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Abstract: The fungal antioxidant system is one of the targets of the redox-active polyene antifungal
drugs, including amphotericin B (AMB), nystatin (NYS), and natamycin (NAT). Besides medical
applications, NAT has been used in industry for preserving foods and crops. In this study, we inves-
tigated two parameters (pH and food ingredients) affecting NAT efficacy. In the human pathogen,
Aspergillus fumigatus, NAT (2 to 16 µg mL−1) exerted higher activity at pH 5.6 than at pH 3.5 on
a defined medium. In contrast, NAT exhibited higher activity at pH 3.5 than at pH 5.6 against
foodborne fungal contaminants, Aspergillus flavus, Aspergillus parasiticus, and Penicillium expansum,
with P. expansum being the most sensitive. In commercial food matrices (10 organic fruit juices), food
ingredients differentially affected NAT antifungal efficacy. Noteworthily, NAT overcame tolerance of
the A. fumigatus signaling mutants to the fungicide fludioxonil and exerted antifungal synergism
with the secondary metabolite, kojic acid (KA). Altogether, NAT exhibited better antifungal activity
at acidic pH against foodborne fungi; however, the ingredients from commercial food matrices
presented greater impact on NAT efficacy compared to pH values. Comprehensive determination
of parameters affecting NAT efficacy and improved food formulation will promote sustainable
food/crop production, food safety, and public health.

Keywords: antifungal; natamycin; oxidative stress; pH; polyenes; redox-active; drug resistance

1. Introduction

One Health recognizes that people, animals, plants, and their shared environment are
highly interconnected. While recently One Health has focused the interface between human
and animals, especially emerging infectious diseases, the scope of One Health also includes
the prevention of foodborne diseases and contamination, noninfectious diseases, and
environmental (agricultural) and ecosystem health [1]. For instance, invasive aspergillosis
(IA) is a life-threatening infection caused by filamentous fungi in the genus Aspergillus. The
most prevalent causative agent for IA is Aspergillus fumigatus, followed by Aspergillus flavus,
Aspergillus niger, and Aspergillus terreus [2,3]. Immunocompromised people or patients are
at a higher risk of developing fungal diseases [4]. Notably, besides human–animal interface,
invasive aspergilli infection could also be acquired from contaminated foods (A. fumigatus)
or crops (A. flavus), indicating human infections, such as IA, also involves food safety
and environmental (agricultural) health issues [5]. However, control of fungal diseases is
increasingly problematic due to the limited number of effective drugs/fungicides available
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for antifungal intervention [6]. Especially, cross-resistance of fungi to azole and polyene
drugs has become a prominent public and environmental health issue [7]. Azoles, such as
voriconazole (VRZ), itraconazole (ITR), or posaconazole (POS), are broadly used for treating
human fungal pathogens. The primary mechanism of antifungal action of azoles is to inhibit
the lanosterol 14-α sterol demethylase (CYP51 of the cytochrome P450 monooxygenase
(CYP) superfamily) involved in fungal ergosterol biosynthesis [8,9]. Polyene drugs, such as
amphotericin B (AMB), nystatin (NYS), and natamycin (NAT) (also known as pimaricin),
contain conjugated double bonds in the structure, providing high affinity to ergosterol
moiety of membranes in most fungal species [10].

Sequential combination antifungal therapy is sometimes necessary for effective control
of fungi [7]. However, as observed in the yeast pathogens [11], prior exposure of A. fumiga-
tus to azoles has been shown to lower the susceptibility of the fungal biofilms or germlings
to polyenes such as AMB [12]. Of note, A. fumigatus pre-exposure to VRZ activated the
cellular stress defense (namely adaptive resistance mechanisms) via the heat-shock protein
90 (Hsp90), which subsequently conferred AMB resistance, whereas pharmacological inhi-
bition of Hsp90 by geldanamycin significantly enhanced (4- to 8-fold) the AMB susceptibil-
ity of fungal biofilm [12]. Hsp90 is a chaperone of calcineurin, a conserved Ca2+-calmodulin
(CaM) activated protein phosphatase 2B, involved in the calcium-dependent signaling
pathway for fungal virulence and stress response [13]. Therefore, studies indicated that
azole-potentiated fungal tolerance to AMB is exerted via Hsp90-mediated oxidative stress
defense [14]. We also determined previously that the cellular antioxidant system was a
viable target in the antifungal action of azoles or AMB, where the mitochondrial superoxide
dismutase (Mn-SOD), mitogen-activated protein kinases (MAPKs), etc., play crucial roles
in fungal defense against azole- or AMB-induced oxidative stress [15,16].

Azoles are also increasingly applied in agricultural industry to control phytopathogenic
fungi [17]. However, an azole-resistant A. flavus has been identified, where the T788G
mutation in the cyp51C gene conferred the azole resistance [18]. A. flavus contaminates
various agricultural commodities (during pre- and post-harvest) by producing the car-
cinogenic mycotoxins aflatoxins (AFs) [19]. Mutants of the other AF-producer Aspergillus
parasiticus, having the G54W mutation in the cyp51A gene, produced AFs at concentra-
tions significantly higher (up to 3-fold) than the wild-type strain [20]. Currently, more
than 25% of total fungicide sales are azoles such as propiconazole or tebuconazole [17].
Therefore, once incorporated into the food supply chain, the azole-treated fungi, such as
AF-overproducing cyp51 mutants, will not only debilitate public food safety, but also cause
significant economic losses, especially when the fungi are exposed subsequently to polyene
fungicides during food production.

