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Abstract: Electrowetting display (EWD) is a new type of paper-like reflective display based on
colored oil, which has gradually become one of the most potential electronic papers with low power
consumption, fast response, and full color. However, oil backflow can occur in EWDs, which makes
it difficult to maintain a stable aperture ratio. In order to improve the stability of the aperture ratio of
EWDs, a new driving waveform was proposed based on analyzing the phenomenon of oil backflow.
The driving waveform was composed of a shrinking stage and a driving stage. Firstly, a threshold
voltage of oil splitting was calculated by analyzing the luminance curve of EWDs, which were
driven by different direct current (DC) voltages. Then, an exponential function waveform, which
increased from the threshold voltage, was applied to suppress oil splitting. Finally, a periodic signal
combined with a reset signal with a DC signal was applied during the driving stage to maintain a
stable aperture ratio display. Experimental results showed that the charge trapping effect could be
effectively prevented by the proposed driving waveform. Compared with an exponential function
waveform, the average luminance value was increased by 28.29%, and the grayscale stability was
increased by 13.76%. Compared to a linear function waveform, the aperture ratio was increased by
10.44% and the response time was reduced by 20.27%.

Keywords: electrowetting display; charges trapping effect; aperture ratio; driving waveform; oil backflow

1. Introduction

The concept of electrowetting displays was first proposed by G. Beni in 1983 [1,2].
In 2003, an electrowetting display (EWD) based on the principle of electrowetting was
proposed by Hayes [3]. Different driving voltages were used to control the movement
of oil, which could achieve an optical display effect of color switching between oil and
substrate [4]. As a new type of reflective display, EWDs effectively compensated for the
shortcomings of traditional electronic papers in video playback and full-color display [5–9].
However, a low aperture ratio could be caused by oil backflow [10]. Therefore, suppressing
oil backflow is an important research topic for EWDs.

Electrowetting is a phenomenon in which the wettability of solid–liquid is changed
by applying a voltage between substrates, thereby deforming and displacing droplets [11].
The aperture ratio of EWDs reflects the degree of oil shrinking under the action of the
applied voltage, which is depending on fluid materials and pixel structures [12–15]. The
driving waveform consists of a driving voltage sequence, which plays a key role in oil
shrinking for a stable gray scale display. However, due to the presence of oil splitting, oil
oscillation, and charges trapping in EWDs, they lead to a reduction of aperture ratio and
display stability [16–18]. In studies of suppressing oil splitting, a method that was used
to effectively reduce oil splitting by adding a voltage rising gradient was proposed [19].
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However, the response time of EWDs was correspondingly increased. In order to solve
this problem, a combined pulse driving waveform was proposed [20]. During the rising
stage, the voltage was driven from the threshold voltage to a maximum voltage, which
effectively shorten the response time. Furthermore, a stable aperture ratio was maintained
by suppressing oil splitting. At the same time, a driving waveform with a quadratic
function combined with a square wave was proposed, and a quadratic function waveform
was used to suppress oil splitting in the rising stage [21]. The square waveform was applied
during the driving process to keep the aperture ratio. This method could not only shorten
the response time but also improve the oil splitting. In the study of reducing oil oscillation,
an amplitude–frequency hybrid modulation method was proposed, in which the oil was
driven by a high voltage to reach the crack, and then the voltage was reduced to stabilize
the oil [22]. This method improved the response speed of displaying target grayscales while
reducing oil oscillation. In addition, a driving waveform combined with a direct current
(DC) and an alternating current (AC) was proposed [23]. The characteristic of oil stability
was analyzed, and the oil oscillation was greatly reduced by using this method. In studies
of suppressing charge trapping, a driving waveform with a reset signal was proposed [24].
The driving waveform was composed of a driving stage and a reset stage. The driving
stage was driven by a DC signal, which was used to turn on pixels. The reset stage was
driven by square wave signals of different amplitudes. The negative voltage was used
to release captured charges, and the positive voltage was used to drive recovery, which
could effectively suppress oil backflow. In addition, an error diffusion algorithm based
on optimizing driving waveform was proposed for suppressing oil backflow [25]. These
excellent research results provided a reference for us to design a new driving waveform
of EWDs.

