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1  |  INTRODUC TION

Technological advancements in remote sensing of animal movement, 
referred to as animal telemetry, have revolutionized the discipline 
of movement ecology. Animal movement data provides critical in-
formation about ecological processes, and it can be a vital asset to 
conservation efforts of species and ecosystems. The increased fea-
sibility of tracking and collecting animal movement information has 

yielded large reservoirs of fine-scale spatio-temporal data, and the 
challenges of meaningfully modeling animal behavior have resulted 
in the expansion of holistic machine learning methodology that ap-
propriately considers animal psychology and cognition (Buderman 
et al., 2016; Hooten et al., 2017; Lewis et al., 2021).

The analysis of animal telemetry data has a number of chal-
lenges. (1) Spatial and temporal density of measurements is subject 
to extreme variation. Animal behaviors may shift phenologically 
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between migratory and residency states, and even for nonmigratory 
species, this problem can present itself in a smaller scale region as 
animals shift between resting, foraging, or transit states. Temporal 
density variation may be caused by loss of connection, malfunction-
ing, and damage of the device over time. (2) Even with advancements 
in precision and reliability of animal tracking, the datasets are inher-
ently discrete, and any analysis of such data requires a conscious 
choice between modeling such processes discretely or attempting 
to model them continuously. (3) Animal behavior cannot be univari-
ately characterized. Animal movement is characterized by position, 
rate of change of position, and cooccurrence with other animals, all 
of which may suddenly shift under interactions with an array of en-
vironmental factors that alter the allocation of critical resources for 
survival (Hooten et al., 2017; Lewis et al., 2021).

Discrete time methods have had steady use in the field (Jonsen 
et al., 2005; McClintock et al., 2014, 2015; Morales et al., 2004), 
but recent literature has provided significant progress in continuous-
time modeling (Hanks et al., 2015; Harris & Blackwell, 2013; Johnson 
et al., 2008; Parton & Blackwell, 2017). Animal movement is explic-
itly continuous, like any kinematic process, and continuous-time 
models celebrate and take advantage of this continuity in the mod-
eling process. These models are exceptional and flexible tools for 
modeling the complexity of animal movement. However, I emphasize 
that we should more fully embrace animal movement as a kinematic 
process. We must acknowledge that projectile movement in a real 
space ℝ2 is smooth, and I propose that we further consider modeling 
strategies and methodological developments that account for the 
1st and 2nd-order differentiation of an animal movement processes.

I present a philosophically different approach for analyzing ani-
mal telemetry in which the unit of analysis is a curve (or function) as 
opposed to single site measurements. This approach widely referred 
to as functional data analysis (FDA) roots in the assumption that 
measurements vary over some continuum such as space or time, and 
that there is an underlying smoothness inherent to the process of 
interest (Ramsay & Dalzell, 1991; Ramsay & Silverman, 2005; Ullah & 
Finch, 2013). The assembly of an entire smooth curve of an animal's 
movement is accomplished using linear combinations basis func-
tions, which are the foundation of smoothing spline models. They 
are widely acclaimed for their ability to model complex and noisy 
data (Ramsay & Silverman, 2005).

Animal movement is a visual spectacle, and the statistical visual-
ization of animal movement is greatly aided using smoothing splines. 
FDA methods provide a viable and accessible option for examining 
an estimated complete path and the speed and acceleration (and 
deceleration) along this path, which are vital in the classification 
of various types of animal behavior. There have been recent basis 
function models proposed to model animal movement (Anderson-
Sprecher & Lenth, 1996; Buderman et al., 2016; Hefley et al., 2017; 
Henning et al., 2017; Hooten & Johnson, 2016), but there is great 
need to incorporate a wide array of strategies for an appropriate and 
application-specific exploration using smoothed spline models.

In this project, I analyze and visualize the movement of seven 
Jaguars inhabiting the Taiamã Ecological Station, Pantanal, Brazil, and 

the associative and cooccurrence relationships between them. Fine-
scale movement of jaguars in this region has recently been explored 
using association rule mining algorithms to study their behavior and 
social interaction. Identifying behavioral changes and social interac-
tions are crucial aspects of species ecology, and this recent work has 
added to literature of jaguar territory sharing (Fontes et al., 2021). 
Jaguars are generally solitary and territorial apex predators, but in 
areas with high primary productivity, the overlap of territory and its 
effects on mating, cooperation, and competition yield a complex sys-
tem of interdependent subjects that can directly or passively interact 
(Cavalcanti & Gese, 2009; Fontes et al., 2021; Morato et al., 2016).

I construct smoothing spline models to continuously and dif-
ferentiably characterize the movement, resting, and migratory be-
havior of these 7 jaguars. These smoothing spline models provide 
exceptional fit, and they provide the means to feasibly measure 
animal association using a measure of mutual information from the 
discipline of information theory. Further, I introduce the concept of 
a Cooccurrence Potential Plots, which are smooth density functions 
derived from the distance between pairs of jaguars on the refined 
and unified grid. The refinement and unification of the time-grid is 
an inherent and advantageous by-product of spline models.

In efforts to improve upon the previous work in Fontes et al., this 
analysis accomplishes two primary objectives: (1) An estimation of 
cooccurrence potential, which has a conservative theoretical stand-
ing in the presence of measurement error for lower raw time reso-
lution and allows for inferences to be made between observations 
on the raw time grid, and (2) a derivation of a correlation function 
based on animal movement, which captures shifts in the associa-
tions between individuals. In (1), the conservative theoretical nature 
of this measure refers to the difference between cooccurrence po-
tential and cooccurrence frequency, where cooccurrence frequency 
is a count of the amount of times that two animals occur within a 
certain spatial and temporal radius, and cooccurrence potential is a 
measure of the density of time values on a time grid where two an-
imals are within a radius where there is high probability of cooccur-
rence based on the ability of the animals to interact in between time 
observations. The use of a density measure, such as cooccurrence 
potential, can be more conservative since the constructed probabil-
ity density function identifies time periods where interaction is more 
likely as opposed to a simple count of time points. This application 
of FDA methods to animal movement showcases the plausibility of 
studying animal movement with the theoretical backing of the laws 
of kinematic motion, and most importantly, the approach provides 
an increased set of tools to improve the study animal movement in 
relation to dynamic social and environmental factors.

