.,	2016;	Ribolsi	et	al.,	2014).

Advances	in	diffusion	tensor	imaging	(DTI)	have	enabled	capture	
of	microstructural	WM	abnormality.	Techniques	 to	build	 three‐di-
mensional fiber tracts based on DTI provide opportunities to inves-
tigate	how	specific	fiber	tracts	may	affect	disorders,	by	visualizing	
the	trajectories	of	specific	WM	fiber	bundles	and	by	quantitatively	
characterizing	each	fiber	tract	(Lee	et	al.,	2005;	Wakana	et	al.,	2007).

Cognitive impairment is a core dysfunction of schizophrenia 
that	is	associated	with	functional	prognosis	(Green	&	Harvey,	2014),	
but much of its pathophysiology is unknown. Cognitive perfor-
mance is strongly associated with communication between multiple 
brain	regions	(Fox	et	al.,	2005).	Development	of	CC	in	childhood	is	
correlated	with	intelligence,	processing	speed,	and	problem‐solving	

ability,	and	is	thought	to	play	a	fundamental	role	in	cognitive	func-
tioning	(Hinkley	et	al.,	2012).	However,	few	studies	have	performed	
detailed investigation of the relationship between microstructural 
abnormalities of CC and cognitive functioning in schizophrenia.

In	the	current	study,	we	examined	the	association	between	mi-
crostructural abnormalities of CC fibers and cognitive dysfunction 
in schizophrenia by segmenting the CC fibers based on their cor-
tical	projection	 regions	using	DTI	 tract‐specific	analysis	 (TSA).	We	
hypothesized that patients with schizophrenia show microstructural 
abnormalities in CC fibers and these abnormalities are related to 
their cognitive impairment.

2  | METHODS

2.1 | Subjects

The	 subjects	were	 19	 patients	with	 schizophrenia	 (SZ	 group)	 and	
19	 healthy	 controls	 (HC	 group;	 Table	 1).	 The	 subjects	 were	 diag-
nosed by two independent well-trained psychiatrists based on 
the	Diagnostic	and	Statistical	Manual	of	Mental	Disorders,	Fourth	
Edition	 (APA,	 1994),	 and	were	 recruited	 from	Wakayama	Medical	
University	Hospital.	Patients	with	comorbid	psychiatric,	neurologi-
cal,	or	medical	illness,	or	those	with	substance	or	alcohol	abuse	were	
excluded	from	the	study.	All	patients	were	on	antipsychotic	medi-
cation.	 Equivalent	 doses	 of	 antipsychotics	 were	 calculated	 using	
the	equivalent	 conversion	 table	originally	 reported	by	 Inagaki	 and	

TA B L E  1   Demographic and clinical characteristics

 

HC group (n = 19) SZ group (n = 19) Statistics

Mean ± SD Range Mean ± SD Range  p

Gender,	male/femalea,	n 7/12  9/10  χ2	=	0.43 0.45

Ageb 41.89	±	10.25 30–60 44.16	±	7.98 34–60 t	=	−0.76 0.74

Duration	of	illness,	years   18.58	±	10.12    

PANSS	positive   14.05	±	5.78    

PANSS	negative   18.16	±	5.70    

PANSS	general	
psychopathology

  32.53	±	10.36    

PANSS	total   64.74	±	20.11    

Medication,	CPZ	equivalent	
(mg/day)

  642.26	±	330.66    

Verbal memoryb,	z-score −0.04	±	0.12  −2.17	±	1.30  t = 5.25 0.00

Digit	sequencingb,	z-score 0.21	±	0.94  −1.52	±	0.95  t = 5.63 0.00

Token motor taskb,	z-score 0.19	±	0.90  −1.88	±	1.62  t	=	4.89 0.00

Verbal fluencyb,	z-score 0.37	±	1.00  −1.31	±	1.11  t	=	4.88 0.00

Symbol coding taskb,	z-score 0.92	±	1.10  −1.86	±	1.97  t = 5.38 0.00

Tower	of	Londonb,	z-score 0.04	±	0.94  −1.72	±	2.19  t = 3.22 0.00

Composite scoreb,	z-score 0.28	±	0.78  −1.74	±	1.17  t = 6.25 0.00

Abbreviations:	CPZ,	chlorpromazine;	HC,	healthy	controls;	n,	number;	PANSS,	Positive	and	Negative	Syndrome	Scale;	SD,	standard	deviation;	SZ,	
schizophrenia.
aChi‐square	test.	
bIndependent-samples t test. 
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Inada	(Inada	&	Inagaki,	2015).	This	study	was	approved	by	the	Ethics	
Committee	of	Wakayama	Medical	University,	and	written	informed	
consent was obtained from all subjects.

2.2 | Neuropsychological measurements

The severity of clinical symptoms was assessed using the Positive 
and	Negative	Syndrome	Scale	(PANSS).	Neurocognitive	function	was	
tested	by	experienced	psychologists	using	the	Brief	Assessment	of	
Cognition	in	Schizophrenia	(BACS)	Japanese	version	(Kaneda	et	al.,	
2007),	which	 is	widely	used	 in	Japan	 (Ikebuchi	et	al.,	2017;	 Itakura	
et	al.,	2017;	Satogami,	Takahashi,	Yamada,	Ukai,	&	Shinosaki,	2017;	
Sawada	 et	 al.,	 2017;	 Takahashi	 et	 al.,	 2013).	 This	 battery	 includes	
six	subtests:	list	learning	test	(verbal	memory),	digit	sequencing	test	
(working	memory),	token	motor	test,	verbal	fluency	test,	symbol	cod-
ing	 test	 (attention),	and	 the	Tower	of	London	 test	 (executive	 func-
tion).	In	the	BACS,	z-scores were calculated for each subcomponent 
score using means and standard deviations based on the dataset of 
healthy	Japanese	populations	 (Kaneda	et	al.,	2013).	The	composite	
score was calculated by averaging all z-scores of six subcomponents.