In this paper, a combined driving waveform was proposed to optimize the aper-
ture ratio of EWDs. The driving waveform consisted of a shrinking stage and a driving
stage. The shrinking stage was designed by analyzing the principle of EWDs and the
Young–Lippmann equation, and the driving stage was designed according to the charge
trapping theory.

2. Driving Principle of EWDs
2.1. Principle of EWDs

Pixels in an EWD are mainly consisted of indium tin oxide (ITO) electrodes, a glass
substrate, a top plate, pixel walls, color oil, polar liquid (NaCl solution), and an insulating
layer [26–28], as shown in Figure 1. When no driving voltage is applied on ITO electrodes,
the oil in a pixel is laid between the polar liquid and the hydrophobic insulation layer.
Therefore, the pixel displays the color of oil, and the EWD is in an “off” state. When an
external voltage is applied to ITO electrodes, the equilibrium state in pixels is broken and
the wettability on the surface of the insulation layer is changed. The polar liquid contacts
with the insulating layer and oil are pushed to the corners of pixels by the polar liquid and
the color of the substrate is shown. At this point, the EWD is in an “on” state. Therefore, the
grayscale display can be controlled by adjusting the driving voltage on ITO electrodes. In
addition, the aperture ratio is defined as the area ratio between the glass substrate exposed
after oil shrinking and the whole pixel grid, which is one of the important parameters for
characterizing the performance of EWDs, the expression is shown in Equation (1) [4].

WAR(V) =

[
1−

(
Soil(V)

Spix

)]
× 100% (1)

where WAR is the aperture ratio of EWDs, and Soil is the area of oil shrinking in a pixel.
Spix is the area of a whole pixel, and V represents the driving voltage that is applied on
ITO electrodes. The area of pixel walls can be ignored in calculating the aperture ratio. In
addition, the movement of oil is mainly affected by interfacial tension and electrostatic
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force. The contact angle of oil follows the Lippmann–Young equation, and the contact angle
can be controlled by adjusting the driving voltage, as shown in Equation (2) [23].

cos θ = cos θ0 +
ε0εEP

2dγOW
V2 (2)

Vbd =

√√√√ 2(1− cos θ)γOW
1

4πk
εoilSoil

h +
εEPSpix

d

(3)

where θ represents a Lipmann contact angle, and θ0 indicates an equilibrium contact angle
between oil and the insulation layer. ε0 is a dielectric constant in a vacuum, εEP is a
dielectric constant in an insulating layer, and εoil is the dielectric constant of oil. k is the
electrostatic constant, d indicates the thickness of the insulation layer, and h is the thickness
of the oil. γOW indicates oil-liquid interfacial tension, and V is the driving voltage applied
on ITO electrodes. Vbd is the breakdown threshold voltage of the insulating layer. It can be
seen from Equation (3) [29] that Vbd is proportional to the thickness of the insulating layer.
The maximum driving voltage of the driving waveform cannot be greater than Vbd.
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Figure 1. The schematic diagram of a pixel structure in EWDs. It is composed of a top plate, polar
liquid (NaCl solution), color oil, pixel walls, an insulating layer, ITO electrodes, and a glass substrate.