Among polyene molecules, NAT has been used widely for control of agricultural
fungi infecting various crops (mushroom, tomato, strawberry, etc.) or contaminating pro-
cessed foods (table olives, fruit juices, cheeses, yogurt, wines, etc.) (Figure 1; Table S1).
For example, NAT was applied for postharvest disease control against Botrytis cinerea
(to protect mandarin fruit), especially for managing isolates resistant to fungicides with
different modes of action [21]. NAT also effectively controlled quinone outside inhibitor
(QoI)-resistant Colletotrichum acutatum triggering strawberry crown rot, where the disease
severity and plant mortality in field were reduced while fruit yield was significantly in-
creased [22]. NAT also exhibited a synergistic antifungal activity with other compounds
such as ferulic acid (FA), where coapplication of NAT and FA effectively inhibited the
growth of Aspergillus japonicus and Gilbertella persicaria contaminating blackberry fruits [23].
Meanwhile, NAT has also exerted anti-mycotoxigenic capability; NAT effectively dis-
rupted ochratoxin production by strains of Aspergillus carbonarius in grape juice-based
medium [24]. In the baseline estimation of the postharvest pathogens, Penicillium sp.,
mean effective NAT concentrations for inhibiting 50% mycelial growth were determined as
1.54 and 1.14 µg mL−1 for Penicillium digitatum and Penicillium expansum, respectively [25].
Noteworthily, organic acids, such as lactic or citric acids, functioned as sensitizing agents
to NAT in the green mold, P. digitatum, which resulted in a significant reduction in green
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mold contamination in lemon fruit [26]. In the food spoilage fungus, Penicillium discolor,
NAT exhibited a different mode of action than other polyenes such as NYS; while NYS
disrupted fungal plasma membrane, NAT could not permeabilize germinating conidia but
inhibited their endocytosis [27].

Figure 1. Natamycin usage in agricultural and food industries for crop protection, food preservation,
and mycotoxin prevention (courtesy: USDA; see Table S1). Note that pH, light, UV, and food
ingredients greatly affect the efficacy of NAT.

Since fungicide resistance is an emerging environmental/public health concern [28],
there is also an increasing demand for the development of precision NAT application
practices, ensuring effective fungal control in the environment or food/crop production
process. Studies have shown that NAT efficacy was affected greatly by pH, light, UV,
and food ingredients such as salts or organic acids [29,30]. In this study, we investigated
(1) redox-active characteristic of NAT; (2) differential antifungal efficacy of NAT between
human pathogen (A. fumigatus) and mycotoxigenic, foodborne fungi (A. flavus, A. parasiticus,
Penicillium expansum, Neosartorya fischeri) under two different pH conditions (3.5, high
acidity; 5.6, low acidity), which mimic the conditions of commercial food matrices; and
(3) impact of commercial food ingredients on NAT efficacy by using 10 organic fruit juices
as experimental food matrices.

2. Materials and Methods
2.1. Microorganisms

Fungal strains used in this study are described in Table 1. The human pathogen A. fumi-
gatus (wild type and mitogen-activated protein kinase (MAPK) gene deletion mutants) and
food-contaminating fungi A. flavus (aflatoxin (AF) producer), A. parasiticus (AF producer),
and N. fischeri (heat-resistant food spoilage strain) (Table 1) were maintained at 35 ◦C
on potato dextrose agar (PDA; BD Life Sciences, Franklin Lakes, NJ, USA). P. expansum
(wild type and fludioxonil (FLU)-resistant mutant; patulin producer) were grown at 28 ◦C
on PDA.
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Table 1. Characteristics of fungi used in this study.

Fungi Strain Characteristics Source

A. flavus 3357 Mycotoxigenic (aflatoxin (AF) producer), human pathogen (aspergillosis), reference
strain for genome sequencing NRRL 1

A. flavus 4212 Mycotoxigenic (AF producer), human pathogen (aspergillosis) NRRL
A. parasiticus 2999 Mycotoxigenic (AF producer) NRRL
A. parasiticus 5862 Mycotoxigenic (AF producer) NRRL

A. fumigatus AF293 Human pathogen (aspergillosis), reference clinical strain for genome sequencing UT 2, [31]
A. fumigatus sakA∆ Mitogen-activated protein kinase (MAPK) gene deletion mutant derived from AF293 UT, [31]
A. fumigatus mpkC∆ MAPK gene deletion mutant derived from AF293 UT, [32]

P. expansum W1 Mycotoxigenic (patulin producer; parental strain) WSU 3, [33]
P. expansum FR2 Fludioxonil (FLU)-resistant mutant derived from W1 WSU, [33]
N. fischeri 96468 Food spoilage fungus, heat resistant ATCC 4

1 NRRL, National Center for Agricultural Utilization and Research, USDA-ARS, Peoria, IL, USA. 2 UT, The University of Texas, MD
Andersen Cancer Center, Houston, TX, USA. 3 WSU, Washington State University, Wenatchee, WA, USA. 4 ATCC, American Type Culture
Collection, Manassas, VA, USA.

2.2. Chemicals

All chemicals and media, namely polyenes (amphotericin B (AMB), nystatin (NYS),
natamycin (NAT)), fludioxonil (FLU), kojic acid (KA), potato dextrose broth (PDB), and
potato dextrose agar (PDA), were purchased from Sigma Aldrich Co., St. Louis, MO, USA.
Dimethyl sulfoxide (DMSO) was procured from AMRESCO Co., Solon, OH, USA.