In this project, it is important to acknowledge that measurement 
error is not considered since this attribute was not recorded in the 
public version of the data product. The exact specifications of the 
utilized GPS tracking devices and a disclaimer regarding the data 
quality are detailed in the following section. FDA methods exists to 
address measurement error for various disciplines (Buderman et al., 
2016; Cai, 2015; Sneha & Ma, 2020), and I leave this important and 
interesting aspect of animal telemetry to future work.
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2  |  METHODS

Fitting smoothed spline models provides a number of advantages 
for irregularly and sparsely measured data that is known to vary 
over some continuum, but it is important to note that some sacri-
fice of position is made in a model that aims to smooth a function 
through a series of measurements (Ramsay & Silverman, 2005). 
More specifically, smoothing spline models differ from interpola-
tion models since the objective of interpolation is to fit a function 
that crosses through all recorded measurements of a process with 
an error of zero, where as for smoothing splines, the objective is 
to fit a simpler function that captures the main features of the 
process while minimizes the error between the optimal function 
and the recorded measurements. Generally, smoothing splines are 
more informative as they prevent over-fitting to noise in the raw 
data, which can obscure critical features of a process. Since GPS 
positioning systems have known measurement error (even though 
measurement error is not reported in this data product), I aim to 
show that this sacrifice is worth the benefits of this approach, and 
further that modifications to the model can be instated to adapt 
and improve this approach.

2.1  |  Fitting smoothed spline models to 
jaguar movement

For a collection of raw hourly recordings of a single jaguar's po-
sition, denoted by Ylat =

[
ylat1…ylatn

]
 and Ylon =

[
ylon1…ylonn

]
, I esti-

mate x̂lat(t) =
∑K

k=1
clatk�k (t) and x̂lon(t) =

∑K

k=1
clonk�k (t) subject to a 

roughness penalty on the second derivative of the basis expan-
sion Φ =

[
�1(t)…�K (t)

]
 where ck are the coefficients of the terms 

of the basis expansion denoted by �k, which in this project is con-
structed using a B-spline basis expansion (De Boor, 1978; Ramsay 
& Silverman, 2005). Both latitude and longitudinal movement can 
be individually expressed as an unconstrained minimization de-
fined by

where Rjk =
∑M

l=1
𝜙��
j

�
%t⃗l

�
𝜙��
k

�
%t⃗l

�
h for h = t̃l − t̃l−1 (Ramsay & 

Silverman, 2005). We select an appropriate value for λ using the 
optimal lambda for a single site determined by the generalized 
cross-validation criteria,

For jaguar movement, I have fitted the spline models with low 
or negligible roughness penalization, since the precision of move-
ment is of high priority. The roughness of the movement can also 
be restricted by latitude and longitude separately, which may be on 
interest if we seek to model movement with substantial differences 
in between latitudinal and longitudinal behaviors (such as long dis-
tance ungulate or bird migration), but for this work the roughness is 

penalized equally for both dimensions. The resulting smoothed jag-
uar movement curves have the form

The jaguar's 2-dimensional movement is then characterized by 
coordinates on the path 

(
x̂lon(t), x̂lat(t)

)
, which has been done simi-

larly in recent work (Buderman et al., 2016; Hooten et al., 2018). I 
note that Equations (2) and (3) jointly characterize a two-parameter 
search for �lat and �lon. In all cases, although an optimal GCV criterion 
can be detected, some additional tuning by visual inspection was 
performed, and this is a common practice when constructing spline 
models to ensure that critical shifts in animal position are being cor-
rectly captured by the model. With a GPS tracking device of suffi-
cient resolution, critical shifts in behavior should be discernible in 
the presence of measurement error, and because of this it is import-
ant to not rely solely on an optimization criteria when fitting such a 
model. Over-fitting permits too much roughness in the model which 
ascribes measurement error to ecological behavior, and under-fitting 
ascribes actual movement to measurement error.

In order to meaningfully estimate jaguar position across highly 
disparate densities of raw time recordings, careful placement of 
knots is advised. Let (t1,…, tn) be independently and identically dis-
tributed time samples from an unknown distribution fh. We estimate 
the density of sampled times for a given jaguar using kernel den-
sity estimation defined by f̂h(t) = (1∕nh)

∑n

i=1
K
�
(t − ti)∕h

�
, where K 

is gaussian kernel function and h is a smoothing bandwidth param-
eter where higher values of h yield a smooth estimate of the den-
sity (Wand & Jones, 1995). Let k = f̂h(t

∗) be selected as a threshold 
where ti with �f(ti) > k define the collection of high density times 
{
ti
||fh(ti)

⟩
k
}

= (�1,…, �m) where 𝜏1 < … < 𝜏m. This selection of knots 
is carefully placed to avoid over fitting regions of the time domains 
that are barren or extremely sparse. This is desirable for periods 
where GPS tracking devices are out-of-operation for an extended 
period, but it is still desirable to fit regions with dense recordings 
with high precision.

Continuous-time estimation of distance and speed has been de-
veloped for standard continuous time models (Noonan et al., 2019). 
In the next two sections, I outline a derivation of speed and distance 
measures for animal movement in the FDA paradigm.

2.2  |  Differentiation of the smoothed 
position functions and derivation of rest period 
density functions

Differentiation of the smoothed position paths is then conveniently 
estimated using the same collection of coefficients, c⃗lat and c⃗lon, and 
the derivation functions are defined by

(1)min
c⃗

‖ �⃗y − Φc⃗‖2 + 𝜆cTRc for 𝜆 ≥ 0,

(2)GCV =
MSE(�)(
1 −

df�

M

) .

(3)
�xlat=Φ(ΦTΦ+𝜆latR)

−1ΦT �⃗y=Slat �⃗ylat,

�xlon=Φ(ΦTΦ+𝜆lonR)
−1ΦT �⃗y=Slon �⃗ylon.

(4)x̂�
lat
(t) =

K∑

k=1

clatk�
�
k
(t), x̂�

lon
(t) =

K∑

k=1

clon k�
�
k
(t)
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where �′
k
(t) is the derivative of the basis expansion (Buderman et al., 

2016, 2018; Ramsay & Silverman, 2005). The estimated speed of jag-
uar position can then be defined by

Behavioral states of animal movement are generally characterized 
by different speed of movement. As an example, a resting state should 
be characterized by lower estimated speeds, while migratory, forag-
ing, and other transitory states are characterized by faster speeds. For 
this project, I used a speed of 0.25 m/s as a cutoff between resting 
and transit states. Clearly, a literal resting state should have a deriv-
ative value of zero, so in this application resting state has a looser in-
terpretation that characterized by stationary and exceptionally small 
changes in position. Similar to before, I subset “resting state” times and 
derive a kernel density function for the distribution of resting times,

where K is Gaussian kernel function and h is a smoothing bandwidth 
parameter where t1,…, tn are restricted to the set {ti|�x�(t) < 1}.