2.2. Charges Trapping of EWDs

According to the Lippmann–Young equation, the contact angle of oil is positively
correlated with the square of driving voltages applied to a pixel. However, the trapped
charges in the insulation layer cannot be fully released. This will result in a slow response
speed and an unstable grayscale display [30,31]. The reason is that part of the charge enters
the insulation layer and is trapped when the external voltage is applied. The charges are
concentrated at a three-phase contact line of oil, and the local electric field is distorted,
resulting in an inability to maintain a balance between Maxwell pressure and Laplace
pressure. Therefore, the Lippmann–Young equation needs to be modified. The modified
Lippmann–Young equation can be expressed as Equation (4) [29].

cos θ = cos θ0 +
ε0εEP

2dγOW
(V −VT)

2 (4)

where VT is a potential generated by the charges trapping effect. Due to charge trapping,
the electrostatic force is reduced for oil. At the same time, with a constant voltage, the
hydrophobicity of the insulation layer is enhanced, resulting in oil backflow, which reduces
the aperture ratio of EWDs. The oil backflow phenomenon is shown in Figure 2. The
contracted oil cannot be maintained in a stable state, and oil will be gradually spread out
on the insulation layer. In addition, by analyzing Equation (4), it can be seen that charge
trapping is related to the driving voltage. Therefore, the effect of the driving voltage on
charge trapping should be taken into account in the design of driving waveforms.
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Figure 2. The situation of oil backflow when a driving voltage is applied to a pixel. Due to contin-
uous driving voltages, the number of charges accumulated by the insulation layer also increases
correspondingly, resulting in a reduction of the electric field force, and the contracted oil cannot be
maintained in a stable state. Therefore, the oil will be gradually spread out on the insulation layer.

3. Experimental Results and Discussion
3.1. Experimental Platform

In order to measure the parameters of the driving waveform and evaluate its perfor-
mance, a complete optical experimental platform was built to record the display status of
pixels and measure the luminance value of EWDs. As shown in Figure 3, the experimental
platform mainly includes: (1) a computer (Pro G6, HP, Beijing, China); (2) a microscope
(SZ680, Chongqing Optec Instrument Co., Ltd., Chongqing, China), which was used to
measure aperture ratio of EWDs; (3) a function generator (AFG1022, Tektronix, Beaver-
ton, OR, USA), which was used to generate driving waveforms. (4) a voltage amplifier
(Agilent 33502A, Agilent, CA, USA); (5) a colorimeter (Arges-45, Admesy, Ittervoort, The
Netherlands), which was used to record the luminance value of EWDs.
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Figure 3. The experimental platform for testing the performance of EWDs. It was composed of a
computer, a microscope, a function generator, a voltage amplifier, a colorimeter, and an EWD. The
EWD was used as a testing object. The computer, the function generation, and the voltage amplifier
were used to generate driving waveforms. Then, the colorimeter was used to obtain the luminance
value of the EWD, and the microscope was used to obtain the aperture ratio of the EWD.
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The EWD panel size was 10× 10 cm2, and the color of the oil was magenta. The
resolution of the EWD was 320× 240. The size and height of pixels were 150× 150 µm2

and 18 µm, respectively. The thickness of the ITO layer and the insulator layer was 2.5 nm
and 1 µm, respectively.

The detailed experimental process was as follows. First, waveform files were edited by
the computer and imported into the function generator by serial communication. Second,
the required driving waveform was generated, which was amplified by the amplifier to
drive the EWD. Then, the colorimeter was used to measure the luminance value of the
EWD in real time. Finally, the microscope was used to record pixel images and the software
was used to calculate the aperture ratio.

3.2. Proposed Driving Waveforms

Since pixels in EWDs were affected by charge trapping, it was difficult to maintain a
stable aperture ratio. In order to obtain a higher aperture ratio and stable luminance value,
a new driving waveform was proposed, which consisted of an exponential function and an
AC reset signal. As shown in Figure 4, it included a shrinking stage and a driving stage.

During the shrinking stage, the oil was maintained a free diffusion equilibrium state
when the driving voltage was less than V0. Therefore, an initial voltage of the shrinking
stage was set to solve this problem. Then, the driving voltage was raised from the initial
voltage to a high-level voltage of the shrinking stage in an exponential function waveform.
Because the exponential function waveform could effectively prevent oil splitting caused
by the voltage mutation, which could improve the aperture ratio of EWDs. The exponential
function could be expressed by Equation (5).