2.3. Overcoming FLU Tolerance of A. fumigatus MAPK Mutants (sakA∆, mpkC∆) by NAT

The capability of NAT to overcome FLU tolerance of A. fumigatus MAPK mutants was
tested in PDA. NAT (2, 4, 6, or 8 µg mL−1) was incorporated into PDA without or with FLU
(50 µM). Plates prepared were (a) wild type (AF293) and MAPK mutants with no treatment
(Control), (b) NAT (2, 4, 6, or 8 µg mL−1), (c) FLU (50 µM), and (d) FLU (50 µM) + NAT
(2, 4, 6, or 8 µg mL−1). Then, A. fumigatus spores (1 × 103 CFU in 20 µL) were spotted at
the center of the surface of each PDA (triplicate for each strain per test condition), and the
inoculated plates were incubated at 35 ◦C. The level of fungal growth (% radial growth),
including escaping of sakA∆ and mpkC∆ MAPK mutants from FLU toxicity, on each plate
was monitored for 5 to 7 days, as described previously [34]. Compounds were dissolved in
DMSO (absolute DMSO amount: <2% in media) before incorporation into culture media,
and control plates contained DMSO only at levels equivalent to that of cohorts receiving
NAT, within the same set of experiments.

2.4. Effect of pH (3.5 and 5.6) on the Antifungal Efficacy of NAT, AMB, or NYS

Differential antifungal efficacy of NAT, AMB, or NYS affected by different pHs (3.5, 5.6)
was determined on PDA. Initially, PDB was dissolved in double-distilled water, then pHs
were adjusted to 3.5 or 5.6. Select agar (1.5%) (Sigma Aldrich Co., St. Louis, MO, USA) was
added to the pH-adjusted PDB, and then the resulting PDA was autoclaved at 121 ◦C for
25 min. The sterilized PDA (pH 3.5 or 5.6) was cooled down at room temperature, and NAT,
AMB, or NYS (2, 4, 8, 16 µg mL−1) was incorporated into the PDA prepared. Then, the PDA
was dispensed into Petri plates (60 mm × 15 mm; Corning Inc. Life Sciences, Tewksbury,
MA, USA) (triplicate for each strain per test condition). Fungal spores (1 × 103 CFU in
20 µL as determined by hemocytometer counts) from seven Aspergillus, two Penicillium, or
one Neosartorya species were spotted onto the center of PDA. Fungal radial growth was
determined as described above [34]. NAT, AMB, or NYS was dissolved in DMSO (absolute
DMSO amount: <2% in media) before incorporation into culture media, and control plates
(no NAT, no AMB, no NYS) contained DMSO only at levels equivalent to that of cohorts
receiving antifungal agents, within the same set of experiments. Fungal growth (% radial
growth) was monitored for 5 to 7 days at 35 ◦C, except P. expansum which was grown
at 28 ◦C.
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2.5. Antifungal Synergism (Chemosensitization) between NAT and KA

Chemosensitizing activity (antifungal synergism) of KA to NAT was determined
against A. fumigatus wild type and MAPK mutants using PDA bioassay. PDA plates
(pH 5.6) supplemented with NAT (1, 2, 3 µg mL−1), without or with 5 mM KA, were
prepared in triplicate per strain, and fungal spores (1 × 103 CFU in 20 µL) were spotted
at the center of each PDA, as described above. The inoculated plates were incubated at
35 ◦C, and fungal growth (% radial growth) was monitored for 5 to 7 days. Compounds
were dissolved in DMSO (absolute DMSO amount: <2% in media) before incorporation
into culture media, and control plates (no NAT and/or no KA) contained DMSO only
at levels equivalent to that of cohorts receiving antifungal agents, within the same set
of experiments.

2.6. Effect of Food Ingredients on the Efficacy of NAT Tested on Organic Fruit Juice Agar

Organically produced fruit juices were purchased from local grocery stores (a total
of 10 fruit juices as follows: #1—white grape (pH 3.08), #2—honey crisp apple (pH 3.48),
#3—blueberry (pH 3.17), #4—black cherry (pH 3.99), #5—tart cherry (pH 3.41), #6—concord
grape (pH 3.59), #7—grapefruit (pH 3.21), #8—pear (pH 3.95), #9—pineapple (pH 3.95),
#10—pomegranate (pH 3.36)) (Berkeley, CA, USA). No artificial preservatives were com-
mercially added into the fruit juices by the producers (compositions not disclosed; trade
secret). Initially, pHs of each fruit juice were measured, and then each juice was supple-
mented with 1.5% select agar (Sigma Aldrich Co., St. Louis, MO, USA) in 500 mL glass
media bottles (Corning Inc. Life Sciences, Tewksbury, MA, USA). All preparations were
autoclaved at 121 ◦C for 25 min. The sterilized juice agar (JA) (pHs 3.08 to 3.99; equivalent
to each fruit juice) was cooled down at room temperature, and NAT (2, 4, 6, 8 µg mL−1) was
incorporated into the JA. Then, JA was dispensed into Petri plates (60 mm × 15 mm; Corn-
ing Inc. Life Sciences, Tewksbury, MA, USA) (triplicate for each strain per test condition).
Fungal spores (1 × 103 CFU in 20 µL as determined by hemocytometer counts) from seven
Aspergillus, two Penicillium, or one Neosartorya species were spotted onto the center of JA.
Fungal growth (% radial growth) was monitored for 5 to 7 days at 35 ◦C, except P. expansum
which was grown at 28 ◦C, as described above. NAT was dissolved in DMSO (absolute
DMSO amount: <2% in media) before incorporation into culture media, and control plates
(no NAT) contained DMSO only at levels equivalent to that of cohorts receiving NAT,
within the same set of experiments. We initially described the NAT antifungal efficacy
in radial growth (%), and then the values were translated further into the rank of each
fruit juice (see Section 3.2.2). Antifungal ranks were expressed as “1” (highest antifungal
activity) to “10” (lowest antifungal activity) at each concentration (2, 4, 8, or 16 µg mL−1)
of NAT in 10 organic fruit juices.

2.7. Statistical Analysis

Statistical analysis (Student’s t-test) was performed based on “Statistics to use” [35],
where p < 0.05 was considered significant.