2.3  |  Pairwise Jaguars distance functions and 
derivation of cooccurrence potential plots

For any pairs of jaguars, J1 and J2, with geographic position monitored 
on the domain [a,b] and [c,d], respectively, with a < c < b < d , a dis-
tance measure can be defined between pairwise estimations of posi-
tion on the refined regular time grid t1,…, tp where c = t1 and b = tp, 
and the distance metric in this work is the WGS84 ellipsoidal distance 
(Hijman, 2019). This regular time grid is subsetted from the refined 
global time grid used to smooth jaguar position; in this work the re-
fined grid provides an estimate of position every 60 min. Although not 
finer than the raw grid, this grid resolution was chosen since already 
provides extensive interpolation of missing hours, and the smoothed 
spline model are smaller in size. The choice of time grid is arbitrary in 
the FDA paradigm, and it can be readily refined to a desired resolution. 
As an example, the smoothed spline models implemented in this pro-
ject could be refined to provide 1-minute estimations, and they would 
still follow the same smoothed path defined on the selected resolu-
tion. There may be clear advantages by estimating movement on this 
resolution, but this is a question that will be left to future work.

Cooccurrence potential in this work is defined as a density func-
tion of times from the refined and unified time grid where the dis-
tance between a 2 or more jaguars is within a certain threshold. This 
work only examines pairwise cooccurrence potential, but I discuss 
the extension to greater than two jaguars in the Discussion Section. 
More specifically, I define the cooccurrence potential function by

where K is Gaussian kernel function and h is a smoothing band-
width parameter where t1,…, tn are restricted to the set 
{ti|dist

(
�xJ1(ti),�xJ2(ti)

)
< 𝛿}. The parameter � is a distance threshold, 

and cooccurrence potential for this application is set to � = 1800m. 
This indicates that times where a pair of jaguars are estimated to be 
within this threshold have a high probability of (either passive or direct) 
interaction (Harmsen et al., 2010). This threshold is chosen with the 
intent to only capture time periods where a high probability of inter-
action is possible. Higher cooccurrence potential implies that there is 
a larger volume of times on the refined time grid where a pair of jag-
uars are in close proximity, indicating that there is the potential for an 
interaction. In previous work, cooccurrence frequency is defined on 
the raw time grid for times where a pair of jaguars were within 200–
400 m of each other. The raw time grid in this work records positions of 
jaguars at a maximum of every hour. Within an hour time-window, it is 
apparent that jaguars can travel far beyond 200–400 m since an animal 
walking slowly at 4 km/h in a straight-line can cover 10 times the dis-
tance of 400 m in an hour. A threshold distance of 1800 m is too far to 
imply direct interaction at a given time; however, there is a probability 
that two jaguars can interact with each other in between known or 
estimated positions. For this reason, it is still instructive to compute the 
density of times where jaguars fall within a larger radius than 400 m.

2.4  |  Mutual information of jaguar movement

Mutual information is a measure of mutual dependence between 
two random variables, or more simply, the amount of information 
gained about one variable by observing the other (Cover & Thomas, 
1991). Let (X ,Y) be a pair of random variables with values spanning 
the space (� ×�). The mutual information between two jointly con-
tinuous random variables X and Y is defined by

where p(X ,Y) is the joint probability density function of X and Y, and pX 
and pY are the respective marginal density functions. It is clear that if X 
and Y are independent then information gained from observing one of 
the random variables does not provide information about the other, and 
recall that for independent random variables, p(X ,Y)(x, y) = pX(x)pY (y), 
which implies from Equation (4) that I(X;Y) = 0 (Cover & Thomas, 1991).

To measure dependence or strength of association between 
pairs of jaguar movements, it is clear that a global measure of mutual 
information is insufficient to measure correlation between jaguars 
since their relationships may be dynamic and shifting. I propose the 
use of the localized mutual information measure Iℒ. Other localized 
mutual information measures have been derived for various applica-
tions (Dai et al., 2015; Klein et al., 2008; Owoeye et al., 2018). In this 
work, Iℒ is defined by

(5)x̂�(t) =
√
(x̂�

lat
(t))2 + (x̂�

lon
(t))2.

(6)f̂h(t) =
1

nh

n∑

i=1

K

(
t − ti

h

)
,

(7)Ĉh (t) =
1

nh

n∑

i=1

K

(
t − ti

h

)
,

(8)I(X;Y) = ∫
�

∫
�

p(X ,Y)(x, y)log
p(X ,Y)(x, y)

pX (x)pY (y)
dx dy

(9)
Iℒ (X;Y) = ∫

𝒴ℒ

∫
𝒳ℒ

p(Xℒ ,Yℒ )(x, y)log
p(Xℒ ,Yℒ )(x, y)

pXℒ
(x)pYℒ

(y)
dx dy
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where 𝒳ℒ and 𝒴ℒ are restrictions of the random variable to the domain 
defined by the set ℒi = {t|t ∈ [ti − �, ti + �]}. The parameter λ defines 
the bandwidth or radius over which local mutual information is measured.

Ultimately, the advantage of this approach is to construct a bi-
variate measure of mutual information, and finally to generate a 
mutual information function with respect to time. For two bivariate 
random vectors X =

(
Xlat,Xlon

)
 and Y =

(
Ylat,Ylon

)
, I define joint local 

mutual information by

Clearly, various weighting schemes for combining local mutual 
information for latitude and longitude could be derived. (Also, since 
the measure of mutual information is measured from the center of an 
interval, it may be advantageous to weight the contribution of reali-
zations of a random variable in the mutual information computation 
based on their proximity to the center of the interval although this is 
not explored here.) Finally, I define the joint local mutual information 
function with respect to time by

where i = 1,…, dim (⃗t) and ⃗t is the vector of times from the refined time 
grid. It is important to note that in this application the values of t are 
limited to the defined resolution of the spline model. So each time ti is 
associated with a given ℒi, and as such, the pair (ti ,ℒi) defines a cen-
tered window ℒi over which ℐ(t;�) is evaluated at a given time ti.

This derived result can be used to monitor periods of time where 
high and low correlation between a pair of jaguars is observed, and it 
provides a tool for monitoring if periodicity in the strength of their re-
lationships exists (Meyer, 2014). An example we might look for would 
be strength of relationships in movement between a male-female pair 
of jaguars during and between potential mating periods. Ecologically, 
higher mutual information indicates that there is a stronger association 
of movement since more information about the movement of one jag-
uar is explained by the movement of the other.