V = (V0 − 1) + eβt (5)

where V was the real-time driving voltage of the oil shrinking stage, V0 was the thresh-
old voltage of oil shrinkage, β was a time constant of the exponential function, and the
relationship between the driving voltage and the driving time could be expressed by
Equation (6).

V
′
= βeβt (6)

where V
′

was a rising rate of the driving voltage. It could be seen that β was proportional
to the driving voltage increase rate when the driving time was unchanged. Therefore, the
rising rate of the driving voltage could be controlled by adjusting β, which could suppress
oil splitting and reduce the driving time.

In the driving stage, a combined waveform was designed. It consisted of a reset signal
and a driving signal, the reset signal could be divided into a charge release phase and a
driving recovery phase. In the driving recovery phase, a better grayscale was obtained
by the maximum driving voltage, which was set to Vmax. VFn represented the DC voltage
that was required to drive pixels to grayscale, it could be determined by measuring the
voltage characteristic of EWDs. VGn represented a negative voltage used in the charge
release phase. f represented the driving frequency of the driving stage. tD represented
the period where the reset signal was applied. Durations of the negative voltage and the
positive voltage in the reset signal were represented by tR1 and tR2, respectively. tR1 + tR2
represented the duration of the reset signal in one driving cycle. The reset signal was used
to suppress the charge trapping effect for maintaining the driving voltage on ITO electrodes
effectively, and the driving signal was used to control the state of pixels. In this way, not
only the polarization phenomenon was avoided, but also the equilibrium state of oil could
be maintained in the driving stage.
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Figure 4. Driving scheme for suppressing oil backflow. (a) A complete schematic diagram of the
proposed driving waveform. It was composed of a shrinking stage and a driving stage. VGn was a
release voltage in the reset signal. V0 was a threshold voltage of the shrinking stage. VFn was a DC
voltage of the target grayscale. Vmax was a voltage at which oil completely shrunk. (b) An example of
driving schemes that could be used to prevent oil splitting. t1 was the driving time of the exponential
function waveform. t2 was the driving time of the DC voltage. (c) An example of driving schemes
that could be used to suppress oil backflow. tR1 and tR2 were the driving time of the positive voltage
and the negative voltage of the reset signal in the driving stage, respectively. tD was the period of a
reset signal applied in the driving stage.

3.3. Testing of the Shrinking Stage

In order to determine the threshold voltage of oil splitting, V0 and Vmax were tested by
adjusting DC voltages. The driving range of DC voltages was set to 0–30 V, and the change
of luminance value is shown in Figure 5. When the voltage was 0–15 V, the luminance
value was almost unchanged. The color displayed by pixels was the color of oil. When the
driving voltage reached 16 V, oil was beginning to split. The luminance value was raised
rapidly, and the EWD changed from the color of oil to the substrate. The luminance was
increased with the increase in the driving voltage, and the increase rate gradually tended
to be gentle. In order to avoid damage to the insulation layer due to a high driving voltage,
Vmax was set to 30 V and the threshold voltage was set to 16 V.