3. Results and Discussion
3.1. Redox Activity of NAT: Overcoming FLU Tolerance of A. fumigatus Antioxidant Signaling
Mutants

The polyene drugs AMB and NYS have been shown to induce reactive oxygen
species (ROS), thus triggering oxidative stress in fungal cells (planktonic free-living or on
biofilm) [14]. However, the redox-active characteristic of NAT (as an antifungal agent)
has not been documented so far. Noteworthily, in Streptomyces natalensis (Gram-positive,
filamentous soil bacterium), an imbalance of the intracellular reactive oxygen species (ROS)
homeostasis leads to the crosstalk between ROS homeostasis and secondary metabolism,
thus modulating NAT production for countering the stress [36,37]. Results showed that
A. fumigatus antioxidant signaling mutants (sakA∆, mpkC∆) [31,32] were more sensitive
to NAT than the wild type (AF293) (Figure 2). The growth of MAPK mutants was com-
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pletely inhibited with NAT at ≥4 µg mL−1, while the wild type still maintained about 46%
radial growth at 4 µg mL−1 of NAT. Results indicated that, like AMB or NYS, NAT is a
also redox-active molecule, and therefore, fungal cells lacking the intact oxidative stress
defense system exhibited increased susceptibility to NAT. SakA and MpkC are ortholo-
gous proteins to the high osmolality glycerol (HOG) MAPK protein (Hog1p) of the model
yeast Saccharomyces cerevisiae, which is involved in oxidative stress signaling/defense [38].
A. fumigatus sakA∆ and mpkC∆ mutants previously showed enhanced susceptibility to the
redox-active benzo derivatives [34].

Figure 2. (a) The level of fungal growth without or with the treatment of natamycin (NAT) (2, 4, 6, 8 µg mL−1) and/or
fludioxonil (FLU) (50 µM) tested in A. fumigatus AF293 (wild type) and MAPK mutants (sakA∆, mpkC∆); (b) diagram:
overcoming FLU tolerance of A. fumigatus MAPK mutants by combined application of NAT.

Fungi having mutations in the antioxidant system escape toxicity of the commercial
fungicide FLU [39]. A. fumigatus sakA∆ and mpkC∆ also exhibited tolerance to 50 µM
FLU, resulting in maintenance of 40 to 60% radial growth, respectively, compared to the
wild type control (no growth). However, coapplication of sublethal concentration of NAT
(2 µg mL−1) with FLU (50 µM) resulted in an effective fungal control; the coapplication
did not allow MAPK mutants to develop tolerance to FLU, thus achieving complete fungal
death (Figure 2).

FLU is a phenylpyrrole fungicide that triggers excessive activation of the intact MAPK
system for stress defense, such as glycerol biosynthesis [39]. The excessive activation of
MAPK thus results in an energy drain and induction of osmotic/oxidative imbalance
in fungal cells that eventually disrupts the growth of fungal pathogens. We reasoned
that the redox-active NAT directly targets the downstream of MAPK signaling system in
fungi [40,41], for which the structural genes in the antioxidant system, such as superoxide
dismutases (cytosolic or mitochondrial) and glutathione homeostasis, are responsible for
fungal defense against NAT. However, with the MAPK mutation, these antioxidant systems
cannot be expressed/operated in the cell, thus resulting in enhanced susceptibility of fungi
to the NAT treatment.

3.2. Differential NAT Susceptibility between Human Pathogen (A. fumigatus) and Foodborne
Fungal Contaminants (A. flavus, A. parasiticus, P. expansum, N. fischeri) under Different pHs:
High (pH 3.5) versus Low (pH 5.6) Acidity Conditions
3.2.1. Fungal Susceptibility to Polyene Drugs (NAT, AMB, NYS): PDA Test

Antifungal efficacy of NAT is greatly influenced by pH [29,30]. The level of suscepti-
bility of A. fumigatus to all three polyene drugs was higher at low acidity (pH 5.6) than at
high acidity (pH 3.5) condition, where AMB showed the highest antifungal activity (order
of antifungal activity, high to low: AMB > NAT > NYS) (Figure 3). Moreover, the MAPK
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mutants exhibited higher susceptibility to NAT compared to the wild type (AF293); thus,
as determined in AMB and NYS, results confirmed further the redox-active characteristic
of NAT (see also Figure 2).

Figure 3. Susceptibility of A. fumigatus AF293 (wild type) and MAPK mutants (sakA∆, mpkC∆) to polyene drugs (ampho-
tericin B (AMB), natamycin (NAT), nystatin (NYS); 2, 4, 8, 16 µg mL−1) tested in PDA (triplicate) at pH 3.5 or 5.6 (SD < 2%).
Lower panel: Line graph showing numerical values of % radial growth at each test condition. (Note: While NAT showed
higher antifungal activity than AMB at 4 µg mL−1 (pH 5.6), where NAT completely inhibited the growth of AF293, the
22% growth with AMB labeled in the graph indicated the appearance of scattered colonies only (not a full radial growth)
of AF293.)

Regarding NAT, all A. fumigatus strains tested exhibited higher NAT susceptibility
(37 to 57% less radial growth) at pH 5.6 than at pH 3.5 (Figure 3). Notably, the growth of
A. fumigatus strains was completely inhibited by as low as 4 µg mL−1 of NAT at pH 5.6,
while the growth of AF293 still reached 25% even at 8 µg mL−1 of NAT at pH 3.5, high-
lighting the importance of lower acidic condition for the optimum NAT efficacy against
A. fumigatus. Similar to NAT, the growth of A. fumigatus AF293 and MAPK mutants still
reached 97 to 100% with 16 µg mL−1 (the highest concentration tested) of the other polyene
NYS at pH 3.5, while that with 8 µg mL−1 NYS reached 26 to 38% at pH 5.6, thus achieving
much higher fungal control (namely 59 to 71% less growth) even at the lower dose of NYS
at pH 5.6 (Figure 3).