2.3 | MRI data acquisition

We	acquired	anatomical	MRI	and	DTI	data	on	a	3.0T	MR	scanner	
(Achieva	TX	3.0T;	Philips	Medical	Systems)	using	a	32‐element	sensi-
tivity‐encoding	head	coil.	A	3D	fast	field	echo	T1‐weighted	sequence	
was	used	for	anatomical	MRI	(TR/TE	=	7.0/3.3	ms,	FOV	=	220	mm,	
210	 slices,	 acquisition	 voxel	 size	 =	 0.86	 ×	 0.86	 ×	 0.9	mm,	 and	 a	
slice	 thickness	=	0.9	mm).	DTI	 images	were	 acquired	using	 a	 sin-
gle‐shot	 spin‐echo	 echoplanar	 imaging	 diffusion	 sequence	 with	
fifty‐five	2.5‐mm	slices	 (no	 interslice	gap),	TR/TE	=	6,421/69	ms,	
FOV	=	224	mm,	acquisition	voxel	size	=	2.0	×	2.0	×	2.5	mm,	and	2b	
values	of	0	and	1,000,	15	directions.

2.4 | DTI data processing

Some	DTI‐derived	data,	such	as	 fractional	anisotropy	 (FA)	and	the	
apparent	 diffusion	 coefficient	 (ADC),	 provide	 information	 on	WM	
diffusion	 (Basser	&	Pierpaoli,	1996).	FA	 is	a	composite	measure	of	
three eigenvalues (λ1,	λ2,	 and	λ3).	λ1,	 the	 largest	 in	 three,	which	 is	
called	the	axial	diffusivity	(AD),	is	the	component	parallel	to,	and	λ2 
and λ3,	whose	average	is	called	the	radial	diffusivity	(RD),	are	com-
ponents	perpendicular	to	the	axonal	fibers	(Basser,	1995;	Wozniak	&	
Lim,	2006).	We	selected	FA	as	a	main	index	because	it	measures	the	
degree of water diffusion anisotropy on a scale from zero to one and 
characterizes	WM	microstructural	abnormalities	(Basser	&	Pierpaoli,	
1996).	 In	addition,	FA	 is	 the	most	widely	used	anisotropy	measure	
(O'Donnell	&	Westin,	2011).	We	used	Philips	Extended	Workspace	
(EWS,	 Release	 2.6.3.1;	 Philips)	 to	 analyze	 DTI	 data.	 FA	 threshold	
for line tracking was set to 0.2. The maximum angle threshold was 
50°. We performed tractography using the two-regions-of-interest 
(ROIs)	 approach.	 In	 recent	 years,	 analyses	 have	 been	 carried	 out	
by segmenting CC fibers using a two-ROIs approach into multiple 

regions	based	on	the	cortical	regions	that	the	CC	projects	to	(Huang	
et	al.,	2005;	Lebel,	Caverhill‐Godkewitsch,	&	Beaulieu,	2010).	One	
of	our	previous	studies	applied	that	technique	in	mood	disorder	in-
vestigations	 (Yamada	et	al.,	2015).	The	first	reference	ROI	was	fo-
cused	on	the	CC	in	a	midsagittal	slice,	and	secondary	ROI	was	seven	
separate	cortices	spanning	both	sides	of	the	midline	(Appendix	S1).	
As	seen	 in	Figure	1,	callosal	fibers	were	separated	 into	seven	seg-
ments based on their cortical projection zones. Ordered from front 
to	back,	the	seven	sections	were	as	follows:	orbital	frontal,	anterior	
frontal,	superior	frontal,	superior	parietal,	posterior	parietal,	tempo-
ral,	and	occipital.	All	ROIs	were	drawn	 in	accordance	with	specific	
anatomical landmarks and guidelines that were followed carefully 
and	 consistently	 for	 all	 patients	 (Figure	 2).	 Same	 as	 the	 previous	
studies	 (Brandstack,	Kurki,	Laalo,	Kauko,	&	Tenovuo,	2016;	Huang	
et	al.,	2005;	Lebel	et	al.,	2010),	fibers	that	were	clearly	not	part	of	
the anatomical connectivity of the tracking were manually removed 
with exclusion ROIs to include only fibers within the desired tract. 
Calculation	of	FA	was	made	by	averaging	all	voxels	for	each	region	
over the entire tracking. Tractography was performed by one op-
erator	 (Y.O.).	 In	order	 to	assess	validity	of	ROI	procedure,	another	
operator	(K.T.)	who	was	blinded	subjects'	diagnosis,	age,	gender,	and	
handedness analyzed five subjects in the SZ group and five subjects 
in	 the	HC	group,	and	 interoperator	 reliabilities	 for	FA	values	were	
examined.	 Intraclass	 correlation	 coefficients	 of	 FA	 value	 of	 seven	
segments	 (orbital	 frontal,	 anterior	 frontal,	 superior	 frontal,	 supe-
rior	parietal,	posterior	parietal,	temporal,	and	occipital)	were	0.903,	
0.956,	0.976,	0.976,	0.726,	0.953,	and	0.740,	respectively.

