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Abstract

Seasonal and human physiological changes are important factors in the development of

many diseases. But, the study of genuine seasonal impact on these diseases is difficult to

measure due to many other environment and lifestyle factors which directly affect these dis-

eases. However, several clinical studies have been conducted in different parts of the world,

and it has clearly indicated that certain groups of population are highly subjected to seasonal

changes, and their maladaptation can possibly lead to several disorders/diseases. Thus, it

is crucial to study the significant seasonal sensitive diseases spread across the human pop-

ulation. To narrow down these disorders/diseases, the study hypothesized that high altitude

(HA) associated diseases and disorders are of the strong variants of seasonal physiologic

changes. It is because, HA is the only geographical condition for which humans can develop

very efficient physiological adaptation mechanism called acclimatization. To study this

hypothesis, PubMed was used to collect the HA associated symptoms and disorders. Dis-

ease Ontology based semantic similarity network (DSN) and disease-drug networks were

constructed to narrow down the benchmark diseases and disorders of HA. The DSN which

was further subjected to different community structure analysis uncovered the highly associ-

ated or possible comorbid diseases of HA. The predicted 12 lifestyle diseases were

assumed to be “seasonal (sensitive) comorbid lifestyle diseases (SCLD)”. A time series

analyses on Google Search data of the world from 2004–2016 was conducted to investigate

whether the 12 lifestyle diseases have seasonal patterns. Because, the trends were sensi-

tive to the term used as benchmark; the temporal relationships among the 12 disease

search volumes and their temporal sequences similarity by dynamic time warping analyses

was used to predict the comorbid diseases. Among the 12 lifestyle diseases, the study pro-

vides an indirect evidence in the existence of severe seasonal comorbidity among hyperten-

sion, obesity, asthma and fibrosis diseases, which is widespread in the world population.

Thus, the present study has successfully addressed this issue by predicting the SCLD, and

indirectly verified them among the world population using Google Search Trend. Further-

more, based on the SCLD seasonal trend, the study also classified them as severe, moder-

ate, and mild. Interestingly, seasonal trends of the severe seasonal comorbid diseases

displayed an inverse pattern between USA (Northern hemisphere) and New Zealand
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(Southern hemisphere). Further, knowledge in the so called “seasonal sensitive popula-

tions” physiological response to seasonal triggers such as winter, summer, spring, and

autumn become crucial to modulate disease incidence, disease course, or clinical

prevention.

Introduction

Seasonal changes in the environment have huge impact in all species and their adaptation is

critical for their survival [1,2]. Indeed, several clinical studies have been conducted in different

parts of the world, clearly indicating that certain groups of population are highly subjected to

seasonal triggering, and their maladaptation can possibly lead them to several seasonal sensi-

tive disorders/diseases [3–7]. Even though seasonal variations affect the entire human physio-

logical systems, the cardio-vascular systems, cardio-respiratory systems, and circadian

rhythms are most sensitive to these seasonal changes. In recent days, there is an impressive pat-

tern of seasonal rhythm in hospitalizations of patients with cardio-vascular and cardio-respira-

tory diseases or disorders, with a notable increase in winter [8–11].

However, the study of genuine seasonal impact on these diseases is highly complex to deci-

pher due to two main reasons: (i) apart from seasonal changes, a number of other environment

and lifestyle factors which directly affect these diseases onset and severity needs to be con-

trolled, such as air pollution, geographic location, ethnicity, physical exercise, social interac-

tions and so on [7,12–19]. For example, the seasonal pattern in the incidence of asthma attacks

onset and severity was highly influenced by several environment and lifestyle factors [20–23];

(ii) this severity was further enhanced and was proportional to the number of co-occurrence of

diseases (comorbid diseases). For example, asthma is highly comorbid with many other dis-

eases such as cardio cerebrovascular diseases, obesity, hypertension, diabetes, psychiatric con-

ditions, neurological disorders, gut and urinary disorders, cancer, respiratory problems, and

so on [24]. Among these, identifying the most significant seasonally comorbid diseases of

asthma is crucial. Lack of reports on these seasonal linkages restricts the implementation of

human seasonal adaptation in clinical environment.

High altitude (HA) elevations are ranging from 3,000 to 5,000 meters and the partial oxygen

pressure is only about 70% of the value at sea-level [25]. Firstly, in HA, humans undergo signif-

icant physiological changes, mainly in cardio respiratory and cerebral functions, leading to the

temporary physiological human adaptation called acclimatization [26]. HA disorders encom-

pass the pulmonary and cerebral syndromes that occur in non-acclimatized individuals shortly

after rapid ascent to HA [27]. The maladapted human population develop several HA disor-

ders like acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), and high

altitude cerebral edema (HACE). Many seasonal symptoms and disorders act as the predispos-

ing factors of HA disorders. For example, patients with asthma, obesity, and hypertension

were more prone to develop AMS [28–30]. The present study tried to address both the limiting

factors using the high altitude linked diseases and disorders.

The internet is now an important source of health information for millions of people world-

wide, which makes google search queries a valuable source of information for the collection

health trends [31]. In recent years, “Google Trends” (GT) is gaining momentum to assess sea-

sonal changes in diseases because it offers search information about a disease for long period

of Jan 2004 to the present week. For example, the seasonality in Cold Flu, Influenza, Urinary

Tract Infection, Ankle swelling, and Vitamin D were accurately estimated using Google
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Trends [32–35]. Furthermore, GT provides the total volumes for requested diseases terms,

normalized in a way that countries of different size can be compared [31]. Importantly, GT

was used to study the precise interaction of search terms effect using combined diseases terms

(https://support.google.com/trends/answer/4359550?hl=en-GB&ref_topic=4365530). The

present study utilized GT to estimate the seasonality in the diseases as well as to measure the

comorbid associations among them.