I also note other methods that have been developed in recent years 
to model social interactions within the movement model as opposed to 
the post hoc measures of distance, cooccurrence potential, and correla-
tion of movement (as measured by mutual information) (Scharf et al., 
2016, 2018). Although several advantages exist in the use of such meth-
ods which rely on continuous-time and nonparametric smoothing mod-
els, there remain important advantages of the use of semi-parametric 
smoothing models (as are used in this paper) (Hamdy). An exploration of 
the properties of this proposed measure of localized mutual information 
has recently been conducted by proof and simulation under a variety of 
simple animal movement scenarios (Whetten, 2021).

2.5  |  Data: Taiama ecological station jaguar 
movement data

I add to the previous investigation of movement and social inter-
action of a collection of jaguars in the Taiamã Ecological Station, 

Pantanal, Brazil. The majority of jaguars examined in this project 
were fitted with Lotek GPS Iridium satellite collars and monitored 
for periods of 60 to 591 days (Morato et al., 2018). The movement 
of Jaguar 88 was monitored using a Lotek GPS GlobalStar satel-
lite collar. The authors of the study have made it public and freely 
available at https://doi.org/10.1002/ecy.2379 and also at Dryad 
Digital Repository (https://doi.org/10.5061/dryad.2dh0223). In 
this project, I utilized data from the full monitoring periods on 7 
jaguars from this region, and Table 1 presents the number of re-
cordings and the length of the monitoring period. The finest tem-
poral resolution of the data is on hourly intervals; however, there 
are frequent gaps in recordings where missing measurements may 
be present for 2 h to several days. It is important to disclaim that 
the authors of these data did not provide an estimated or empiri-
cally computed measure of error radius associated with each posi-
tion. Instead, they have reported a dilution of precision of less than 
10, which provides moderate to good levels of confidence in animal 
position. Dilution of precision refers to the quantification of error 
propagation in satellite navigation on the precision of estimated 
position (Langley, 1999). Previous work using these data product 
has also not incorporated the use of measurement error (Fontes 
et al., 2021; Morato et al., 2018, 2021). Animal movement data with 
an unreported measurement error are not ideal, but the aim of this 
project expands on previous analysis in an effort to provide further 
understanding of jaguar behavior and interaction. Their findings on 
jaguars in this region were accomplished by measuring and study-
ing the cooccurrence and correlation between several pairs of jag-
uars. Using trajectories and association rule mining algorithms and 
a distance radii of 200m and 400m, they were able to estimate 
cooccurrence frequency and a single correlation metric for each 
jaguar pair (Fontes et al., 2021). Following the results section, I 
discuss the differences between this analysis and previous work 
which primarily pertain to the differences between cooccurrence 
frequency and cooccurrence potential and quantifying the correla-
tion between pairs of animals.

The jaguars examined in this project were selected on the con-
dition that they shared an overlapping monitoring period with at 
least one jaguar from the monitoring period with the highest activity 
monitoring period from December 2014 to the summer of 2015. The 
final and more detailed investigation of social interactions is per-
formed for Jaguars 12, 13, 18, 41, and 81.

(10)�ℒ (X ,Y|�) =
√
Iℒ (Xlat;Ylat)

2 + Iℒ (Xlon;Ylon)
2.

(11)ℐ(t;�) = �ℒi
(X ,Y|�).

TA B L E  1  Monitoring statistics of Jaguars from the Taiamã 
Ecological Station

Jaguar local ID Frequency Monitoring period

12 2681 12/5/14–4/18/15

13 5040 12/7/14–8/24/15

18 2314 11/29/14–4/13/15

22 4709 9/11/14–5/21/15

41 4952 12/5/14–8/17/15

81 10,988 10/15/13–5/29/15

88 1296 10/9/13–4/20/14

https://doi.org/10.1002/ecy.2379
https://doi.org/10.5061/dryad.2dh0223
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For all visualizations used in this work, I numerically transform to 
time in days from the earliest available date 10/9/13 for Jaguar 88. 
As such t = 0 is the first day recorded for Jaguar 88, and the final 
day on this scale is t = 591 when the final measurement on Jaguar 
13 is recorded, 08/24/15. This is particularly useful for monitoring 
periodicity and duration of events, since it is difficult to quickly un-
derstand the number of days or weeks between two dates.

3  |  RESULTS

The primary challenge in mapping and analyzing relationships be-
tween Jaguars at the Taiama Ecological Station is the staggered time 
windows that each Jaguar is monitored coupled with the inconsist-
ent temporal resolution of GPS readings. To reach our final selection 
of 7 jaguars, we removed two jaguars with less the 100 GPS record-
ings and two jaguars (Jaguar 91 and 92) that were monitored many 
months after the remaining jaguars (Jaguar 116 and 117). There are 3 
females (Jaguars 12, 41, and 88) and 4 males (Jaguars 13, 18, 22, 81). 
I visualize the remaining 7 jaguars in Figure 1. Across the three plots 
provided, we can develop a short narrative of a few major movement 
characteristics. Within their respective time domains, most of the 7 
jaguars have stable fluctuations in position within their territories 
(with some clear overlap in territories) (Eriksson et al., 2021; Fontes 
et al., 2021). However, Jaguar 81 (male, age = 4 years), the jaguar 
with the longest monitoring window, makes a significant territorial 
transition from residing in the same region as Jaguar 88 (female, 
age = 5 years) to the territory of Jaguar 12 (female, age = 4 years). 
There appears to be a period of interaction between Jaguar 12 and 
Jaguar 81, and then, Jaguar 12 makes a temporary but significant 

migration south for approximately 3  months before returning to 
the same region again as Jaguar 81. There are other male-female 
interactions that not as easily discernible, and more investigation is 
clearly required.