2.5 | Statistics

The	differences	between	the	SZ	and	HC	groups	in	age	and	z-scores of 
each neurocognitive test were examined by independent-samples 

F I G U R E  1   Segmentation of corpus callosum by tractography. 
The corpus callosum was subdivided into seven separate segments 
using	a	two‐regions‐of‐interest	(ROIs)	fiber	tracking	approach	
in accordance with a determined rule and specific anatomical 
landmarks.	The	seven	segments	are,	in	order	from	most	front	to	
most	back,	as	follows:	orbital	frontal	(OF),	anterior	frontal	(AF),	
superior	frontal	(SF),	superior	parietal	(SP),	posterior	parietal	(PP),	
temporal	(Temp),	and	occipital	(Occ)
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t	test.	Gender	difference	between	the	groups	was	assessed	using	
the	 chi‐square	 test.	Using	Pearson's	 correlation	 test,	 correlation	
of	FA	of	each	callosal	segment	with	age	was	assessed	 in	 the	HC	
groups,	and	correlation	of	FA	of	each	callosal	segment	with	age	and	
equivalent	doses	of	antipsychotics	was	assessed	in	the	SZ	group.	
Correlation of the z‐score	of	neuropsychological	tests	with	equiv-
alent doses of antipsychotics was also assessed using Pearson's 
correlation	test	in	the	SZ	group.	In	the	above	analyses,	the	statisti-
cal significance level was set at p < 0.05. Stepwise multiple regres-
sion	analysis	was	performed,	with	the	z‐scores	of	list	learning	test,	
digit	sequencing	test,	token	motor	test,	verbal	fluency	test,	symbol	
coding	test,	the	Tower	of	London	test,	and	the	composite	score	as	
dependent	variables,	and	the	FA	of	callosal	fibers	in	each	segment	
as independent variables to investigate the relationship between 
the	FA	 and	 cognitive	 function	 in	 all	 subjects.	 The	 statistical	 sig-
nificance level was set at p < 0.0071 (adjusted for the Bonferroni 
correction;	0.05/7	cognitive	scores)	for	cognitive	tests.	If	we	find	
significant	relationship	between	FA	of	callosal	fibers	and	z-scores 
of	 cognitive	 subtests	 in	 all	 subjects,	 subsequent	 stepwise	multi-
ple regression analysis in same relation was performed in the SZ 
group. The statistical significance level was set at p < 0.05/number 
of	tests	(adjusted	for	the	Bonferroni	correction).	Stepwise	multiple	
regression analysis was also performed to investigate the relation-
ship	between	the	FA	of	callosal	fibers	in	each	segment	and	PANSS	
scores in the SZ group. The statistical significance level was set at 
p	<	0.0125	(adjusted	for	the	Bonferroni	correction;	0.05/4	PANSS	
subtests).	Independent‐samples	t test was used to examine differ-
ences	between	the	SZ	and	HC	groups	in	the	FA	of	callosal	fiber	in	
the segment which identified the significant relation in regression 
analysis in the SZ group. The statistical significance level was set 
at p < 0.05/number of tests (adjusted for the Bonferroni correc-
tion).	In	the	same	approach,	stepwise	multiple	regression	analysis	
was	also	performed	with	other	DTI	index,	which	includes	the	ADC,	
AD,	and	RD	of	callosal	fibers	in	each	segment	as	independent	vari-
ables.	All	statistical	analyses	were	performed	using	the	IBM	SPSS	
Statistics	for	Windows	(IBM	Japan,	Ltd.).

3  | RESULTS

3.1 | Demographic and clinical characteristics

There were no differences in age and gender between the SZ and 
HC	groups	(Table	1).	In	the	BACS,	the	SZ	group	showed	significantly	
lower z-scores in six subtests and composite scores when compared 
to	those	in	the	HC	groups	(Table	1).

3.2 | Correlation of the FA of callosal fibers with 
age and equivalent dose of antipsychotics

The	FA	of	callosal	fibers	significantly	correlated	with	age	in	the	su-
perior frontal segment (r	=	−0.604,	p	=	0.006)	and	posterior	parietal	
segment (r	=	0.506,	p	=	0.027)	in	the	HC	group	and	in	the	anterior	
frontal segment (r	=	−0.481,	p	=	0.037)	in	the	SZ	group.	There	were	
no	 significant	 correlations	 between	 the	 FA	 of	 callosal	 fibers	 and	
equivalent	dose	of	antipsychotics	in	the	SZ	group.

3.3 | Correlation of the z‐score of 
neuropsychological tests and equivalent doses of 
antipsychotics

There were no significant correlations between the z-score of neu-
ropsychological	 tests	and	equivalent	dose	of	antipsychotics	 in	 the	
SZ	group	 (verbal	memory,	 r	=	−0.079,	p	=	0.749;	working	memory,	
r	=	0.238,	p	=	0.326;	token	motor	test,	r	=	−0.151,	p = 0.536; verbal 
fluency	test,	r	=	0.155,	p	=	0.525;	attention,	r	=	0.077,	p	=	0.754;	ex-
ecutive	function,	r	=	−0.150,	p	=	0.541;	composite	score,	r	=	−0.017,	
p	=	0.943).