The current study had the following research objectives: (1) to decipher the genuine sea-

sonal diseases using the HA related diseases and disorders from the literature mining; (ii) to

conduct disease ontology based semantic similarity network and community detection

approach to find the most likely seasonal comorbid diseases; (iii) to evaluate seasonal comor-

bid diseases, the GT search terms volume of the respective diseases were subjected to rigorous

time series analysis. The main outcome of the analysis includes: (a) reveals that a considerable

number of human populations is severely subjected to annual seasonal variations; (b) high-

lights of observed high seasonal rhythm among hypertension, obesity, asthma, and fibrosis dis-

eases are widely spread among the human population. To our knowledge, this is the first study

of its kind to examine the possibility of existence of seasonal association in comorbid life style

diseases in human population.

Materials and methods

Data mining

The aim of this study is to contribute a novel association generation among high altitude

related diseases/disorders, symptoms, drugs, and medicines. Fig 1 illustrates various steps

involved in the data collection and analysis. The first step in the study was to retrieve all rele-

vant papers related to the topic of interest, i.e., high altitude. Abstracts that contain the most

important and concise diseases/disorders and symptoms linked to high altitude were then cho-

sen to be examined. Although the full-text analysis is more informative, the abstract based dis-

ease terms analysis has added advantages. Mainly, the analysis is more informative and

concise. Also, it is faster to compute with reduced noise level. Keeping in view, a PubMed med-

ical subject headings (MeSH) terms query was used to collect all possible high-altitude related

abstracts. PubMed was queried for four types of key terms related to high altitude including:

“High altitude disease”, “High altitude disorder”, “High altitude medicine” and “High altitude

drug”. PubMed abstracts related to human studies were extracted by using the search filter

option “Human”. The total number of Pubmed Identification numbers (PMIDs) retrieved

from the four key terms was 6159 as on Jan 2017. The redundant PMIDs were reduced result-

ing in 3513 unique PMIDs. The abstracts of these unique PMIDs were fetched using “PubMed-

Wordcloud” of R console [36]. Overall, 2976 abstracts were ready for knowledge discovery.

Entity selection and extraction

The next step is to extract the entities such as diseases/disorders, symptoms, drugs and medi-

cines associated with high altitude. The association of the entities with high altitude means any

loose relation that covers biological, biomedical or health related interest. To study the associa-

tion, an online application programming interface (API) called BioMedical Concept Annota-

tion System (BeCAS) was adopted [37]. This API is widely used to identify biomedical

concepts in text [38–40]. BeCAS employs a standard pipeline that consists of sentence bound-

ary detection, tokenization, lemmatization, part of speech tagging, and chunking and abbrevia-

tion disambiguation. 2976 abstracts were supplied as input to BeCAS. Among the 11 default

entities of BeCAS, the term fetching for diseases and disorders entities was carried out. GDep,

a dependency parser with the option of domain adaptation using unlabeled data of the target
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domain, was used to achieve most of the pre-procession steps in BeCAS. For entity recogni-

tion, BeCAS uses UMLS extended with a series of more specialized dictionaries such as the

Joint chemical dictionary (Jochem).

Benchmark high altitude diseases/disorders

First, the high altitude related chemicals and their target diseases/disorders were used to gener-

ate a bipartite network. The known associations between chemicals (or equivalently, drugs)

and disorders or its descendants were collected from Comparative Toxicogenomics Database

(CTD) in Feb 2017 [41]. In this study, the researchers mainly extracted curated associations of

chemical-diseases from CTD to ensure the strong association between chemicals (or equiva-

lently, drugs) and disorders or its descendants. The size of the nodes is based on the frequency

of the diseases that were occurring in the resulting dataset composed of the 2976 abstracts. The

Gephi open source graph visualization software tool is used to develop a graphic representation

Fig 1. The workflow pipeline followed to build the disease similarity network (DSN) of high altitude related

diseases. Step 1: PubMed Central was queried for high altitude related abstracts. Step 2: All high altitude abstracts

were collected and redundancies were removed. Step 3: The Biomedical concept annotation system (BeCAS) was used

to extract the high altitude related diseases/disorders and chemicals from the collected abstracts. Step 4: The relations

among diseases and chemicals from Comparative Toxicogenomics Database (CTD) were used to construct the

Disorder-Chemical Network. Step 5: Disease ontology based semantic similarity-based score was used to construct the

Disease similarity network (DSN).

https://doi.org/10.1371/journal.pone.0207359.g001
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of the extracted interaction network [42]. Analysis of the generated network was carried out by

Cytoscape network analyser [43]. Diseases that missed their links with drugs/chemicals were

left out from their disease module. Drug-disease network property and node size (frequency in

literature) were used to narrow down the significant high altitude diseases/disorders and chemi-

cals/drugs.

Clustering disease-disease networks

The disease-disease association among the benchmark high altitude diseases/disorders was

depicted in the form of network. The association was established using the DOSE package for

R based on computing semantic similarities among Disease Ontology (DO) terms associated

with every disease pair [44]. The DO score in correlation matrix ranged between 0–1. Various

types of cut-off techniques such as clustering based, score based, percentage based, etc., were

employed. In the execution, the threshold value as topmost three edge score (even after trans-

position of matrix) arising from a single node was used. The clustered disease modules were

constructed using fast greedy, edge betweenness, spin glass and walk trap based clustering

methods [45–48]. These different disease network modules were superimposed with each

other to identify the overlapped cluster disease modules. The DO score-based disease mapping

was carried out to detect disease outliers.