Surprisingly, the antifungal efficacy of NAT against foodborne fungi was much higher
(12 to 56% reduction in radial growth) at pH 3.5 than at pH 5.6 at all NAT concentrations
investigated (Figure 4), which is contrary to the A. fumigatus results. The only exception
was A. flavus NRRL 3357 and NRRL 4212 at 2 µg mL−1 of NAT, where NAT exerted
slightly higher antifungal activity (3 to 6% less radial growth) at pH 5.6 when compared
to that at pH 3.5. The level of NAT susceptibility of A. flavus NRRL 3357 and NRRL
4212 was also relatively low at 4 µg mL−1 of NAT, where NAT exerted slightly higher
antifungal activity (1 to 5% less radial growth) at pH 3.5 than at pH 5.6. Other foodborne
fungi (A. parasiticus, N. fischeri, P. expansum) exhibited much higher susceptibility to NAT
(18 to 100% less radial growth) under the same test conditions (Figure 4). Therefore, results
indicated that, although A. flavus NRRL 3357 and NRRL 4212 were slightly less susceptible
to the lower doses of NAT (up to 4 µg mL−1), all fungi including both A. flavus NRRL 3357
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and NRRL 4212 showed 23 to 100% less growth at pH 3.5 than at pH 5.6 with higher doses
(8 to 16 µg mL−1) of NAT, thus achieving effective fungal control.

Figure 4. Susceptibility of foodborne fungal contaminants (Af, A. flavus; Ap, A. parasiticus; Nf, N. fischeri; Pe, P. expansum)
to natamycin (NAT) (2, 4, 8, 16 µg mL−1) tested in PDA at pH 3.5 or 5.6 (triplicate) (SD < 2%). Lower panel: Line graph
showing numerical values of % radial growth at each test condition.

Altogether, the trends of fungal susceptibility to NAT determined in foodborne fungal
contaminants were contrary to A. fumigatus results. P. expansum showed the highest sus-
ceptibility to NAT (i.e., fungal death at all concentrations of NAT tested), while A. flavus
NRRL 3357 and NRRL 4212 were less susceptible to NAT at lower concentrations (up to
4 µg mL−1) compared to other foodborne fungi (Figure 4). Rusul and Marth [29] previously
reported that, in a culture medium with pH 3.5, no growth or no mycotoxin production
could be determined in A. parasiticus treated with >7.5 µg mL−1 of NAT (also known as
pimaricin), which is similar to our observation. In general, the level of fungal susceptibility
to NAT (at the respective optimum pH) was higher in A. fumigatus than in A. flavus or
N. fischeri; for instance, at 4 µg mL−1 NAT, A. fumigatus showed complete growth inhibi-
tion (pH 5.6) while A. flavus or N. fischeri exhibited 19 to 32% growth inhibition (pH 3.5)
(Figures 3 and 4).

We speculate that one of the mechanisms of the increased NAT efficacy at low pH
against foodborne fungi could be the protonation of a nitrogen in the NAT structure to
a quaternary form (NH4

+); however, the mechanism of reversed effects observed in the
human pathogen A. fumigatus is not clear. The effects of pH on differential antifungal
activity of drugs/preservatives have been documented previously (Table S2). For example,
A. fumigatus exhibited higher susceptibility to the antimalarial drug chloroquine (CQ) than
Aspergillus nidulans at pH 8 [42]. However, no significant differences in CQ antifungal
efficacy were found between A. fumigatus and A. nidulans at pH 6. It has been determined
that a higher extracellular pH (pH 8) enabled increased diffusion of CQ into the target
fungi [42], whereas the antifungal activity of 5-flucytosine (5-FC), a structural derivative
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of the nucleobase cytosine, against A. fumigatus was determined to be lower at pH 7 than
at pH 5 [43]. Molecular analysis identified that the A. fumigatus fcyB gene encoding a
purine-cytosine permease, an orthologous 5-FC importer, was downregulated at pH 7,
thus negatively affecting 5-FC uptake into fungi [43]. In the AF-producing A. flavus
and A. parasiticus, the food preservatives potassium sorbate, sodium sulfite, and sodium
propionate exhibited high antifungal activity at pH 3, while that determined at pHs 4.5 to
7.0 was low [44,45].

The differential antifungal efficacy of drugs/compounds at various pHs was also
investigated in the yeast-form pathogens. Valproic acid (VPA) is an antipsychotic drug
recently repurposed to treat Candida albicans [46]. VPA exhibited high anticandidal activity
at acidic pH (pH 4.5), while that determined at pH 8.0 was low. The mechanism of increased
antifungal action at acidic pH was the alteration of vacuole integrity by VPA [46]. More
examples of drugs/compounds exhibiting differential antifungal activity at acidic or basic
pHs have been reported (See Table S2). Differential cellular uptake, diffusion of molecules,
modified organellar integrity, etc., have been the proposed mechanisms of pH-dependent
high or low antifungal efficacy. Determination of the precise mechanism of differential
NAT susceptibility between A. fumigatus and foodborne fungal contaminants at different
pHs, namely high versus low acidity conditions, warrants future in-depth investigation.

3.2.2. Fungal Susceptibility to Polyene Drugs (NAT, AMB, NYS): Food Matrices (Organic
Fruit Juices) Test

We observed in the A. fumigatus test that, although NAT antifungal efficacy was
generally enhanced with increasing concentrations of NAT in all fruit juices tested, the
level of antifungal efficacy of NAT varied depending on the types of fruit juices or fungi
examined (Table 2; Figures S1 and S2).