In the shrinking stage, the exponential function voltage was used to prevent oil
splitting, DC voltage was used to drive oil to shrink quickly. Then, the influence of
exponential function rising time and DC voltage driving time on oil splitting were analyzed,
respectively. The rising time t1 was set to 0–120 ms and the driving time t2 was set to
0–100 ms. The luminance variations between different rising times and driving times is
shown in Figure 6. It could be seen that the luminance value gradually increased with the
increase in t1 and t2, indicating that the degree of oil split decreased during the driving
process, and the degree of shrinking increased steadily. When t1 was less than 80 ms, due
to a high V′, the internal electric field intensity applied to EWDs increased rapidly, and
oil was severely split. As the driving time increased, the luminance value could not reach
saturation. When t1 was set to 80–120 ms, the oil splitting phenomenon could be improved,
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but a long t2 was still needed to recombine the oil. When t1 was greater than 80 ms, as t2
increased, the luminance value also gradually increased and tended to saturate. It could
be proven that oil could be effectively prevented from splitting by applying an electric
field with a long driving time. When t1 was 80 ms and t2 was 100 ms, the luminance value
tended to saturate, and the maximum value was 469.577. Therefore, t1 was set to 80 ms
and t2 was set to 100 ms.
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Figure 5. The luminance curve of an EWD when it was driven by different DC voltages. The
luminance value was 178.834 when the DC voltage was less than 15 V. The luminance value started
to increase when the DC voltage was 16 V. The maximum luminance value was obtained when the
DC voltage was 30 V.
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Figure 6. The luminance value was changed with different t1 and t2. When t1 was less than 80 ms, the
luminance value was low because of serious oil splitting. The luminance value tended to be saturated
as time increased. A saturated luminance value could be obtained when t1 was set to 80 ms and t2

was set to 100 ms.
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3.4. Testing of the Driving Stage

Due to the charges trapping effect, charges stored in the insulating layer could not be
released, which resulted in oil backflow, and the aperture ratio was decreased. Therefore, a
reset signal and a driving signal were designed during the driving phase. The reset signal
was dependent on VGn, f , tR1, tR2, and tD. In the driving stage, the luminance value of
EWDs driven by different driving waveforms was used to characterize the performance of
driving waveforms.

Variation curves of the luminance driven by different DC voltages are shown in
Figure 7. As the DC voltage was increased, the luminance value was also gradually in-
creased. However, when the driving voltage was applied to obtain the maximum luminance
value, the display state of the EWD could not be maintained. As the driving time increased,
the luminance value gradually decreased. When the DC voltage declined from 30 V to
20 V, the ratio changes of luminance value decreased from 3.28 a.u./s to 2.34 a.u./s within
24 s. Therefore, the driving voltage was positively correlated with the decreasing rate of
luminance value. The DC voltage was set to 28 V to obtain a high luminance value.
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Figure 7. The relationship between luminance and driving time when an EWD was driven by
different DC voltages. The curve showed that the drop gradient of luminance was faster with a higher
DC voltage. When the DC voltage was 28 V, the EWD was able to maintain a high luminance value.

In the reset signal, the negative voltage during the charge release phase was an
important factor in maintaining the stability of the aperture ratio. The frequency of the
driving stage was set to 50 Hz. EWD luminance values at different negative voltages are
shown in Figure 8. The stability of EWD luminance values was increased significantly with
the increase in VGn. Because a high negative voltage could more effectively release trapping
charges. Therefore, the negative voltage VGn was set to −30 V.
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Figure 8. Luminance curves of an EWD driven by reset signals with different negative voltages.
There were large fluctuation ranges when the voltage was 0 V, −10 V, and −20 V. Luminance curves
were stable when the negative voltage was −30 V.

Flickers could be caused by alternating positive and negative voltages at the driving
stage, which seriously affected the aperture ratio stability of EWDs. This flaw could be
solved by adjusting the frequency of driving waveforms. In the shrinking stage, t1 was set
to 80 ms and t2 was set to 100 ms. In the driving stage, frequencies of driving waveforms
were set to 5, 10, 20, 50, 100, and 200 Hz, respectively. Luminance value curves of EWDs
at different frequencies are shown in Figure 9. When the driving frequency was less than
20 Hz, the luminance curve had significant oscillations and many peaks, and significant
flickers could be observed directly on EWDs. When the driving frequency was increased
to 20 Hz and 50 Hz, the number of peaks and the oscillation range were significantly
reduced, and significant flickers could not be observed on EWDs. In addition, when driving
frequencies were 100 Hz and 200 Hz, the luminance curve tended to be flattened and no
peak occurs. However, when the frequency continued to increase, the luminance value
showed a downward trend. This was because the negative voltage duration of the charge
release stage in the reset signal was insufficient, and charges trapped in the insulating layer
could not be fully released. Therefore, the frequency of the driving waveform was set to
100 Hz.