Google trend data collection

Fig 2 shows the various steps in the analysis of GT. GT is used to study the temporal trends in

web search using monthly and weekly Relative Search Volume (RSV). In the query, “all catego-

ries” and “all types of web search” were used, which are the default setting of GT. We searched

“worldwide”, using the default settings, for the time period of Jan 2004 to Dec 2016. The ratio-

nale behind the selection of default option was to include wide variety of web resources such as

image, you tube, news and Google shopping in the GT web search. The “worldwide” search

option allowed us to collect RSV from almost 250 political regions, including sovereign as well

as dominion states with most of them (162 countries) in the northern hemisphere (NH), cov-

ering almost 90% of our human population. RSV is calculated based on how often search

terms entered in Google relative to the total search volume in a specific region. These RSV

were also collected with and without a reference disease such as obesity in our case. The ratio-

nale behind the selection of obesity as the reference disease will be explained in the discussion

section under the sub heading “Widespread seasonal comorbid rhythm in the severe SCLD”.

The search volume of the term was normalized by dividing an unrelated common web search

query. This normalization process of GT was compensated for population sizes, increased sen-

sitivity in detection, and allowed the direct comparison of the search volume from countries/

cities and different diseases. The RSV scaled between 0 and 100, with 100 being the highest

search proportion per week. GT uses internet protocol (IP) addresses from server logs to assign

the origin of web search queries. The monthly and weekly RSV for 12 diseases was downloaded

in �.csv format with and without reference diseases for the period of 2004 to 2016 across the

world. It should be noted that the relative medical terminologies, similar medical conditions

and related search strings excluded in the GT search. In our opinion, such a comprehensive

analysis is beyond the scope of the current study. Our GT search terms were limited to English

speaking population, because this population is widely spread in world. Furthermore, two

English speaking countries, United States of America (USA) and New Zealand (NZL) were

geographically selected above 23.5˚N and below 23.5˚S to represent Northern and Southern

hemispheres (SH) seasonal changes respectively. In both the countries, RSV of the four severe

Seasonal sensitive comorbid life style diseases
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seasonal comorbid diseases namely Asthma, Hypertension, Obesity and Fibrosis were col-

lected with obesity as the reference for the period from January 2004 to December 2016.

Time series analysis

Data processing and statistical analysis were carried out using Trend package of R [49]. Time

series related figures were produced using the TSA package [50]. The seasonal data component

decomposition of each search term time series was carried out by local regression (LOESS)

[51]. The Mann-Kendall and seasonal Mann-Kendall trend tests were used to detect overall

trends significantly larger than the variance in the data for each search term (α = 0.05). To

determine the significant seasonal components, an exponential smoothing state space model

with Box-Cox transformation, trend, and seasonal components (TBATS) were fitted to the

data using forecast package [52]. The shape based distance matrix analysis was carried out to

check out the distance based on coefficient-normalized cross-correlation which reflects a time

series clustering with dynamic time warping optimization [53]. This algorithm first calculates

the Z-score to normalize the matrix, and forms a cross-series correlation [54]. After getting

final correlation matrix, hierarchical clustering (using pvclust) was used to obtain possible

groups [55]. Further, autocorrelation was observed in the disease group showing strong sea-

sonality. Autocorrelation gives an idea about the cyclic pattern present in the data. Fast Fourier

Transform (FFT) based periodograms were produced to identify key seasonal cycles in the

data from 2004 and 2016 [50]. The breaking down moving average (BMA) with window size

of 6 months for the periods October to March and April to September were calculated.

Results

High altitude disease-drug network

We developed a systems approach to infer benchmark diseases/disorders of high altitude to

investigate their seasonality. As mentioned earlier, we have collected comprehensive list of

high altitude related disorders/disease and drugs from PubMed. After excluding duplicate

medical terms, they were annotated using the most commonly used Medical Subject Headings

(MeSH). From 2976 high altitude related abstracts, 1710 diseases and 865 drugs were extracted

using the text analytics method BeCAS. In search of closely connected high altitude diseases,

the clinically reported drug-disease pairs associations were obtained from CTD [41]. After

excluding duplicate drug-disease pairs and unlinked pairs, a high altitude related drug-disease

bipartite network with six drugs/chemicals and 73 diseases connected by 95 edges was built

(Fig 3A). The node size of each disease term in the network corresponds to its frequency of

occurrence in the high altitude related abstracts. The network showed large node size for

edema, hypertension, asthma, fatigue, apnea, and obesity diseases/disorders. The outlier plot

further showed these six diseases have the high term frequency than the rest of the 67 diseases.

Interestingly, edema, hypertension, asthma, fatigue, apnea, and obesity have the high term fre-

quencies (>90 percentile) and node sizes and were termed as key bottleneck diseases of high

altitude (Fig 3B).

Fig 2. The pipeline for prediction of comorbid seasonal diseases from DSN. The pipeline starts from the DSN corresponds to step 5 in Fig

1. Step1: the DSN was clustered using four community clustering algorithms of igraph program. Step 2: These community clusters were

overlapped to predict the 12 diseases (core-DSN). Step 3: The monthly Google RSV were collected for the 12 diseases with obesity as the

benchmark disease. Step 4: The low RSV diseases were removed, and the remaining diseases were subjected to seasonal Mann-Kendall and

Dynamic time wrapping methods. Step 5: Based on their seasonal trend p-values and shape distance matrix clustering the diseases were

divided into two groups severe (high) and moderate (low). Step 6: Their seasonal trends were further verified using seasonal decomposition

analysis by TABTS and LOESS. The periodicity was analyzed using Autocorrelation and Fourier series analysis.

https://doi.org/10.1371/journal.pone.0207359.g002
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High altitude associated diseases community structure analysis