In Figure 2, I present a detailed visualization of the smooth-
ing of Jaguar 12's residential to migratory transition. As a can be 
seen visually, the fit of this spline model is exceptional and only 
a small selection of points are not well fit to the estimated path. 
This is an acknowledged sacrifice of information, in exchange for 
a number of benefits, primarily the refinement of the time res-
olution and consistency to a uniform time grid shared by all jag-
uars. In Figure 3, I present the smoothed spline models for the 
remaining seven jaguars. Further tuning of the model for Jaguar 41 
and 88 should be considered as some raw locations are not well-
estimated, but Jaguars 13, 18, 22, and 81 have exceptionally well 
fit models. A well-fit model loosely refers to a spline model that 
captures the raw movement path with reasonable accuracy from a 
visual inspection, and few positions are poorly estimated. The re-
maining jaguars have some points that the spline models did not fit 
as well under the general temporal density distribution procedure 
for knot placement documented in the methods section. There are 
some cases where it appears that the spline model “overshot” the 
path when an animal changed direction suddenly, or where there 
were a couple outlier points that the algorithm did not prioritize 
fitting. When optimizing a spline model overall minimization of the 
error is prioritized as opposed to local minimization of the error. 
Improvements to the models could be achieved by increasing knot 
densities in regions where it appears that the model is not fitting 
as well as other regions or deriving a localized spline modeling pro-
cedure that performs piecewise error minimization; these options 

F I G U R E  1  Visualization of Jaguar 
Movement in the Taiamã Ecological 
Station. (Left) The spatial distribution of 
GPS recordings is plotted and colored by 
Jaguar ID. (Right) The temporal change in 
each Jaguar's latitudinal and longitudinal 
position (Baptiste, 2017; Wickham, 2016). 
A terrain map of this region is provided in 
Figure S1
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are left to future work. We will use these models as is, since the 
deviations from the raw movement path are still limited, and most 
of movement profiles from these jaguars are well captured, mean-
ing that the model is estimating a smoothed path through the 
majority of raw positions while avoiding overfitting to the exact 
positions in the raw data. All smoothing spline models have been 
smoothed to estimate behavior on a 1 h resolution.

In Figures 4 and 5, I present the first derivative functions of the 
each jaguar's movement, as well as, the density of rest periods. Rest 
periods are defined (with some level of arbitration that is worthy of 
discussion) as times when the estimated speed of a given jaguar is 
less than 0.25 m/s. Any times where this condition is satisfied are 
found below the orange line. My working definition of a jaguar rest 
period is inherently a binary classification of movement, and the 
times that satisfy this condition are subsetted to derive rest-period 
densities. I emphasize the substantial shift in the rest-period density 
structure of Jaguar 12. Jaguar 12 in the first half of her tracked time 
domain has higher rest period density, meaning that she is estimated 
to have more rest periods or periods of slower movement. In the 
latter half, her rest period density drastically drops to below a third 
of previous levels. No other jaguars show this trends as drastically; 
Jaguar 81 has a drop in rest period density during the migratory pe-
riod prior to entering the initial territory of Jaguar 12. In all of the 
remaining density plots, however, there is an apparent cyclic nature 
to rest period density that is approximately weekly to bi-weekly for 
most jaguars.

In Figure 6, I present the pairwise distance relationships be-
tween several jaguar pairs, and their respective cooccurrence po-
tential measures (Hijmans, 2019). The four selected pairs are chosen 
deliberately as many jaguars had zero or near zero cooccurrence 

potential. The male–female pairs are Jaguar 12 and 81 and Jaguar 
18 and 41, and the male–male pairs are Jaguar 18 and 81 and Jaguar 
13 and 81. In the distance function plots, which are all identically 
scaled on the vertical axis from 0 to 30,000 m, we note the signif-
icant differences in distance functions across all chosen pairs. For 
Jaguar 12 and 81, there is a first encounter with the highest cooc-
currence potential, and then, there is an extended period of zero 
cooccurrence potential. Following this hiatus, there is an extended 
period of regularly occurring bursts of high cooccurrence potential, 
which is then followed by the long migration of Jaguar 12 away from 
Jaguar 18. At the end of their shared time domain Jaguar 12 returns 
and there is a short period of moderate cooccurrence potential that 
is evidence of some final return to territory sharing before we lose 
sight of their movement. The other male-female pair (Jaguars 18 and 
41) on the other hand, has regular intervals of high cooccurrence, but 
we note that in a similar seasonal time window (at approximately Day 
500) Jaguar 41 distances herself from Jaguar 18, but at a much lower 
magnitude than Jaguar 12.

For the male–male pairs, Jaguars 13 and 81 only have high cooc-
currence for a small time-window, while Jaguar 81 is still migrating to 
new territory. Jaguar 18 (M) and Jaguar 81's (M) relationship is partic-
ularly interesting as there is an early period of high cooccurrence, and 
then, during the period of high cooccurrence between Jaguar 12 (F) 
and 81 (M), there is a hiatus in their cooccurrence. High cooccurrence 
between these two males is then resumed once Jaguar 12 (F) leaves 
the territory and they move within short distances of each other for 
an extended period, which ends before the return of Jaguar 12.

The localized mutual information profiles for the same four 
pairs jaguars are shown in Figure 7 using a bandwidth of λ = 48 h. 
This bandwidth identifies that the measure of localized mutual 

F I G U R E  2  Smoothing Spline Model for 
Jaguar 12 (female, age = 4). (Left) The raw 
latitude-by-longitude position and spline 
model estimations are overlaid. (Right) 
The raw and smoothed components 
(latitude and longitude) are plotted 
with respect to time in days where t = 
0 identifies the beginning of the study 
period in this region
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information is computed for a 4-day period centered on a given 
time. For Jaguars 12 (F) and 81 (M), there is a cyclical spike in the 
strength of association (i.e., local mutual information) immedi-
ately prior to and during most of the periods of high cooccurrence 
potential. The times of strongest association in movement occur 
during the second and longest period of high cooccurrence from 
approximately Day 475 to Day 510, and when Jaguar 12 returns 
at the end of the study period. On the other hand, Jaguars 18 and 
41, although regularly experiencing period of high cooccurrence, 
do not show a similar associative trends. Their movement has the 
strongest association early in the study period, and then, it gradu-
ally declines in the following weeks.

For the male–male pairs of jaguars, there are repeated periods 
of high mutual association that do not show clear trends with cooc-
currence potential. For Jaguars 13 (M) and 18 (M), there is a drop in 
the strength of association in their movement in the final weeks of 
the study and this is when these two jaguars are consistently the 

furthest apart. Interestingly, Jaguars 18 and 81 (male–male pair) 
have the strongest association in their movement at a similar time 
to the peak in association between Jaguars 12 and 81 (female–male 
pair). The female–male pair have a peak in association at Day 478, 
and the male–male pair have a peak in association at Day 471. These 
two associations are characterized by a zero-level cooccurrence be-
tween the male pairs of jaguars, and increasing cooccurrence poten-
tial between the female–male pair.