3.4 | Stepwise multiple regression analysis of the FA

In	all	subjects,	the	FA	of	callosal	fibers	in	the	temporal	segment	was	
significantly associated with the z‐scores	of	token	motor	test,	Tower	of	

F I G U R E  2  Locations	of	secondary	
regions‐of‐interest	(ROI)	to	separate	fibers	
projecting to different cortical areas
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London	test,	and	the	composite	score.	The	regression	for	token	motor	
test	 identified	the	FA	of	temporal	segment	as	predictive	variable	ac-
counting for 19.1% of the variance (Β	=	46.2;	F = 8.52; p	=	0.006).	The	
regression	for	the	Tower	of	London	test	identified	the	FA	of	temporal	
segment	as	predictive	variable	accounting	for	24.0%	of	the	variance	
(B = 58.6; F = 11.3; p	=	0.002).	The	regression	for	the	composite	score	
identified	the	FA	of	temporal	segment	as	predictive	variable	account-
ing for 18.5% of the variance (B = 38.8; F	=	8.14;	p	=	0.007).	 In	 the	
SZ	group,	the	FA	of	callosal	fibers	 in	the	temporal	segment	was	sig-
nificantly associated with the z‐score	of	the	Tower	of	London	test.	The	
regression	for	the	Tower	of	London	test	identified	the	FA	of	temporal	
segment as predictive variable accounting for 29.5% of the variance 
(B = 73.2; F = 7.12; p	=	0.016;	Figure	3).	In	the	SZ	group,	the	FA	of	cal-
losal fibers in the posterior parietal segment was significantly associ-
ated	with	the	scores	of	the	PANSS	positive,	PANSS	negative,	PANSS	
general	psychopathology,	and	PANSS	total.	The	FA	of	callosal	 fibers	
in the temporal segment was significantly associated with the score of 
the	PANSS	negative.	The	regression	for	the	PANSS	positive	identified	
the	FA	of	posterior	parietal	segment	as	predictive	variable	accounting	
for 39.8% of the variance (B	=	275.84;	F = 11.26; p	=	0.004).	The	re-
gression	for	the	PANSS	negative	identified	the	FA	of	posterior	parietal	
segment (B = 396.79; p	<	0.001)	and	temporal	segment	(B	=	−197.60;	
p	=	0.004)	as	predictive	variable	accounting	for	65.9%	of	the	variance	
(F	=	15.45;	p	<	0.001).	The	regression	for	the	PANSS	general	psycho-
pathology	identified	the	FA	of	posterior	parietal	segment	as	predictive	
variable	accounting	for	52.4%	of	the	variance	(B = 567.38; F = 18.72; 
p	<	0.001).	The	regression	for	the	PANSS	total	identified	the	FA	of	pos-
terior	parietal	segment	as	predictive	variable	accounting	for	54.4%	of	
the variance (B	=	1,121.63;	F = 20.26; p	<	0.001).

3.5 | Differences in the FA of callosal fiber in the 
segment which identified the regression in the SZ 
group between the SZ and HC groups

Independent-samples t test revealed significant differences in 
FA	between	the	SZ	and	HC	groups	 in	temporal	segment	 (t	=	2.80,	

p	=	0.008)	but	not	in	posterior	parietal	segments	(t	=	1.75,	p = 0.088; 
Figure	4	and	Table	2).

3.6 | Statistical analysis on the ADC, AD, and RD

In	all	subjects,	the	regression	for	verbal	memory	identified	the	ADC	
of orbital frontal segment (B	=	−24.58;	p	=	0.004)	and	posterior	pari-
etal segment (B = 10.88; p	=	0.02)	as	predictive	variable	accounting	
for 25.5% of the variance (F = 6.00; p	=	0.006).	The	regression	for	
symbol	coding	test	identified	the	ADC	of	posterior	parietal	segment	
(B = 13.01; p	=	0.027)	and	occipital	segment	(B	=	−19.13;	p	=	0.003)	
as predictive variable accounting for 26.6% of the variance (F = 6.33; 
p	 =	 0.005).	 The	 regression	 for	 the	 composite	 score	 identified	 the	
ADC	of	 orbital	 frontal	 segment	 (B	 =	 −15.46;	p	 =	 0.037),	 posterior	

F I G U R E  3   Scattergram for the association between fractional 
anisotropy	(FA)	of	callosal	fibers	in	the	temporal	segment	and	score	
of	Tower	of	London	test	in	the	schizophrenia	(SZ)	group
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F I G U R E  4  Scattergram	for	the	FA	of	callosal	fibers	in	the	OF,	
AF,	SF,	SP,	PP,	Temp,	and	Occ	segments	in	HC	and	SZ	groups.	
The black bars represent means of each segment. Data marked 
* are significant at p	<	0.025.	AF,	anterior	frontal;	FA,	fractional	
anisotropy;	HC,	healthy	controls;	Occ,	occipital;	OF,	orbital	frontal;	
PP,	posterior	parietal;	SF,	superior	frontal;	SP,	superior	parietal;	SZ,	
schizophrenia;	Temp,	temporal

○
□

TA B L E  2  FA	and	callosal	fibers	in	the	OF,	AF,	SF,	SP,	PP,	Temp,	
and	Occ	segments	in	the	HC	and	SZ	groups

 