A stable aperture ratio of EWDs could be maintained by adjusting the proportion
of the reset signal. The luminance curve of different ratios in reset signals is shown in
Figure 10. tD was 10 ms because the frequency was set to 100 Hz. Therefore, the proportion
of the reset signal could be expressed by Equation (7).

η = (tR1 + tR2)/tD (7)

When η = 0%, it was equivalent to driving EWDs with a DC voltage, the luminance
of the EWD could not be kept stable and decreased significantly at a certain rate. When η
was less than 20%, the luminance value was increased without significant jitters. However,
when the η was greater than 30%, the luminance value began to decrease gradually, and
the oscillation amplitude was increased gradually. The duration of the reset signal was



Micromachines 2022, 13, 948 11 of 16

increased, resulting in insufficient driving time for driving a target aperture ratio. To obtain
a saturation luminance value and reduce luminance oscillation, η was set to 20%.
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Figure 9. Luminance curves with different frequencies of the driving waveform. There were serious
luminance oscillations and a large number of peaks when the frequency was less than 50 Hz. The
luminance curve tended to be flat, and the luminance value had a downward trend when the
frequency was greater than 100 Hz.
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Figure 10. The luminance curve of an EWD driven by reset signals with different η values. The
luminance curve significantly decreased when η was 0%. The value of luminance would increase
with the increase in η when η was less than 20%. The stability of the luminance curve decreased
when η was greater than 30%. The maximum luminance was 420.587 when η was 20%.
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In addition, the ratio between tR1 and tR2 in the reset signal would also affect the
stability of oil, which was defined as ρ = tR1/tR2. Luminance–time curves at different
ρ values are shown in Figure 11. It could be seen that as ρ increased, the oscillation range
of luminance and the number of peaks increased. When ρ was less than 1, there was a clear
change trend in the luminance curve. It was demonstrated that the luminance value could
not be well kept when tR1 was less than half of the duration of the reset signal. At the same
time, when tR2 was less than half the duration of the reset signal, the pixel was difficult to
achieve a maximum luminance. Experimental results showed that when tR1 was equal to
tR2, it could obtain a large luminance value and the stability of EWDs was the best.
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Figure 11. The luminance curve of an EWD with the different ratios of tR1/tR2. The oscillation degree
of luminance curves was increased with the increase in ρ. The luminance curve had no obvious
oscillation and EWDs could keep a stable display when tR1 was equal to tR2.