To generate a high altitude disease network in which diseases that have similar signs and

symptoms were clustered together. Firstly, we generated the disease similarity network (DSN)

based on semantic similarities scores among DO terms associated with every disease pair. We

computed the pairwise disease-disease semantic similarity matrix from the 73 high altitude

related diseases. Among 73 diseases, only 41 diseases (including the six key bottleneck dis-

eases) have disease pair similarity scores with other diseases. The weighted average disease

similarity scores were used to generate the DSN. The DSN consisted of 41 nodes and 820 edges

(after removing duplicates and self-loop edges) as shown in Fig 4. The DSN network was fur-

ther subjected to most widely used community detection algorithms, namely- fast greedy

(FG), edge betweenness (EB), spin glass (SG) and walk trap (WT) available in the “igraph”

package [56]. Each algorithm clustered the DSN into four major disease communities or sub

networks (Fig 5). The sub networks identified from the four algorithms were overlapped to

uncover the highly associated or possible comorbid diseases. The bottleneck disease associated

community clusters were chosen for detailed analysis. Interestingly, in these community clus-

ters, hypertension formed intra-community interactions with hyperglycemia, hyperhomocys-

teinemia, hypercholesterolemia, and acidosis, whereas obesity formed intra-community

interactions with fibrosis and esophagitis. Overall, these six bottleneck diseases and their six

community disease pairs formed a core DSN (Fig 6). The core DSN (12 diseases) possessed

almost 60% of the similarity score of DSN (41 diseases).

Monthly google seasonal trend analysis

Using obesity as the benchmark keyword, the month wise varying RSV for the 12 diseases

(including obesity) were analyzed for seasonal trend in the 2004–2016 period. All the six bot-

tleneck diseases showed high RSV. Except fibrosis, the remaining five community diseases

with low RSV were excluded from the trend analysis (Fig 7). The seasonal Mann-Kendall and

Mann-Kendall showed positive seasonal trend for asthma, hypertension, obesity, fibrosis,

Fig 3. Methods for disease-drug network-based selection for the most relevant high-altitude diseases. (a) Link prediction model predict the relationship

between high altitude related drugs (yellow) and diseases (orange) based on the clinically reported drug-disease pairs association were obtained from Comparative

Toxicogenomics Database (CTD). The node size of each disease term in the network corresponds to their frequency of occurrence in the high altitude related

abstracts. (b) The outlier plot showed diseases have the high term frequency (n>10) called as bottleneck diseases.

https://doi.org/10.1371/journal.pone.0207359.g003
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apnea, and fatigue whereas edema showed no seasonal trend (Table 1). The seasonal Mann-

Kendall and Mann-Kendall of the month wise RSV of the seven diseases without benchmark

keyword also showed similar trends (Table 2). Based on their trend P-values, the seven diseases

were clustered into two groups (1 and 2) (Fig 8A, Table 1). The strong seasonal trend in the

group 1 diseases was exhibited by TBATS and LOESS analysis (Figs 9 and 10). The auto corre-

lation analysis also revealed the presence of six months periodicity in the group 1 diseases (Fig

Fig 4. Disease ontology (DO) based semantic similarity disease network (DSN) of high altitude. The disease (red colour square shape) pairs showing

the>90 percentile (outliers) literature frequency were used in the construction. The average degree (number of links with other diseases) of all diseases in

the disease network is 0.1418 (marked as gray lines). The edge thickness represents the SS score between two diseases. Note that the bottleneck diseases of

high altitude in the network are in square shapes rather than circle otherwise.

https://doi.org/10.1371/journal.pone.0207359.g004
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11, Table 1). In this direction, we further calculated the optimal shape alignments among the

seven diseases RSV using dynamic time warping method. Importantly, the clustering of the

Fig 5. The DSN subjected to the four community detection algorithms based on the (a) edge betweenness (EB), (b) fast greedy (FG), (c) spin glass (SG) and (d)

walk trap (WT) available in the “igraph” package. Here, we clearly see that among the six bottleneck diseases (square shape edges) only hypertension community

(green colour) and obesity community (magenta colour) are tightly maintained by the four community detection algorithms (encircled). Please note that in all the

community detection algorithms, the hypertension community associated diseases (acidosis, hypocholesterolemia, hyperhomocysteinemia, and hyperglycemia) formed

a major community cluster. Similarly, the obesity community diseases (esophagitis and fibrosis) formed a short community cluster. Whereas, other bottleneck diseases

not able to maintain a separate community cluster. Moreover, the overall inter community cluster interactions (red colour edges) are more than intra community cluster

interactions (gray colour edges). Visualization of the network was done using cytoscape (Shannon et al., 2003).

https://doi.org/10.1371/journal.pone.0207359.g005

Fig 6. The left-hand side is the DSN of high altitude marked with six bottleneck diseases (square, red colour) and

six community diseases (square, green colour). The overall semantic similarity (SS) average score of the DSN is

0.14188. The right-hand side is core DSN network of 12 diseases (six bottleneck and six community diseases). The

overall semantic similarity score of the core DSN is 0.19624 and named as “highly comorbid diseases of high altitude”.

https://doi.org/10.1371/journal.pone.0207359.g006

Seasonal sensitive comorbid life style diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0207359 December 12, 2018 10 / 25

https://doi.org/10.1371/journal.pone.0207359.g005
https://doi.org/10.1371/journal.pone.0207359.g006
https://doi.org/10.1371/journal.pone.0207359


shape extraction matrix again divided the seven diseases into two groups (1 and 2) (Fig 8B).

All these results strongly suggested that group 1 diseases maintain widely spread seasonal

comorbid trend.