HC group SZ group Statistics

Mean ± SD Mean ± SD t p

OF 0.404	±	0.015 0.392	±	0.017   

AF 0.416	±	0.016 0.409	±	0.021   

SF 0.423	±	0.011 0.418	±	0.019   

SP 0.423	±	0.011 0.421	±	0.019   

PP 0.432	±	0.013 0.425	±	0.013 1.75 0.088

Temp 0.434	±	0.012 0.421	±	0.016 2.80 0.008

Occ 0.423	±	0.020 0.421	±	0.015   

Abbreviations:	AF,	anterior	frontal;	FA,	fractional	anisotropy;	HC,	
healthy	controls;	Occ,	occipital;	OF,	orbital	frontal;	PP,	posterior	pari-
etal; SD,	standard	deviation;	SF,	superior	frontal;	SP,	superior	parietal;	
SZ,	schizophrenia;	Temp,	temporal.
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parietal segment (B	 =	 10.47;	 p	 =	 0.008),	 and	 occipital	 segment	
(B	=	−9.10;	p	=	0.035)	as	predictive	variable	accounting	for	34.2%	of	
the variance (F = 5.89; p	=	0.002).	In	the	SZ	group,	the	ADC	of	cal-
losal fibers in the occipital segment was significantly associated with 
the z-score of verbal memory and the composite score. The regres-
sion	for	verbal	memory	identified	the	ADC	of	occipital	segment	as	
predictive variable accounting for 36.2% of the variance (B	=	−12.98;	
F	=	9.64;	p	=	0.006),	and	the	regression	for	the	composite	score	iden-
tified	the	ADC	of	occipital	segment	as	predictive	variable	accounting	
for	37.4%	of	the	variance	(B	=	−11.91;	F = 10.16; p	=	0.005).

In	all	subjects,	the	regression	for	symbol	coding	test	identified	
the	AD	of	 temporal	 segment	 (B = 10.08; p	 =	0.015)	 and	occipital	
segment (B	=	−13.01;	p	=	0.007)	as	predictive	variable	accounting	
for 25.3% of the variance (F = 5.92; p	=	0.006).	The	regression	for	
the	Tower	of	London	identified	the	AD	of	anterior	frontal	segment	
(B	=	−12.44;	p	=	0.020)	and	temporal	segment	(B = 11.55; p	=	0.003)	
as predictive variable accounting for 25.7% of the variance (F	=	6.04;	
p	=	0.006).	In	the	SZ	group,	the	AD	of	callosal	fibers	in	the	orbital	
frontal and occipital segment was significantly associated with the 
z-score of symbol coding test. The regression for symbol coding test 
identified	the	AD	of	orbital	frontal	segment	(B	=	28.84;	p	=	0.024)	
and occipital segment (B	=	−20.66;	p	=	0.001)	as	predictive	variable	
accounting for 50.5% of the variance (F = 8.16; p	=	0.004).

In	all	subjects,	 the	regression	for	verbal	memory	 identified	the	
RD of the orbital frontal segment (B	=	−21.08;	p	=	0.013),	the	tem-
poral segment (B = 13.97; p	 =	 0.012),	 and	 the	 occipital	 segment	
(B	=	−10.96;	p	=	0.041)	as	predictive	variable	accounting	for	34.5%	of	
the variance (F = 5.96; p	=	0.002).	In	the	SZ	group,	the	RD	of	callosal	
fibers in the occipital segment was significantly associated with the 
z-score of verbal memory. The regression for verbal memory iden-
tified the RD of occipital segment as predictive variable accounting 
for 33.9% of the variance (B	=	−13.10;	F	=	8.74;	p	=	0.009).	 In	 the	
SZ	group,	the	RD	of	callosal	fibers	in	the	posterior	parietal	and	oc-
cipital segment was significantly associated with the scores of the 
PANSS	general	 psychopathology	 and	PANSS	 total.	 The	 regression	
for	the	PANSS	general	psychopathology	identified	the	RD	of	poste-
rior parietal segment (B	=	−398.75;	p	=	0.001)	and	occipital	segment	
(B = 109.26; p	 =	 0.010)	 as	 predictive	 variable	 accounting	 for	 54%	
of the variance (F	=	9.40;	p	=	0.002).	The	regression	for	the	PANSS	
total identified the RD of posterior parietal segment (B	=	−751.67;	
p	=	0.001)	and	occipital	segment	(B = 227.06; p	=	0.007)	as	predictive	
variable accounting for 52.3% of the variance (F = 8.78; p	=	0.003).

In	 the	AD,	 independent‐samples	 t test revealed significant dif-
ferences in orbital frontal segment (t	=	−3.06,	p	=	0.004)	but	not	in	
occipital segment (t	=	−1.05,	p	=	0.300).	In	the	ADC	and	RD,	indepen-
dent-samples t test revealed no significance.

4  | DISCUSSION

In	 the	 current	 study,	we	 extracted	 and	divided	 the	CC	 fibers	 into	
seven	regions	based	on	the	cortical	projection	regions,	and	investi-
gated	the	relationship	between	the	FA	values	of	the	CC	fibers	and	

cognitive	 function	 in	 schizophrenia.	 In	 the	 SZ	 group,	 FA	values	of	
the CC that connects the bilateral temporal lobe cortices associated 
with	executive	function	scores,	and	FA	value	of	this	tract	was	sig-
nificantly	decreased	compared	to	the	HC	group.	These	results	indi-
cate an association between microstructural abnormalities of the CC 
white matter and cognitive dysfunction in schizophrenia.