3.5. Performance of the Proposed Waveform

As shown in Figure 12a, four different driving waveforms were used to compare
performance with the proposed driving waveform. The four driving waveforms include a
combined pulse waveform [20], an exponential function waveform with a reset stage [32],
a linear function waveform [19], and an exponential function waveform [33]. In order to
control the variable, the duration of the oil shrinking stage in all driving waveforms was
set to 180 ms, and the maximum driving voltage Vmax was set to 30 V. The initial voltage
of both the linear function waveform and the exponential function waveform with a reset
signal was set to 16 V.
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Figure 12. (a) Different driving waveforms for performance comparison. The yellow line represents
the combined pulse waveform; the green line represents the exponential function waveform with
a reset stage; the red line represents the linear function waveform; the blue line represents the
traditional exponential function waveform. (b) Luminance curves of different driving waveforms
in the shrinking stage. The maximum luminance of the proposed driving waveform was 501.567.
In addition, the maximum luminance of the combined pulse waveform, the exponential function
waveform with a reset stage, the linear function waveform, and the exponential function waveform
were 517.137, 452.378, 459.566, and 431.303, respectively. (c) Luminance curves of the driving stage.
The combined pulse waveform had obvious luminance oscillations, and the oil backflow phenomenon
occurred in the other three driving waveforms.
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In the shrinking stage, the luminance value of different driving waveforms is shown in
Figure 12b. It could be seen that the luminance value of the exponential function waveform
increased most quickly, but the saturation luminance value was the lowest compared to
the other four driving waveforms. The maximum luminance value was 431.578. It could
be proved that an important factor of severe oil splitting was caused by the exponential
function waveform. When the luminance was exceeded 450, the luminance of the linear
function waveform was increased slowly, and the luminance of the exponential function
waveform with a reset signal was gradually stabilized. The maximum luminance value of
the linear function waveform and the exponential function waveform were 459.566 and
452.378, respectively. On the contrary, the luminance of the proposed driving waveform
and the combined pulse waveform exceeded significantly that of the other three driving
waveforms. Their maximum luminance value was 501.567 and 517.137, respectively. The
luminance oscillation degree of the proposed driving waveform was lower than that of
the combined pulse waveform. This phenomenon showed that the proposed driving
waveform not only could effectively reduce the luminance oscillation and the oil splitting
but also could increase luminance value and maintain a stable display. Moreover, in the
driving stage, the luminance value of different driving waveforms can be seen in Figure 12c.
The oil backflow phenomenon occurred in the exponential function waveform, the linear
function waveform, and the exponential function waveform with a reset signal because
trapped charges were not released. The combined pulse waveform had obvious luminance
oscillations, which could not maintain a stable luminance value. The luminance value of
the proposed driving waveform did not change significantly, which proved that the charge
trapping effect was suppressed.

Performance parameters of five different driving waveforms and the proposed driving
waveform were shown in Table 1. The average luminance of the proposed driving wave-
form was 497.330, which was higher than the other driving waveforms. The response time
of the proposed driving waveform was 103.038 ms, which was 22.74% higher than that of
the combined pulse waveform, and 20.27% higher than the linear function waveform. By
applying the proposed driving waveform, the aperture ratio could reach 57.43%, which was
7.23% higher than that of the combined pulse waveform. Compared with the exponential
function waveform, the aperture ratio was increased by 24.42%. In addition, the luminance
standard deviation for the proposed waveform was 2.3428, which was lower than the
other four driving waveforms. Compared with the exponential function waveform with a
reset signal, the luminance standard deviation was increased by 84.61%. The experiment
results showed that the charge trapping effect was effectively suppressed by applying the
proposed driving waveform. Therefore, the proposed driving waveform in this study could
solve the oil backflow of EWDs and keep a stable oil display state.

Table 1. Driving effect comparison when different driving waveforms were used to drive EWDs.

Driving Waveform Combined [20] Reset Exponential
Function [30]

Linear
Function [31]

Exponential
Function [32] Proposed

Average (a.u.) 495.766 448.530 450.308 387.648 497.330
Standard deviation 20.6558 15.2184 16.9525 28.3286 2.3428
Response time (ms) 133.358 260.1 129.228 73.205 103.038
aperture ratio (%) 53.56 49.52 50.84 46.16 57.43

4. Conclusions

In order to suppress the charges trapping effect, a new combined driving waveform
was proposed in this paper. Firstly, a combined waveform based on an exponential function
and a DC voltage was designed in the oil shrinkage stage by analyzing the principle
of EWDs and measuring voltage characteristic curves of EWDs. Then, oil splitting was
suppressed by quickly breaking and fully combining oil. At the same time, an optimized
AC reset waveform was designed in the oil driving stage to suppress the oil backflow
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and increase the average luminance of EWDs. Compared with other driving waveforms,
oil backflow could be effectively suppressed, and luminance oscillation of EWDs was
decreased, a more stable aperture ratio could be maintained by the proposed driving
waveform. In summary, the proposed driving waveform provided a certain reference value
for improving the performance of EWDs.
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