Using obesity as the benchmark keyword, the month wise varying RSV from USA and NZL

for group 1 diseases (including obesity) were analyzed for seasonal trends in the 2004–2016

period. The seasonal Mann-Kendall and auto correlation analysis of month wise RSV from

both the countries revealed positive seasonal trends and 6 months periodicity respectively in

most of the group 1 diseases (Table 3). The BMA of the group 1 diseases from the same periods

were combined for USA and NZL separately. The BMA scores revealed that at any point of

time USA and NZL have completely opposite search trends for group 1 diseases (Fig 12).

Weekly google seasonal trend analysis

The RSV seasonal trends of the query diseases may vary depending upon the selection

time interval. To avoid this, weekly RSV of the group 1 diseases were collected for the

2004–2016 period without any benchmark diseases. Furthermore, the group 1 diseases

were subjected to Mann-Kendall and seasonal Mann-Kendall analysis. Both the analysis

Fig 7. The monthly widespread google trend relative search volume (RSV) collected for the “highly comorbid

diseases of high altitude (core DSN)” with obesity (dark blue colour) as the benchmark disease. The average RSV

of the core-DSN was diseases more than 20 for the entire period were boxed. These seven diseases were named as

“severe seasonal comorbid lifestyle diseases (SCLD)”.

https://doi.org/10.1371/journal.pone.0207359.g007

Table 1. Widespread monthly RSV of GT time series seasonal analysis of the core DSN diseases (Jan 2004 to Dec 2016) with obesity as the reference term. (Com-

plete raw data is given in S1 Table).

Seasonal Comorbid Lifestyle

diseases (SCLD) of core DSN

Average

RSV

Mann-Kendall Trend Test Seasonal Mann-Kendall

Trend Test

Seasonal

Decomposition

Autocorrelation Periodicity

p-value tau z S varS p-value z S varS TBATS LOESS

Asthma 49.55 <0.0001 -0.44 -8.02 -5274 431995 <0.0001 -8.32 -465 3108 Yes Yes Yes 6 months Severe

comorbid

diseases
Obesity 43.01 <0.0001 -0.7 -12.81 -8440 433651 <0.0001 -16.16 -917 3215 Yes Yes Yes 6 months

Hypertension 35 <0.0001 -0.63 -11.4 -7500 432005 <0.0001 -13.71 -767 3122 Yes Yes Yes 6 months

Fibrosis 27.22 <0.0001 -0.54 -9.71 -6383 431473 <0.0001 -11.98 -669 3108 Yes Yes Yes 6 months

Fatigue 43.61 0.0018 0.17 3.11 2050 431349 <0.0001 4.05 229 3168 Yes Yes Yes 6 months Moderate

comorbid

diseases
Edema 24.29 0.1896 -0.07 -1.31 -855 423864 0.2632 -1.19 -62 2972 Yes Yes Yes 6 months

Apnea 22.71 0.0036 -0.17 -2.91 -1888 420193 0.0265 -2.22 -123 3024 Yes Yes Yes 6 months

Acidosis 7.07 - - - - - - - - - - - - - Mild

comorbid

diseases
Hyperglycemia 3.35 - - - - - - - - - - - - -

Esophagitis 2.56 - - - - - - - - - - - - -

Hypercholesterolemia 1.1 - - - - - - - - - - - - -

Hyperhomocysteinemia 0 - - - - - - - - - - - - -

https://doi.org/10.1371/journal.pone.0207359.t001
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showed strong seasonal trends in the group 1 diseases, also supported by LOESS seasonal

decomposition analysis (Table 4). Further, seasonal decomposition analysis by TBATS

revealed high seasonal trend in obesity even in the noisy weekly RSV of the four diseases.

The optimal shape alignments were also achieved among the group 1 diseases weekly RSV

(S4 Table). All these results again strongly suggested that group 1 diseases maintain wide-

spread seasonal comorbid trend.

Discussion

A fundamental question in biology and medicine is to what degree the seasonality is related to

the manifestation of human disorders, a hypothesis that we aimed to test in the present work.

We find: (i) HA diseases and disorders with similar signs and symptoms reduced into the core

DSN (12 diseases); (ii) RSV time series analysis revealed that most of the core DSN diseases

Table 2. Widespread monthly RSV of GT time series seasonal analysis of the core DSN diseases (Jan 2004 to Dec

2016) without the reference term. (Complete raw data is given in S2 Table).

Seasonal Comorbid Lifestyle

diseases (SCLD) of core

DSN

Average

RSV

Mann-Kendall Trend Test Seasonal Mann-Kendall

Trend Test

p-value tau z S varS p-value z S varS

Asthma 59.09 <0.0001 -0.48 -8.68 -5658 424575 <0.0001 -8.98 -505 3149

Obesity 41.71 <0.0001 -0.71 -12.95 -8446 425435 <0.0001 -15.97 -906 3212

Hypertension 57.56 <0.0001 -0.64 -11.69 -7620 424882 <0.0001 -13.43 -758 3178

Fibrosis 53.76 <0.0001 -0.53 -9.74 -6348 424934 <0.0001 -11.52 -650 3173

Fatigue 72.01 0.0010 0.18 3.29 2144 424894 <0.0001 4.13 234 3183

Edema 76.26 0.2155 -0.07 -1.24 -808 424478 0.3453 -0.94 -54 3154

Apnea 67.82 0.0121 -0.14 -2.51 -1633 423451 0.0881 -1.71 -97 3168

Acidosis 75.31 <0.0001 -0.22 -3.96 -2580 424853 <0.0001 -5.6 -315 3154

Hyperglycemia 73.01 0.0124 0.14 2.5 1632 425133 <0.0001 3.83 217 3175

Esophagitis 62.1 0.0184 -0.13 -2.36 -1537 424163 0.0231 -2.27 -129 3176

Hypercholesterolemia 12.42 <0.0001 -0.21 -3.9 -2531 421592 0.0006 -3.41 -192 3137