In	the	current	study,	we	found	a	statistically	significant	associ-
ation between white matter abnormalities and executive function 
impairment. Impairment in executive function is one of the most 
common dysfunctions observed in disease courses of schizophrenia 
(Orellana	&	Slachevsky,	2013).	We	assessed	executive	function	using	
the	Tower	of	London	test.	The	Tower	of	London	test	requires	several	
cognitive	processes	 including	working	memory	(Elliott,	2003),	pro-
cessing	speed,	response	inhibition	(Asato,	Sweeney,	&	Luna,	2006;	
Zook,	Davalos,	Delosh,	&	Davis,	2004),	and	visuospatial	processing	
(Newman,	 Carpenter,	 Varma,	 &	 Just,	 2003),	 necessitating	 func-
tional coordination among multiple cortical and subcortical regions 
(Unterrainer	&	Owen,	2006).	As	white	matter	fibers	connect	brain	
regions,	many	studies	have	reported	a	 relationship	between	white	
matter	abnormalities	and	cognitive	function	in	schizophrenia	(Canu,	
Agosta,	&	Filippi,	2015).	Executive	dysfunction	of	schizophrenia	has	
been reported to be associated with white matter abnormalities in 
major	 fiber	bundles	 that	connect	 frontal	and	 temporal	 lobes,	 such	
as	superior	 longitudinal	 fasciculus	and	uncinate	 fasciculus	 (Kubicki	
et	al.,	2002,	2003;	Nestor	et	al.,	2004;	Pérez‐Iglesias	et	al.,	2010).	
In	schizophrenia,	associations	also	have	been	reported	between	su-
perior	longitudinal	fasciculus	and	working	memory	(Karlsgodt	et	al.,	
2008),	uncinate	fasciculus	and	verbal	memory	(Nestor	et	al.,	2004;	
Szeszko	et	al.,	2008),	inferior	longitudinal	and	inferior	frontooccipital	
fasciculi	and	processing	speed,	verbal	 learning,	and	visual	 learning	
(Liu	 et	 al.,	 2013),	 diffuse	white	matter	 abnormalities	 and	 process-
ing	speed	(Karbasforoushan,	Duffy,	Blackford,	&	Woodward,	2015;	
Rigucci	et	al.,	2013),	visual	memory	(Rigucci	et	al.,	2013),	and	social	
cognition	 (Rigucci	et	al.,	2013).	 In	 the	current	study,	we	found	the	
significant	association	between	FA	values	of	the	CC	fibers	connect-
ing bilateral temporal lobe cortices and executive function scores. 
Studies reported association between bilateral cortical thickness 
reductions in the temporal lobe and executive dysfunction in schizo-
phrenia	 (Hartberg	 et	 al.,	 2010),	 as	well	 as	 an	 association	between	
white matter volume reductions in the temporal lobe and verbal 
memory,	attention,	problem	solving,	and	working	memory	dysfunc-
tions	in	a	follow‐up	study	of	early‐onset	schizophrenia	(Andreasen	
et	al.,	2011).	The	current	results	suggest	that	the	disconnection	be-
tween bilateral temporal lobe cortices contributes to poor executive 
function in schizophrenia.