In order to further investigate the cause of these spikes and 
drops in mutual information, it becomes highly instructive to sum-
marize the pairwise distance and localized mutual information for 
these pairs of jaguars in addition to the pair of Jaguars 18 (M) and 
41 (F). This is shown in Table 2. Between Days 476 to 479, Jaguars 
12 (F) and 81 (M) are in close proximity with an estimated median 
hourly distance of 1212m apart and a minimum estimated distance 
of 118.4m apart. The spike in their correlatory movement peaks in 
this window marks that their relationship in this time is characterized 

F I G U R E  3  Smoothing Spline Model for Jaguars 13, 18, 22, 41, 81, and 88. For brevity, the decomposition of the spline models to latitude 
and longitude is not shown
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by periods of direct interaction. Jaguars 18 (M) and 81 (M) during 
their peak in movement association in the time window from Day 
469 to Day 471 is not direct as the minimum estimated distance be-
tween these jaguars is 7069m. However, in the time window from 
Day 455 to Day 477 (which overlaps this time), Jaguars 18 (M) and 41 
(F) have an estimated median distance of 2071m and a minimum dis-
tance of 156 m with extended periods of high cooccurrence poten-
tial. What is especially interesting about these observations is that the 
peak in association between the two male jaguars is that it characterized 
by a periods when both male jaguars have close interaction with females. 
The comparison of localized mutual information plots for Jaguar's 
12, 18, 41, and 81, provides a clear characterization of interaction on 
a local male and female jaguar behaviors.

4  |  DISCUSSION

The apparent complexity of jaguar movement and interaction in the 
Taiamã Ecological Station is driven by the high density of jaguars 
(Fontes et al., 2021; Morato et al., 2016). Monitoring the complex 
fine-scale movement of multiple animal with shifts in territorial and 
social nature differs from previous examinations of animal move-
ment using smoothing spline models (Buderman et al., 2016; Hefley 
et al., 2017; Henning et al., 2017; Hooten & Johnson, 2016). This 

work provides a preliminary strategies for monitoring movement, 
behavior, social interactions, and the strength of association be-
tween animal movement, all of which are best explored on a refined 
and unified time grid smoothed using spline models.

The Taiamã Ecological Station is a crucial conservation region for 
jaguars, and it is the region with the largest known density of jag-
uars, and further, this region provides insights into the needs of an 
ecosystem to sustain a large volume of neotropical apex predators 
(Cavalcanti et al., 2012; Kantek & Onuma, 2013; Morato et al., 2016). 
Recent work has shown that the size of this conservation region is 
insufficient to protect this specific feline population. The study of 
space-use and animal interaction is a crucial step to assessing the 
conservation needs for this species (Cullen et al., 2013; Sollmann 
et al., 2008).

As the objective of this work is comparative to the recent work 
on pairwise jaguar interactions, I compare the primary differences 
and potential advantages over Fontes et al.

4.1  |  Cooccurrence potential vs. 
cooccurrence frequency

Although measurement error is not considered in either analysis, 
it is crucial to acknowledge error in position and choose a metric 

F I G U R E  4  Spline model estimation of speed and rest period density for Jaguars 12,13,18,22. (Upper) A horizontal orange line is plotted 
at a speed of 0.25 m/s. (Lower) All hours in the spline model that are estimated to have speeds lower than this line are subsetted as a new 
vector to compute the density of rest periods. The selected bandwidth for estimation varies by jaguar and they range from approximately 
4 to 12 days. As a result, a detected shift in the density of rest periods over time would indicate a shift to lower or higher density of rest 
periods occurring in a 4- to 12-day window
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for examining distance between animals that accounts for move-
ments that may occur between known positions. Cooccurrence 
frequency is defined in previous work on a very close proximity 
of 200m and 400m, which can be advantageous in the sense that 
jaguars within this range are almost surely aware of each other. 
However, simply counting the instances of cooccurrence in this 
way does not provide a tool for measuring and visualizing periods 

where cooccurrences are realized in high or low densities. It is 
clear that a period with a high density of cooccurrences is more 
likely to contain interaction since there are more opportunities for 
an interaction to take place. Given that the raw recordings are at 
best defined on a 1-hour resolution, it is evident that even over 
dense or difficult terrain, jaguars have the potential to cover a 
distance many magnitudes farther than 400m. Additionally, loud 

F I G U R E  5  Spline model estimation of speed and rest period density for Jaguars 41, 81, and 88. Refer to the caption of Figure 4 for the 
interpretation

F I G U R E  6  (Upper) Distance plots for Jaguars 12–81, 18–81, 13–81, and 18–41. Distance is derived from pairs of smoothed spline 
models. A horizontal line at Distance = 1800 m is placed to mark the defined threshold of cooccurrence. (Lower) All times that distance 
between a pairs of jaguars are subsetted to derive the density of times where jaguars fall within this threshold. The spacing and duration 
of close proximity is accentuated and this measure of cooccurrence provides easy access to measures of duration and frequency of 
cooccurrence or gaps in cooccurrence
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mating calls are used by the species to attract mates far beyond 
this range, and scent and scrape markings are other methods of 
communication by this largely solitary predator (Palomares et al., 
2018). Cooccurrence potential in this work is a simple extension of 
cooccurrence frequency where a larger distance is used for meas-
uring frequency, and the densities of these frequencies are used to 
derive a probability density function that identifies time windows 
where there is a greater probability of an interaction. The visuali-
zation of cooccurrence in this way provides a convenient tool for 
examining complex patterns in cooccurrence between animals or 
differences between pairs of animals.

4.2  |  Localized mutual information functions 
vs. trajectory and association rule mining 
correlation metric

The derivation of a single correlation coefficient as laid out in Fontes 
et al. it attractive in its simplicity and use of interpretable associa-
tion rules. However, as is evident in the relationship between Jaguar 
12 and Jaguar 81, shifts in behavior states over time result in shifts 
in the association of movement. This is apparent for most pairs of 
jaguars. There is always some level of associations between animals 
of the same species in the same local ecosystem, even if there is 

F I G U R E  7  Localized mutual information plots. (Left) The localized mutual information with a bandwidth of λ =48 h for each time point in 
the refined time grid is plotted by each pair of Jaguars. The y-axis is scaled by the maximum localized mutual information at each time point, 
and as a result, the range of the y-axis is from 0.00 to 1.00. As a result, the scaled localized mutual information can be handle similarly to a 
measure of correlation, where 0.00 denotes no correlation between the movements and 1.00 defines a perfect unity in movement. (Right) 
The overall spread of localized mutual information measures across the time grid is summarized using boxplots