Hyperhomocysteinemia 35.2 <0.0001 -0.46 -8.49 -5535 425072 <0.0001 -8.54 -484 3196

https://doi.org/10.1371/journal.pone.0207359.t002

Fig 8. Widespread seasonal sensitive comorbid diseases. (a) Seasonal Mann-Kendall p-values of seasonal sensitive

life style diseases represented as heat map for the entire period (Jan 2004 to Dec 2016). The hierarchical clustering

clearly divided them into diseases with (red box) and without (blue box) season trend. (b) Shape based distance matrix

scores among the major highly comorbid diseases of high altitude represented as heat map for the entire period (Jan

2004 to Dec 2016). The hierarchical clustering clearly divided them into diseases with (red box) and without (blue box)

seasonal pattern matching. Please note that the four diseases (obesity, asthma, hypertension, and fibrosis) in the red

boxes have similar seasonal trends and seasonal patterns named as “Group1” diseases (S1 Table).

https://doi.org/10.1371/journal.pone.0207359.g008
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(except edema) have significant seasonal trends; (iii) Among the core DSN diseases, the public

interest in asthma, hypertension, obesity, and fibrosis diseases exhibit strong global seasonal

comorbid trend in human population. The merits of each findings, limitations, and implica-

tions are discussed below.

Seasonal (sensitive) comorbid lifestyle diseases (SCLD) network

The DSN is derived from many clinical and systemic studies of major HA disorders and dis-

eases. The core DSN renders a dense network of highly similar signs and symptoms reveal

their strong comorbid association. Several clinical evidences support the strong comorbid

Fig 9. Seasonal and trend decomposition using TBATS for the four group 1 diseases for the monthly collected

RSV from Jan 2004–Dec 2016 with obesity as the benchmark disease. Raw observed data were displayed in the top

panel as averaged values for all transect points with monthly sampling frequency, followed by level, trend, and seasonal

components 1,2, and 3. Scale differs for each of the components, and so relative magnitude was indicated by the gray

bars on the left side of the panels.

https://doi.org/10.1371/journal.pone.0207359.g009

Fig 10. Seasonal and trend decomposition using loess (STL) for the four group 1 diseases for the monthly

collected RSV from Jan 2004 –Dec 2016 with obesity as the benchmark disease. Raw data are displayed in the top

panel as averaged values for all transect points with monthly sampling frequency, followed by seasonal, trend, and

residual components. Scale differs for each of the components, and so relative magnitude was indicated by the gray

bars on the right side of the panels.

https://doi.org/10.1371/journal.pone.0207359.g010
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association of the core DSN (Fig 13). The core DSN is exploited further to study their shared

underlying disease etiologies. There are several clinical evidences that support that the major

common etiology of core DSN is seasons along with lifestyle factors such as biological clock,

inadequate exercise, and bad diet, which further contribute to their disease progression and

activation (Table 5). Based on these findings, we named the “core DSN” as “seasonal (sensitive)

comorbid lifestyle diseases (SCLD) network”.

One of the key objectives in the identification of comorbid diseases is to find a common

pathological process of significant clinical importance [57]. Interestingly, the major common

pathological process of SCLD flares turned out to be the onset of hypoxic state during their

patho physiological process. For example, asthma [58,59], fibrosis [60], apnea [61–63], edema

[64–66] and obesity [67,68] create endogenous hypoxic state in lungs, which leads to the dis-

ruption of energy supply functions and plastic processes. This lung hypoxic environment

increases pulmonary hypertension [69–71] in turn leads to fatigue [72–74], respiratory acido-

sis [75] and lethal esophagitis [76] in certain maladapted population. Unlikely, to our knowl-

edge, none of the clinical studies addressed the onset of hypoxic state in hypercholesterolemia

Fig 11. Autocorrelation and periodicity of four group 1 diseases for the monthly collected RSV from Jan 2004–

Dec 2016 with obesity as the benchmark disease. Observed data is showing a cyclic pattern in autocorrelation above

significant line (dotted) and six months periodicity in all and three months in asthma as well as hypertension

(periodogram).

https://doi.org/10.1371/journal.pone.0207359.g011

Table 3. The monthly RSV of GT time series seasonal analysis of USA (NH) and NZL (SH) for Group 1 diseases

(Jan 2004 to Dec 2016) with obesity as the reference term. (Complete raw data is given in S3 Table).

Countries Group 1 Diseases Seasonal Mann Kendall test Auto-

correlation

Periodicity

(Months)z p-value S varS

USA (NH) Asthma -1.73 0.083 -98 3135.33 No 6,3

Obesity -14.94 <0.01 -847 3206.33 Yes 6,3

Hypertension -11.09 <0.01 -621 3127.67 Yes 6,3

Fibrosis -9.38 <0.01 -522 3106.67 Yes 6,3

NZL (SH) Asthma -4.60 <0.01 -259 3143.67 No 6,3

Obesity -12.27 <0.01 -690 3170.67 Yes 6,3

Hypertension -6.68 <0.01 -373 3101.67 No 6,3

Fibrosis -3.47 <0.01 -192 3044.67 No 3

https://doi.org/10.1371/journal.pone.0207359.t003
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[77–79], hyperhomocysteinemia [80–83], and hyperglycemia [84–86] patients disease progres-

sion. Surprisingly, all the three disorders impair endothelium-dependent vasodilatation by

reducing the key hypoxia responsive molecule nitric oxide (NO) production [87]. Overall, the

onset of hypoxic state during the disease progression appears to be shared by SCLD. This pre-

dicted common pathological process is of clinical importance in the sense that inhaled NO is

proposed as a long-term therapy or used as a rescue therapy to some of the SCLD patients [88–

91]. Furthermore, individual genetic makeup is one of the major factors that determines an

individual’s susceptibility to seasonal changes by invoking complex patho-physiological path-

ways [92,93].