Table 2. Levels of fungal susceptibility to NAT in different fruit juices. 1

NAT
(µg mL−1) Values PDA

(pH 3.5)
Juice

1
Juice

2
Juice

3
Juice

4
Juice

5
Juice

6
Juice

7
Juice

8
Juice

9
Juice

10

A. fumigatus Average 90.0 86.3 72.3 77.0 77.7 79.3 67.3 90.0 72.7 66.7 54.7
2 SD 2.6 5.8 2.3 7.0 4.0 4.0 3.1 0.0 2.5 6.7 10.8

p-value - 0.37 0.00 * 0.04 * 0.01 * 0.02 * 0.00 * 1.00 0.00 * 0.01 * 0.01 *

4 Average 49.7 62.3 41.7 45.3 39.7 52.0 24.3 81.7 19.3 19.0 33.0
SD 11.5 5.8 2.3 8.5 11.5 3.5 7.5 2.3 5.1 0.0 14.7

p-value - 0.16 0.31 0.63 0.35 0.75 0.03 * 0.01 * 0.01 * 0.01 * 0.20

8 Average 8.3 33.3 19.0 24.3 33.0 16.7 15.7 49.3 10.3 19.0 33.0
SD 14.4 6.8 1.7 2.1 0.0 2.9 0.6 5.1 2.3 0.0 14.7

p-value - 0.05 0.27 0.13 0.04 * 0.38 0.43 0.01 * 0.82 0.27 0.11

16 Average 0.0 18.0 15.7 17.7 29.0 13.3 11.7 0.0 9.0 19.0 33.0
SD 0.0 0.0 2.9 2.1 3.5 2.3 0.6 0.0 0.0 0.0 14.7

p-value - 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * ND 0.00 * 0.00 * 0.02 *

Foodborne fungi Average 62.7 82.1 73.9 77.1 82.7 80.6 72.6 82.0 74.7 75.7 73.7
2 SD 43.2 19.4 19.0 13.4 22.4 13.0 17.0 14.0 22.8 18.1 8.4

p-value - 0.30 0.54 0.42 0.30 0.32 0.58 0.28 0.53 0.48 0.52

4 Average 52.7 73.6 56.4 56.4 77.6 57.4 52.4 59.0 60.7 65.6 55.4
SD 36.4 22.1 14.5 14.3 19.1 20.2 13.1 40.5 19.2 14.4 12.9

p-value - 0.22 0.81 0.81 0.14 0.77 0.99 0.77 0.62 0.40 0.86

8 Average 35.7 66.4 42.3 40.6 67.3 42.7 36.7 50.4 46.9 52.6 41.4
SD 25.0 18.3 7.0 10.0 13.3 9.4 7.4 35.2 10.6 8.6 14.3

p-value - 0.02 * 0.52 0.64 0.01 * 0.50 0.92 0.38 0.30 0.12 0.61

16 Average 5.3 55.7 30.3 30.1 54.1 26.6 22.1 40.6 33.4 39.3 35.1
SD 14.0 12.7 8.4 10.6 6.6 7.9 10.4 28.1 7.8 9.5 17.0

p-value - 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.03 * 0.01 * 0.00 * 0.00 * 0.00 *
1 Average, average % radial growth calculated from three strains (AF293, sakA∆, mpkC∆) of A. fumigatus or seven strains (A. flavus 3357,
A. flavus 4212, A. parasiticus 5862, A. parasiticus 2999, N. fischeri 96468, P. expansum W1, P. expansum FR2) of foodborne fungal contaminants;
SD, standard deviation calculated from three strains of A. fumigatus or seven strains of foodborne fungal contaminants; ND, not determined;
Student’s t-test for paired data (juices 1 to 10) was vs. the data of A. fumigatus or foodborne fungi determined in PDA (pH 3.5; p-value
designation: “-“). p-values < 0.05 considered significant are marked with asterisks (*).
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In Table 3, while the “average” rank of each fruit juice was calculated from the values
from all NAT concentrations (2, 4, 8, or 16 µg mL−1), the “final” rank of each fruit juice
was determined by ordering them by average rank (Table 3). The final rank reflects the
“expected” relative NAT efficacy in each fruit juice examined.

Table 3. Antifungal ranks of organic fruit juices reflecting the impact of each juice’s ingredients on the levels of NAT efficacy. 1

Juice No.
NAT

(µg mL−1)
1 2 3 4 5 6 7 8 9 10

Human pathogen
(A. fumigatus)

2 9 4 6 7 8 3 10 5 2 1
4 9 6 7 5 8 3 10 2 1 4
8 9 4 6 7 3 2 10 1 4 7

16 7 5 6 9 4 3 1 2 8 10
Average 2 8.50 4.75 6.25 7.00 5.75 2.75 7.75 2.50 3.75 5.50

Final 3 10 4 7 8 6 2 9 1 3 5

Foodborne contaminants
2 9 3 6 10 7 1 8 4 5 2
4 9 3 3 10 5 1 6 7 8 2
8 9 4 2 10 5 1 7 6 8 3

16 10 4 3 9 2 1 8 5 7 6
Average 2 9.25 3.50 3.50 9.75 4.75 1.00 7.25 5.50 7.00 3.25

Final 3 9 3 3 10 5 1 8 6 7 2
1 Antifungal ranks are expressed as “1” (highest antifungal activity) to “10” (lowest antifungal activity) at each concentration (2, 4, 8, or
16 µg mL−1) of NAT in 10 fruit juices. 2 Average, average rank of each fruit juice calculated from the ranks determined in all concentrations
(2, 4, 8, or 16 µg mL−1) of NAT. 3 Final, final rank of each fruit juice derived from the average rank exhibited above, which reflects the
expected relative NAT efficacy added into each fruit juice.