TA B L E  2  Peak association in between Jaguar Pairs

Jaguar pair
Local time 
window Metric Min Q1 Q2 Q3 Max

12 (F) vs. 18 (M) Day 476–479 Distance 188.4 591.1 1212.0 2299.0 2874.1

Mutual 
Information

0.385 0.447 0.499 0.612 0.667

18 (M) vs. 81 (M) Day 469–471 Distance 7069.5 9174.9 10,641.1 11,562.3 12,537.0

Mutual 
Information

0.316 0.416 0.519 0.637 0.744

18 (M) vs. 41 (F) Day 455–477 Distance 156.0 1736.0 2071.2 2922.6 4039.1

Mutual 
Information

0.266 0.406 0.515 0.634 0.999

Note: Distance and localized mutual information are summarized by quantiles for pairs 12 vs. 81, 18 vs. 81, and 18 vs. 41 for a time window of interest 
surrounding a peak in association of movement as measured by localized mutual information.
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no direct interaction. As an example, as shown in the state matri-
ces in Fontes et al. (2021), there are overlapping times of day where 
Jaguars are resting or in other transitory states. It follows that some 
mutual information between jaguars is evident as movements in 
the region may be connected through animal gender, daylight, and 
shifts in weather or climate. In the localized mutual information 
functions derived in this work, spikes or periods of relatively higher 
correlation denote stronger relationships between a pair of jaguars. 
More simply, local mutual information functions can be thought of 
as a time-dependent measure of correlation or association of ani-
mal movement. The ability for this method to captures association 
of movement regardless of direct proximity is a critical advantage 
in adapting correlation analysis of animal movement beyond cooc-
currence studies. This is most clearly illustrated in the ability of the 
proposed localized mutual information measure to detect a spike 
in similarity of movement between two males (Jaguars 18 and 81) 
when they are both interacting or in close proximity of a female. It is 
only after this spike that they move closer to each other and observe 
a spike in cooccurrence potential.

It is important to note that the proposed LMI measure and 
movement associations driven by scent and scrape marking patterns 
should be explored further via simulation studies. The integration of 
GPS tracking data and geographical distribution of scent and scrape 
marking patterns would permit for the testing of the influence of 
scent and scrape marking behavior on animal movement (Towns 
et al., 2017). This would provide crucial insight since scent and 
scrape marking data would represent the true population of jaguars 
of a region which may assist in explaining behaviors of observed jag-
uars in the presence of unobserved jaguars. The spike in the Jaguar 
18 and 81's cooccurrence potential following provides evidence of 
increased male-male interaction only once females have distanced 
themselves from each respective male.

4.3  |  Extension to higher-order interactions

Although not shown in this work, the methods implemented 
have the ability to be extended to monitor three way interaction. 
Cooccurrence potential for any given jaguar, in relation to two or 
more other jaguars, would be the density function of time record-
ings on the refined time grid where any jaguar is within a set radius 
(such as 1800 m). The localized mutual information measure could be 
readily adapted to measure partial mutual information (Darudi et al., 
2013), where the association between two jaguars is measured while 
controlling for another jaguar. In both this work and Fontes et al., the 
interpretations are based solely on observed individuals, and there 
are still challenges present in interpreting interactions detecting be-
tween pairs of jaguars when there are likely other interactions with 
unobserved individuals.

As mentioned briefly above, jaguar social interaction, although 
primarily characterized by direct (or close-proximity) interaction, is 
not the only form of social interaction that exists and should be de-
tectable. Like many apex predators, territorial marking, is a common 

form of passive communication. Jaguars may deliberately avoid or 
follow these routes which should be characterized by higher associ-
ations between animals. Young male have a tendency to be nomadic 
and older jaguars tend to have established territory with minimal 
overlap (where overlap is typically shared with females in the re-
gion). Female jaguars behavior is also generally characterized by a 
temporary associations with a male, and then, they avoid male inter-
actions when caring for cubs (Azevedo & Murray, 2007; Cavalcanti 
& Gese, 2009; Conde et al., 2010; Harmsen et al., 2010; Towns et al., 
2017).

All of these characteristics of jaguar movement and interac-
tion are detectable in this analysis. Jaguar 12 (female; age = 4) and 
Jaguar 81 are detected to have strong but temporary associations 
which increases in frequency as time progresses, and then, there 
is a rapid distancing between the pair and the association in their 
movement drops for over two months. The ability to detect an in-
crease in frequency in high cooccurrence is visually inconclusive 
without the use of cooccurrence potential plots. Finally, their asso-
ciation and cooccurrence potential increase at the end of the study 
as she returns to her baseline territory at the beginning of the 
study. Jaguar 12's resting behavior also shows distinct shifts from 
the period of high cooccurrence potential with Jaguar 81 to the 
farthest point in her migration south. It is suspect that Jaguar 12's 
sudden drop in rest period densities suggests a shift between mat-
ing and cub rearing movement behaviors where she is depended 
on to make successful hunts to provide for her young. Females are 
generally considered to have smaller home ranges, but the sea-
sonal shifts in this Jaguar 12's behavior for months of this year 
show evidence that some females have multiple or shifting home 
ranges during mating and cub-raising periods (Morato et al., 2016). 
That fact that some female jaguars make longer temporary mi-
grations proceeding interactions with male should be considered 
when defining an appropriate conservation region for the species 
since the time spent away from males is a critical time for survival 
of the next generation of cubs.

The nomadic behavior of Jaguar 81, which is recorded at a fine 
scale for almost two years, provides particular insights regarding 
male–male relationships between established and nomadic male in-
teractions. Jaguars 13 and 81 only seem to interact for a brief time 
in passing, and Jaguar 81 continues to move past Jaguar 13's terri-
tory. However, Jaguars 18 and 81 show evidence of coexisting in a 
similar region with distinct shifts in behavior. Jaguars 18 and 81 have 
the strong associations in movement in the presence of a local fe-
male. Jaguar 18 keeps at a farther distance from Jaguar 81 once high 
cooccurrence between Jaguars 12 and 81 begin, and Jaguar 18 is 
not shown to near Jaguar 81 until Jaguar 12 has initiated a prompt 
departure from the region.

The migrations of Jaguar 12 and 81 provide evidence that inter-
acting with high cooccurrence potential in regions of high population 
density utilize expansive regions of land (upwards of 30km) (Morato 
et al., 2016). This is critical to understand as conservation efforts de-
mand estimations of the required conservation area for endangered 
species (Cavalcanti et al., 2012; Kantek & Onuma, 2013). With any 
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region of higher jaguar density, this work confirms that increasing 
conservation land for jaguar's will only aid their ability to coexist in 
higher abundance (Sollmann et al., 2008), since longer migration's 
(greater than 30 km) of a terrestrial predator could easily span out-
side of protected areas with a radius of less than 60  km. As the 
movement of all jaguars in this region is not observed, it would be 
hypothesized and left to future work to examine how often migra-
tions of this level take place in regions with high densities of apex 
neotropical predators.