Classification of SCLD with benchmark

Several studies have successfully correlated the Google RSV with disease prevalence and their

seasonal trend with diseases progression [94,95]. For the first time, a benchmark disease such

as obesity based RSV is used to classify the SCLD into severe, moderate, and mild categories.

First, based on high RSV, the present study classifies hypertension, obesity, asthma, and fibro-

sis diseases as the most severe widespread seasonally associated SCLD. In other words, their

high RSV indicates that a majority of the human population is more severely subject to

Fig 12. Season wise BMA of group 1 diseases for USA (Red in color) and NZL (Blue in color). The X-axis time

period (2004–2016) of each year divided into the window size of 6 months and labelled as April (APR) to September

(SEP) and October (OCT) to March (MAR). The Y-axis marked with BMA of Group 1 diseases for the 6 months

window size. Please note that USA and NZL seasonal search patterns were juxtaposed (vertical gray bars).

https://doi.org/10.1371/journal.pone.0207359.g012

Table 4. Widespread weekly time series seasonal analysis of life style diseases (Jan 2004 to Dec 2016). (Complete raw data is given in S4 Table).

Severe Comorbid Diseases Average RSV Mann-Kendall Trend Test Seasonal Mann-Kendall Trend Test Seasonal

Decomposition

p-value tau z S varS p-value z S varS TBATS LOESS

Asthma 84.72 <0.0001 0.13 4.89 28621 34351640 <0.0001 10.79 1262 13665 No Yes

Obesity 74.86 0.0002 0.09 3.61 21225 34382780 <0.0001 12.2 1426 13688 Yes Yes

Hypertension 85.21 <0.0001 0.16 6.15 36025 34355190 <0.0001 14.13 1652 13655 No Yes

Fibrosis 68.48 <0.0001 -0.11 -4.24 -24854 34381480 0.004 -2.88 -339 13808 No Yes

https://doi.org/10.1371/journal.pone.0207359.t004
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seasonal changes in these diseases. Their RSV pattern shape alignments further indicates their

strong widespread high bi-seasonal comorbid in the human population. These disease’s high

seasonal severity and comorbidity is becoming a major health issue in most of the countries

around the world [96]. Second, based on the moderate RSV, the present study classifies

edema, apnea, acidosis and fatigue as the moderate SCLD diseases. Several clinical studies indi-

cate the presence of bi and quarterly seasonal variations in them [97–99]. Even though they

have the moderate average RSV widespread, in certain countries, the average RSV of the dis-

ease terms edema (South America, Italy, Spain, Indonesia, and Lithuania), and apnea (Venezu-

ela, Italy, Spain, and Turkey) is more than the severe SCLD. This may be due to the influence

of the language bias in these disease search term RSV. Finally, the present study classifies

hypercholesterolemia, hyperglycemia, hyperhomocysteinemia, and esophagitis as mild SCLD

diseases/disorders with bi and quarterly seasonal variations. The results, also supported by sev-

eral clinical studies, demonstrate the seasonal variation of lipid and glycemic levels in blood

and serum from the hypercholesterolemia and hyperglycemia patients respectively [100–102].

Fig 13. Network view of comorbid association reported in the literature among different diseases of the core DSN. The connection between the different

diseases nodes were labelled with their corresponding PubMed Identification number (PMIDs). The complete reference of the labelled PMIDs is given in the

S5 Table.

https://doi.org/10.1371/journal.pone.0207359.g013
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Although we classify hyperhomocysteinemia as mild SCLD, the evidence of its seasonal varia-

tion of blood homocysteine level remains controversial [103]. In tune, the weekly RSV analysis

of hyperhomocysteinemia shows no seasonal trend. In USA, a mild but consistent seasonal

variation in the diagnosis of esophagitis was observed, which corroborates with the present

study [104]. Interestingly, the bi-annual peaks (six months periodicity) in most of the diseases

occur in the late winters (October through December) and falls (March through April) (Fig 7).

This observation is also of significant clinical importance, especially for the chronic disease

asthma. The annual exacerbations rate of asthma follows these two peaks, one in October

through December, and the other from March through April and is a well reported global phe-

nomenon [105–108]. Several potentially important SCLD disease risk factors such as seasonal

variations in the serum level of insulin, cholesterol, and glucose which also tend to follow the

same trend [109].

Widespread seasonal comorbid rhythm in the severe SCLD

Apart from RSV and high significant seasonal trend, even from the noisy weekly data, we con-

sider obesity as our benchmark disease to predict the comorbidity based on multiple factors.

Worldwide obesity (higher BMI values) has nearly doubled since 1980, and current estimates

indicate that >1.4 billion adults are overweight or obese [110]. Whilst, there is considerable

evidence that obesity is strongly associated with seasonality [111]. In correlation, our study

finds the highly significant widespread seasonal trend in the public interest on obesity for the

period 2004–2016. However, in modern society, especially those who access internet, are

mostly used to living in artificial lighting, heating and air-conditioning systems that consider-

ably reduce the exposure of individuals to seasonal (day and light exposure) and environmen-

tal changes [112]. Probably, studies also claimed that the extensive use of these artificial aids

may develop mismatch between the season and the body clock that may promote obesity

[113,114]. Importantly, being overweight or obese leads to higher prevalence of risk associa-

tion with chronic diseases such as systemic and pulmonary hypertension, chronic kidney dis-

eases, stroke, obstructive sleep apnea, gastroesophageal reflux disease, type 2 diabetes,

osteoarthritis etc. [115]. The risk association of these diseases at any given level of obesity var-

ies with ethnicity. For example, Asians have been shown to have a higher absolute risk of

Table 5. List of clinical studies (PMIDs) reported the seasonal and life style factors impact on etiology of the core

DSN. Please note that this list is not exhaustive and only includes some of the frequently cited reference PMIDs. The

citation numbers of each PMIDs as on June 2018 from PubMed is given in the bracket.