Generally, the relative rank (antifungal) of each fruit juice depended on the types
of juices and NAT concentrations applied. Key observations with the human pathogen
A. fumigatus are as follows: (1) The ranks of fruit juices 9 and 10 lowered (e.g., rank “1” to
“10”; juice 10) as the NAT concentration increased (2 to 16 µg mL−1) (Table 3), whereas
the relative ranks of juices 5 and 8 improved (e.g., rank “5” to “2”; juice 8) as the NAT
concentration increased (Table 3). (2) Juice 7 exhibited very low antifungal efficacy at
2, 4, and 8 µg mL−1 of NAT (namely rank “10”) compared to that determined in other
fruit juices. Surprisingly, complete growth inhibition of all A. fumigatus (AF293, MAPK
mutants) was achieved at 16 µg mL−1 NAT (rank “1”) (Tables 2 and 3; Figure S1). Such
contrasting NAT efficacy between the low and high NAT concentrations indicated that
juice 7 might contain ingredients possessing high redox-active characteristics. Redox-active
compounds have both antioxidant and prooxidant potential [47] and therefore can serve
as potent redox-cyclers in pathogens above the oxidative stress threshold level. While the
redox-active molecules function as antioxidants at lower concentrations, thus countering
the NAT-triggered oxidative stress in fungi, they could function as potent antimicrobials
by disrupting cellular redox homeostasis and/or redox-sensitive structures in fungi [48,49].
We previously determined that lower levels (<3 mM) of the phenolic 2,5-dihydroxybenzoic
acid (2,5-DHBA) countered the H2O2-triggered oxidative stress in the model yeast Sac-
charomyces cerevisiae, while the growth of the yeast was disrupted when treated with 3
to 18 mM (above the oxidative stress threshold level) of 2,5-DHBA [50]. We surmised
that redox-active compounds, such as NAT or 2,5-DHBA, exerted heightened antifungal
activity in the presence of additional redox-potent molecules (for example, the redox-active
ingredients in fruit juice 7) in the food matrices. (3) Except for the 16 µg mL−1 NAT in juice
7 (0% growth), complete fungal death could not be achieved with NAT in any of the fruit
juices examined (Figure S1). Considering the similar pH values of fruit juices (average: pH
3.5; 3.08 to 3.99) to PDA (pH 3.5) where complete fungal death was achieved at 4 µg mL−1

NAT, we speculated that the ingredients in fruit juices have higher impact on NAT effi-
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cacy compared to pH. (4) AF293 generally exhibited higher NAT tolerance than MAPK
mutants in fruit juices; an exception is that, in juice 9, the level of NAT efficacy against
all A. fumigatus strains (AF293, MAPK mutants) remained similar at 4, 8, or 16 µg mL−1,
regardless of NAT doses applied (namely 19% radial growth) (Figure S1). (5) In general,
the trends of NAT antifungal efficacy against two MAPK mutants were similar within the
same fruit juice matrices (Figure S1). For example, in juice 4, similar levels of MAPK (sakA∆,
mpkC∆) susceptibility to NAT were determined, namely 33%, 33%, or 27% growth at 4,
8, or 16 µg mL−1 NAT, respectively (Figure S1). As observed in A. fumigatus, the relative
rank (antifungal) of each fruit juice determined in foodborne fungal contaminants also
depended on the types of juices and NAT concentrations applied. Key observations with
the foodborne fungal contaminants are as follows: (1) The relative ranks of fruit juices 9
and 10 lowered (e.g., rank “2” to “6”; juice 10) as the NAT concentration increased (2 to
16 µg mL−1) (Table 3), whereas, the relative ranks of fruit juices 3 and 5 were improved
(e.g., rank “7” to “2”; juice 5) as the NAT concentration increased (Table 3). (2) The NAT
efficacy was determined high in fruit juice 6 for foodborne fungal contaminants (similar
to A. fumigatus, namely rank “1” or “2” for foodborne fungi or A. fumigatus, respectively)
(Table 3). (3) In A. fumigatus, none of NAT treatments in any of the fruit juices could com-
pletely inhibit fungal growth (compared to PDA test; see Figure 4), except for 16 µg mL−1

NAT in “juice 7” which achieved 0% radial growth in P. expansum W1 and FR2 (Figure S2).
Results confirmed further that food ingredients have more impact on NAT antifungal
efficacy than pH (see A. fumigatus results above). Notably, P. expansum and A. fumigatus
exhibited similar susceptibility to NAT in juice 7, indicating these fungi might possess
similar response mechanism to the NAT in fruit juice 7. (4) The NAT susceptibilities of the
AF-producing fungi (A. flavus, A. parasiticus) were determined similar in all fruit juices ex-
amined (Figures S3 and S4). Of note, the NAT antifungal efficacy in juice 4 was determined
“low” in most of A. fumigatus and foodborne fungal contaminants (Figures S1–S4).

The antifungal efficacy of NAT in response to food ingredients has been investigated
previously in different food matrices. For instance, in simulated acid sauces, NAT at
12 mg L−1 effectively inhibited the growth of the food-contaminating yeast Zygosaccha-
romyces bailii [51]. However, combined application of 3.00 to 6.00% of NaCl resulted in
antagonism between NAT and NaCl, thus lowering the antifungal efficacy of NAT. More-
over, addition of one of the commercial food ingredients, xanthan gum (XG), at 0.25 to
0.50% also decreased NAT efficacy. Therefore, the study proved the importance of selecting
proper ingredients during food formulation when NAT is coapplied [51].

In table olive matrices, citric acid at lower than 0.15% decreased the antifungal efficacy
of NAT against three yeast species, Saccharomyces cerevisiae, Wickerhamomyces anomalus, and
Candida boidinii, which commonly contaminate table olives [52]. Similar to acid sauce results
(above), NaCl at around 5% also enhanced NAT resistance of S. cerevisiae and C. boidinii,
thus indicating further the antagonistic effect of certain food ingredients against NAT in
commercial food matrices [52].