The	SZ	group	demonstrated	decreased	FA	values	 in	 the	 tem-
poral	segments	of	CC	white	matter	fibers	relative	to	the	HC	group.	
Impairment in the temporal lobe with schizophrenia was reported 
repeatedly. Ellison-Wright and Bullmore carried out meta-analysis 
of the coordinates of fractional anisotropy differences (Ellison-
Wright	&	Bullmore,	2009).	This	meta‐analysis	of	15	studies	(includ-
ing	a	total	of	407	patients	with	schizophrenia	and	383	comparison	
subjects)	 found	 that	 significant	 reductions	 were	 present	 in	 the	
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left frontal deep white matter and the left temporal deep white 
matter	 (Ellison‐Wright	 &	 Bullmore,	 2009).	 The	 second	 region,	 in	
the	temporal	lobe,	is	traversed	by	WM	tracts	interconnecting	the	
frontal	 lobe,	 insula,	 hippocampus–amygdala,	 and	 temporal	 and	
occipital	 lobe.	This	suggests	that	WM	tracts	 in	the	temporal	 lobe	
may	affect	 in	 schizophrenia,	with	 the	disconnectivity	of	 the	gray	
matter	regions	which	they	link.	Decreased	FA	values	of	the	CC	on	
the DTI whole-brain analysis in schizophrenia have been repeat-
edly	reported	in	the	rostrum	(Ellison‐Wright	et	al.,	2014;	Fujino	et	
al.,	 2014;	Gu	 et	 al.,	 2016;	Hummer	 et	 al.,	 2016;	Kochunov	 et	 al.,	
2014;	Kong	et	al.,	2011;	Lener	et	al.,	2015;	Melicher	et	al.,	2015;	
Pérez‐Iglesias	et	al.,	2010;	Pomarol‐Clotet	et	al.,	2010;	Roalf	et	al.,	
2013;	Spalletta	et	al.,	2015;	Zhang	et	al.,	2014,	2016),	body	(Fujino	
et	al.,	2014;	Melicher	et	al.,	2015;	Pérez‐Iglesias	et	al.,	2010;	Roalf	
et	 al.,	 2013;	 Zhang	 et	 al.,	 2014,	 2016),	 and	 splenium	 of	 the	 CC	
(Cheung	et	al.,	2008;	Ellison‐Wright	et	al.,	2014;	Fujino	et	al.,	2014;	
Gasparotti	et	al.,	2009;	Melicher	et	al.,	2015;	Zhang	et	al.,	2014).	A	
meta‐analysis	of	22	studies	found	decreased	FA	values	in	the	genu	
and	splenium	of	CC	in	schizophrenia	(Zhuo,	Liu,	Wang,	Tian,	&	Tang,	
2016).	These	previous	studies	 suggest	 the	validity	of	 segmenting	
the CC fibers in an anatomically accurate manner when compar-
ing	the	FA	values	between	patients	with	schizophrenia	and	healthy	
individuals.	Several	studies	have	examined	decreased	FA	values	in	
schizophrenia by segmenting the CC in the sagittal slices (Balevich 
et	al.,	2015;	Knöchel	et	al.,	2012;	Li	et	al.,	2014;	Rotarska‐Jagiela	et	
al.,	2008).	Balevich	et	al.	(2015)	divided	the	CC	into	five	anteropos-
terior	segments,	but	did	not	 find	statistically	significant	decrease	
of	FA	values	in	any	specific	segments.	In	studies	with	segmentation	
of	the	CC	 into	nine	regions,	statistically	significant	FA	reductions	
were	observed	in	the	inferior	and	superior	genu,	isthmus	(Knöchel	
et	al.,	2012),	anterior,	middle,	posterior	genu,	posterior	body,	an-
terior	 splenium	 (Li	 et	 al.,	 2014),	 inferior	 and	 superior	 genu,	 and	
splenium	(Rotarska‐Jagiela	et	al.,	2008).	Whitford	et	al.	parcellated	
the CC fibers into six segments based on the cortical regions they 
projected,	 and	 examined	 the	 difference	 between	 patients	 with	
schizophrenia	and	healthy	participants	(Whitford	et	al.,	2010).	They	
found	a	statistically	significant	decrease	in	FA	of	the	frontal	fibers	
in	the	patient	group.	FA	values	of	the	temporal	fibers	were	reduced	
in the schizophrenia group but not statistically significantly so. The 
discrepancy between the current study and Whitford's study may 
be partially explained by differences in the DTI methods of analysis 
and	in	the	study	participants.	In	the	current	study,	we	divided	the	
CC fibers based on their cortical projection regions using the two-
ROIs approach. We followed the procedures used in relevant previ-
ous studies to determine the location of ROIs and exclusion criteria 
(Huang	et	 al.,	 2005;	 Lebel	et	 al.,	 2010;	Yamada	et	 al.,	 2015),	 and	
we achieved tractography with high anatomical accuracy in each 
region.	On	the	other	hand,	Whitford	et	al.	segmented	the	CC	into	
clusters after whole-brain tractography. Our study participants in-
cluded	both	men	and	women;	however,	Whitford's	study	included	
only	men.	TSA	 is	useful	as	 it	delineates	how	fiber	 tracts	connect	
functional	brain	regions,	providing	 information	on	structural	con-
nectivity. Our results suggest microstructural abnormalities in the 

temporal regions of the CC white matter fibers connecting the two 
hemispheres.