Diseases/Symptoms Seasonal (PMID) Lifestyle (PMID)

Edema 11420189 (44) 5695605 (6)

Hypertension 8301109 (50), 22688260 (27), 7074993 (23),

15331861 (8), 20859042 (6)

28775806 (1)

Asthma 10899242 (22), 26922932 (4) 22555908 (3), 27238168 (1), 29221919

Fatigue 8064638 (1), 26846791 18562170 (15), 11858191 (10), 19812026

(7), 20886027 (3), 17660146 (3)

Apnea 22700779 (6) 24082315 (27), 28833858

Obesity 16154393 (13) 22591544 (20), 26911589 (5)

Fibrosis 18689582 (11) 29045951, 28452727, 29479443

Acidosis 26265754 22935845 (12), 22853725 (5)

Hyperglycemia 28173630 15589017 (14), 18301331 (11)

Hypercholesterolemia 15111372 (44), 3315294 (14), 1482576 (4) 16144549 (11)

Hyperhomocysteinemia 9550566 (7) 11447048 (19), 15739593 (2)

Esophagitis 26059636 (4), 26235409 (2) 19360912 (23), 22554226 (16)

https://doi.org/10.1371/journal.pone.0207359.t005
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diabetes and hypertension and African Americans to have a lower risk of cardiovascular dis-

ease than other groups [116]. Similarly, the prevalence of obesity risk associated diseases varies

according to geographical location of the country. For example, the relative risk of death asso-

ciated with diabetes in Mexico far exceeds that in the United States and Europe [117]. Signifi-

cantly, first time, our study has shown that public interest in major chronic lifestyle diseases

such as obesity, asthma, hypertension, and fibrosis follow a similar strong seasonal pattern or

seasonal rhythm which is independent of ethnicity and most likely dependent on seasons. For

example, October is commonly associated with the season of autumn in USA and with spring

in NZL. In October, our study showed the SCLD search patterns of USA and NZL follow

totally opposite seasonal trends and supported by clinical studies [118–122]. In this electronic

search study, trends of internet user interest on these SCLD determined for 250 regions from

seven continents, suggesting that this is a global phenomenon. This predicted pattern of

increase in the prevalence of seasonal comorbid association among asthma, hypertension and

obesity is highly supported by clinical evidences [123–125]. Even though fibrotic diseases

strongly associate with season, their seasonal comorbid association with obesity, hypertension,

and asthma is poorly evaluated [10,126,127]. Further studies in this direction could help

healthcare providers to design season based strategies for the better management and preven-

tion or efficacy of treatment start at different months of the year to control the seasonal flare.

Limitations

This study has several limitations in the text mining as well as electronic search (GT) that need

to be considered while interpreting the results.

In text mining, the coverage of diseases and symptoms are limited to the abstracts of

“PUBMED”, the search terms “high altitude disease”, “high altitude disorder”, “high altitude med-

icine”, and “High altitude drug” and the search period (Jan 2004-Jan 2017) [128]. In addition, the

DO semantic similarity between DSN diseases should be available in the DOSE package [44].

These limits variety of other diseases, and their interactions could be left out in the DSN probably

of decisive importance for the generality of results. In the electronic search, our search study

revealed the seasonal trends of public interest in the 12 DSN diseases, but not the seasonal trend

of the 12 diseases itself. Furthermore, the individual performing the search is not necessarily suf-

fering from the diseases. To validate our predictions, they should be correlated with clinical data.

Meanwhile, the demographic characteristics were not available for the users who were performing

the search. Besides the GT ability to cover a large geographical area (250 regions from seven conti-

nents), 90% of human population living in the northern hemisphere dominate the worldwide

RSV seasonal patterns. Moreover, efforts were not made in our study to give special attention to

the remaining 10% of human population living in southern hemisphere seasonal changes. In addi-

tion, the seasonal patterns were not studied using any language other than English and with a

search engine other than Google. Finally, important covariates other than 12 diseases terms affect

the development of these 12 diseases or search behaviors could not be assessed.

Conclusions

Despite several limitations, there are several strengths in this study. Majority of the human

population adapts well to these seasonal changes. But significant world human population

maladaptive to seasonal changes, and render their body highly susceptible to one or other kind

of disorders [129,130]. Less progress is made to classify this highly seasonal sensitive popula-

tion from the normal population. This is mainly due to the challenge in prioritizing seasonal

sensitive diseases from the environmental sensitive diseases and lifestyle diseases. In this direc-

tion, the present study has successfully addressed this issue by predicting the SCLD, and
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indirectly verified them in the world population using Google Search Trends. Furthermore,

based on the SCLD seasonal public interest trend, the study also classified them as severe,

moderate and mild. To our knowledge, for first time, these results provide a basis to predict

and classify seasonal sensitive population. The study also necessitates the need to study these

categories of seasonal sensitive population separately, because they are genetically susceptible

host for the SCLD flares. The dense semantic similar diseases network of SCLD further reflects

the most possible comorbid seasonal sensitive diseases. Further, knowledge in the so called

“seasonal sensitive populations” physiological and molecular response to seasonal triggers

such as winter, summer, spring, and autumn become crucial to modulate disease incidence,

disease course, or clinical prevention.
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