Antifungal efficacy of NAT has been compared between PDA and cheese matri-
ces (pH 5.0) against many fungi, including Mucor racemosus, Penicillium commune,
Galactomyces geotrichum, Yarrowia lipolytica, Phoma pinodella, Candida parapsilosis,
Meyerozyma guilliermondii, Trichosporon asahii, and Rhodotorula mucilaginosa [53].
Remarkably, compared to other food matrices studies described above, NAT activity was
determined higher on cheese surfaces compared to that on PDA. Possible mechanisms of
enhanced NAT activity were speculated to be (1) the synergism exerted by the molecules
in the cheese, such as lactic acid, produced by starter cultures and (2) the differences in the
physiological status of the target fungi in different matrices [53].

3.3. Enhanced Antifungal Activity of Polyenes with KA in Filamentous Fungi

Antifungal chemosensitization is a new intervention strategy, where combined applica-
tion of a second molecule (chemosensitizer; either natural or synthetic) with a conventional
drug/fungicide could enhance the antifungal efficacy of the coapplied drug/fungicide [54].
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The key value of chemosensitization is that, compared to traditional combination ther-
apy which is a coapplication of two or more conventional antifungal drugs/fungicides, a
chemosensitizer itself does not have to possess a potent antifungal activity. A chemosensi-
tizer causes the target fungi to become more susceptible to the commercial drug/fungicide
coapplied by modulating fungal defense system, such as antioxidant pathway, to the
drug/fungicide [54].

Kojic acid (KA; 5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one) is a natural pyrone
produced mainly by the species of Aspergillus and Penicillium [55]. We previously deter-
mined that KA exerted chemosensitizing antifungal activity to AMB (synergism) against
A. fumigatus by lowering minimum inhibitory (MIC) or fungicidal (MFC) concentrations
of AMB [55]. In the present study, we determined the chemosensitizing activity of KA to
NAT against A. fumigatus AF293, sakA∆, and mpkC∆ by coapplying KA (5 mM) with 1,
2, or 3 µg mL−1 of NAT. We observed that the level of growth inhibition of A. fumigatus
was increased 5 to 26%, depending on the types of strains (Figure 5). However, the level
of growth inhibition by KA + NAT was not comparable to that exerted by KA + AMB
coapplication, where the MAPK mutants exhibited 90.0 to 99.9% fungal death with 0.4 mM
KA + 2 µg mL−1 AMB (previously determined by Kim et al. [55]), thus reflecting the higher
antifungal potency of AMB compared to NAT.

Figure 5. (a) The level of fungal growth without or with the treatment of natamycin (NAT) (1, 2, 3 µg mL−1) and/or kojic acid
(KA) (5 mM) tested in A. fumigatus (AF293 (wild type), MAPK mutants (sakA∆, mpkC∆)) and P. expansum (W1 (wild type),
FR2 (FLU-resistant mutant)) (triplicate) (SD < 2%); (b) diagram: enhanced NAT activity by combined application of KA.

4. Summary and Conclusions

In this study, we investigated parameters that affect the antifungal efficacy of NAT in
PDA (defined medium) and commercial food matrices (10 fruit juices). We identified the
redox-active characteristic of NAT, which overcame the FLU tolerance of fungal mutants
lacking key genes in the oxidative stress signaling system. In PDA, NAT exerted higher
antifungal activity at pH 5.6 than at pH 3.5 against A. fumigatus, while that determined
in foodborne fungi exhibited reversed trends. Protonation of nitrogen in NAT (NH4

+),
differential cellular uptake, diffusion efficacy of molecules, up- or downregulation of genes
encoding membrane transporters, etc., could affect NAT efficacy at different pHs. In the
commercial food matrices, the ingredients from individual juices had a greater impact
on NAT efficacy compared to pH values. Despite the moderate enhancement, antifungal
synergism between NAT and KA during chemosensitization has been confirmed, which
could serve as an effective tool or strategy for improved food formulation. Altogether, our
results provide information for the precision NAT application practices. Comprehensive
identification of parameters that affect NAT efficacy in food preservation, elucidation of
the mechanism of action, and improved food formulation will promote sustainable food
and crop production, thus warranting food safety and public health.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods10092073/s1, Figure S1: Susceptibility of A. fumigatus AF293 (wild type) and MAPK mu-
tants (sakA∆, mpkC∆) to natamycin (NAT) (2, 4, 8, 16 µg mL−1) tested in the commercial, organic fruit
juices (triplicate) (SD < 2%). Lower panel: Line graph showing numerical values of % radial growth
at each test condition, Figure S2: Susceptibility of foodborne fungal contaminants (Pe, P. expansum;
Nf, N. fischeri) to natamycin (NAT) (2, 4, 8, 16 µg mL−1) tested in the commercial, organic fruit juices
(triplicate) (SD < 2%). Lower panel: Line graph showing numerical values of % radial growth at
each test condition, Figure S3: Susceptibility of foodborne fungal contaminants (A. flavus NRRL 3357,
NRRL 4212) to natamycin (NAT) (2, 4, 8, 16 µg mL−1) tested in the commercial, organic fruit juices
(triplicate) (SD < 2%). Lower panel: Line graph showing numerical values of % radial growth at each
test condition, Figure S4: Susceptibility of foodborne fungal contaminants (A. parasiticus NRRL 2999,
NRRL 5862) to natamycin (NAT) (2, 4, 8, 16 µg mL−1) tested in the commercial, organic fruit juices
(triplicate) (SD < 2%). Lower panel: Line graph showing numerical values of % radial growth at each
test condition, Table S1: Utility of natamycin (NAT) in food and agricultural industries, Table S2:
Examples of differential antifungal efficacy of drugs/preservatives affected by different pHs.
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