In	our	SZ	group,	we	observed	statistically	significant	relation	be-
tween	 FA	 values	 and	 PANSS	 scores	 in	 the	 temporal	 and	 posterior	
parietal segments of CC white matter fibers connecting the two hemi-
spheres.	The	FA	of	callosal	fibers	in	the	temporal	segment	was	signifi-
cantly	negatively	 associated	with	 the	 score	of	 the	PANSS	negative.	
Several studies have reported that executive function in schizophre-
nia	was	 associated	with	 the	PANSS	negative	 score	 (Clark,	Warman,	
&	Lysaker,	2010;	Kishi	 et	 al.,	 2010;	Rodriguez‐Jimenez	et	 al.,	 2010).	
Microstructural	 abnormalities	 of	 callosal	 fiber	 in	 the	 temporal	 seg-
ment may be associated with negative symptom in schizophrenia. 
On	the	other	hand,	the	FA	of	callosal	fibers	in	the	posterior	parietal	
segment was significantly positively associated with all scores of 
the	PANSS,	indicating	higher	FA	related	to	the	higher	severity	of	the	
symptoms. These results suggest paradoxical effect of anisotropy of 
callosal fibers in the posterior parietal segment on psychiatric symp-
tom.	However,	these	results	should	be	interpreted	cautiously	because	
there	was	no	significant	difference	in	FA	of	callosal	fibers	in	the	poste-
rior	parietal	segment	between	the	SZ	and	HC	groups.	There	has	been	
no consensus on the relationship between white matter abnormalities 
and	psychiatric	symptoms	of	schizophrenia.	With	regard	to	FA	values	
of	 the	CC	and	psychiatric	 symptoms,	 study	 results	are	 inconsistent.	
They	reported	FA	values	of	the	anterior	CC	and	negative	correlation	
with	both	negative	symptoms	 (Gu	et	al.,	2016;	Kubicki	et	al.,	2008;	
Nakamura	et	al.,	2012)	and	positive	symptoms	(Knöchel	et	al.,	2012;	
Kubicki	et	al.,	2008).	FA	values	of	the	posterior	CC	were	negatively	
correlated	with	negative	symptoms	 (Rigucci	et	al.,	2013),	negatively	
correlated	with	positive	symptoms	(Kubicki	et	al.,	2008),	but	positively	
correlated	with	positive	symptoms	(Rotarska‐Jagiela	et	al.,	2009).	FA	
values of other white matter fibers have also been reported to have 
inconsistent	directions	of	association,	with	studies	reporting	positive	
correlations	with	both	positive	 (Andreasen	et	 al.,	 2011;	Chan	et	 al.,	
2010;	Cheung	et	al.,	2011;	Choi	et	al.,	2011;	Lee	et	al.,	2013;	Moriya	
et	al.,	2010;	Psomiades	et	al.,	2016;	Rotarska‐Jagiela	et	al.,	2009,	2008;	
Seok	et	al.,	2007;	Szeszko	et	al.,	2008;	Whitford	et	al.,	2010)	and	neg-
ative	symptoms	(Lener	et	al.,	2015;	Mendelsohn,	Strous,	Bleich,	Assaf,	
&	 Hendler,	 2006;	 Michael,	 Calhoun,	 Pearlson,	 Baum,	 &	 Caprihan,	
2008)	and	negative	correlations	both	with	positive	(Lee	et	al.,	2013;	
Skelly	et	al.,	2008)	and	with	negative	symptoms	(Balevich	et	al.,	2015;	
Gu	et	al.,	2016;	Luck	et	al.,	2011;	Mendelsohn	et	al.,	2006;	Michael	
et	al.,	2008;	Moriya	et	al.,	2010;	Rigucci	et	al.,	2013;	Szeszko	et	al.,	
2008;	Wolkin	et	al.,	2003).	Many	studies	reported	no	relationship	be-
tween	FA	values	 and	psychiatric	 symptoms	using	whole‐brain	 anal-
yses	 (Chen	 et	 al.,	 2013;	 Kyriakopoulos	 et	 al.,	 2009;	 Kyriakopoulos,	
Vyas,	Barker,	Chitnis,	&	Frangou,	2008;	Liu	et	al.,	2013;	Melicher	et	
al.,	2015;	Sugranyes	et	al.,	2012;	Wang	et	al.,	2013)	and	more	specific	
region‐of‐interest	analyses	including	the	CC	(Li	et	al.,	2014)	and	other	
regions	 (Kawashima	 et	 al.,	 2009;	 Kitamura	 et	 al.,	 2005;	 Kitis	 et	 al.,	
2012;	Kumra	et	al.,	2004;	Price	et	al.,	2008).	The	mixed	findings	in	past	
studies	regarding	FA	values	and	psychiatric	symptoms	may	be	partially	
explained	by	the	differences	in	the	number	of	participants,	severity	of	
the	symptoms	of	the	participants,	and	their	treatment	histories.
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In	 our	 SZ	 group,	 the	 AD	 value	 of	 callosal	 fibers	 in	 the	 orbital	
frontal	segment	significantly	associated	with	attention	scores,	and	
the	AD	value	of	this	tract	was	significantly	 increased	compared	to	
the	HC	 group.	Histological	 information	 indicates	 the	AD	 assesses	
axonal	function	(Mac	Donald,	Dikranian,	Bayly,	Holtzman,	&	Brody,	
2007).	Some	previous	studies	reported	no	significant	difference	in	
AD	value	of	the	CC	between	patients	with	schizophrenia	and	healthy	
controls	(Hummer	et	al.,	2016;	Kochunov	et	al.,	2014;	Liu	et	al.,	2013;	
Spalletta	et	al.,	2015;	Whitford	et	al.,	2010).	The	largest	coordinated	
meta‐analysis	on	DTI	data	showed	significantly	higher	AD	value	in	
schizophrenia patients compared with healthy controls in the for-
nix	but	showed	no	significant	differences	in	the	AD	value	in	the	CC	
(Kelly	et	al.,	2018).	To	our	knowledge,	there	is	no	study	reported	re-
lationship	of	AD	value	with	cognitive	function	in	schizophrenia.	The	
studies on patients with essential tremor showed positive correla-
tion	between	the	AD	value	and	cognitive	function	(Julian	et	al.,	2017;	
Bhalsing	et	al.,	2015).	Same	as	 these	previous	studies	on	essential	
tremor,	 our	 SZ	 group	 showed	 significant	 relationship	 of	 increased	
AD	with	better	attention	scores,	while	AD	value	in	the	SZ	group	was	
significantly	increased	compared	to	the	HC	group.	The	further	stud-
ies	are	needed	to	interpret	this	paradoxical	relation	of	AD	value	with	
cognitive function in the SZ group.

The	current	study	has	some	 limitations.	First,	 the	gender	com-
position	of	our	HC	and	SZ	groups	was	not	fully	matched.	All	partic-
ipants in the SZ group were taking antipsychotic medications at the 
time	 of	 the	MRI	 examination.	Gender	 ratios	were	 not	 statistically	
different	 between	 the	 two	 groups,	 and	 no	 correlation	was	 found	
between	FA	values	and	antipsychotic	medication	dosage	in	the	SZ	
group.	 However,	 gender	 difference	 and	 antipsychotic	 medication	
use	are	potential	confounding	factors	for	diffusion	changes.	Second,	
the	sample	size	was	 relatively	 small.	Last,	no	distortion	correction	
was performed in DTI analysis. We offered new insight into rela-
tionship between microstructural abnormalities in callosal fibers 
and	cognitive	function	in	schizophrenia,	but	the	results	of	our	study	
should be confirmed in future studies using more subject with an 
appropriate	control	over	FA	value‐affecting	factors.

In	 summary,	we	 found	microstructural	abnormalities	 in	 the	CC	
white matter fibers connecting bilateral temporal lobe cortices con-
tribute to poor executive function and severe negative symptom in 
patients with schizophrenia.
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