Smooth spline modeling of jaguar movement, as demonstrated in 
this study, is not without some caveats that should demand further 
attention in future work. As mentioned earlier, smoothing of paths 
requires some sacrifice of the exactness of position, and some par-
ticular movements are more difficult to catch than others. For animal 
telemetry, spline models are subject to over- and under-fitting chal-
lenges which can be observed in Figure 3. Some paths are clearly 
more variable than the smoothed model suggests, and depending 
on the density of time measurements in some region, the model may 
tend to overshoot or undershoot a sharp change in direction. As in 
recent developments in standard continuous time models, there 
are opportunities to improve the fit of the model by accounting for 
geographic features/barriers, social encounters, atmospheric con-
ditions, etc. (Togunov et al., 2021). Random walk schematics have 
shown great potential improving the modeling of animal movement, 
and these methods should be adapted to the FDA paradigm.

In this analysis, there is no accounting of measurement error, 
which is a significant element of most animal telemetry data. The 
data used in this work did not publicly provide measurement error to 
pair with GPS point estimates of position. As mentioned previously, 
some recent work has provided possible methods for accounting for 
measurement error in spline models, and these should be adaptable 
to many applications in animal movement.

The use of information theory in animal telemetry is sparse, but 
this work demonstrates the value of adapting measures of entropy 
and mutual information to animal telemetry. The derived measure 
of localized mutual information verifies that although the distance 
between jaguars has a tendency to yield higher associations in their 
movement, this is not uniformly true and there are strong associa-
tive movements between male–male and male–female pairs that can 
occur far beyond the cooccurrence potential threshold that I have 
defined in this work.

In overview, the approach used in this work effectively handles 
the challenges of spatial and temporal density, modeling continuity 
and differentiability of spatial movement, and multivariate charac-
terization of animal behavior. To elaborate on the latter, the spline 
models that I construct in this work retain information about animal 
position and rate of change of position while refining the movement 
uniformly with other animals, which ultimately allows for a unique 
and visual-friendly characterization of shifts in interaction and social 
behavior.

I commend past work in the study and modeling of animal telem-
etry, social interaction monitoring, and I encourage further work in 
modeling of these complex processes and relationships.

ACKNOWLEDG MENTS
I would like to thank Suelane Garcia Fontes, Ronaldo Goncalves Morato, 
Silvio Luiz Stanzani, and Pedro Luiz Pizzigatti Corrêa1 for their recent 
work that served as the motivation for this project, and also Ronaldo 
Goncalves Morato for the open-access publication of their data and 
his continued correspondence, which was instrumental in this project.

CONFLIC T OF INTERE S T
The author declares no conflict of interest.

AUTHOR CONTRIBUTION
Andrew B. Whetten: Conceptualization (equal); Data curation 
(equal); Formal analysis (equal); Investigation (equal); Methodology 
(equal); Project administration (equal); Software (equal); Validation 
(equal); Visualization (equal); Writing-original draft (equal); Writing-
review & editing (equal).

DATA AVAIL ABILIT Y S TATEMENT
Jaguar movement database: a GPS-based movement dataset of an 
apex predator in the Neotropics (Langley, 1999; Morato et al., 2021). 
The authors of the study own the data set and made it public and 
freely available at the Dryad Digital Repository with the following 
DOI accession number: https://doi.org/10.1002/ecy.2379. It can 
also be accessed via the following link: https://doi.org/10.5061/
dryad.2dh0223. The data are also available on Movebank at https://
doi.org/10.5441/001/1.3c4fv0m4.

ORCID
Andrew B. Whetten   https://orcid.org/0000-0002-5694-8541 

R E FE R E N C E S
Anderson-Sprecher, R., & Lenth, R. V. (1996). Spline estimation of paths using 

bearings-only tracking data. Journal of the American Statistical Association, 
91(433), 276–283. https://doi.org/10.1080/01621​459.1996.10476686

Baptiste, A. (2017). gridExtra: Miscellaneous functions for “Grid” graphics. R 
package version 2.3. https://CRAN.R-proje​ct.org/packa​ge=gridE​xtra

Buderman, F. E., Hooten, M. B., Ivan, J. S., & Shenk, T. M. (2016). A 
functional model for characterizing long-distance movement be-
haviour. Methods in Ecology and Evolution, 7(3), 264–273. https://
doi.org/10.1111/2041-210X.12465

Buderman, F. E., Hooten, M. B., Ivan, J. S., & Shenk, T. M. (2018). Large-
scale movement behavior in a reintroduced predator population. 
Ecography, 41(1), 126–139. https://doi.org/10.1111/ecog.03030

Cai, X. (2015). Methods for handling measurement error and sources of vari-
ation in functional data models. Columbia Commons. Doctoral the-
sis. https://doi.org/10.7916/D8M907CJ

Cavalcanti, S. M. C., de Azevedo, F. C. C., Tomas, M. W., Boulhosa, R. L. P., 
Crawshaw Jr, P. G. (2012). The status of the jaguar in the Pantanal. 
Cat News, 7.

Cavalcanti, S. M. C., & Gese, E. M. (2009). Spatial ecology and so-
cial interactions of Jaguars (Panthera onca) in the Southern 
Pantanal, Brazil. Journal of Mammalogy, 90, 935–945. https://doi.
org/10.1644/08-MAMM-A-188.1

Conde, D. A., Colchero, F., Zarza, H., Christensen, N. L., Sexton, J. O., 
Manterola, C., Chávez, C., Rivera, A., Azuara, D., & Ceballos, G. 
(2010). Sex matters: Modeling male and female habitat differences 
for jaguar conservation. Biological Conservation, 143, 1980–1988. 
https://doi.org/10.1016/j.biocon.2010.04.049

https://doi.org/10.1002/ecy.2379
https://doi.org/10.5061/dryad.2dh0223
https://doi.org/10.5061/dryad.2dh0223
https://doi.org/10.5441/001/1.3c4fv0m4
https://doi.org/10.5441/001/1.3c4fv0m4
https://orcid.org/0000-0002-5694-8541
https://orcid.org/0000-0002-5694-8541
https://doi.org/10.1080/01621459.1996.10476686
https://CRAN.R-project.org/package=gridExtra
https://doi.org/10.1111/2041-210X.12465
https://doi.org/10.1111/2041-210X.12465
https://doi.org/10.1111/ecog.03030
https://doi.org/10.7916/D8M907CJ
https://doi.org/10.1644/08-MAMM-A-188.1
https://doi.org/10.1644/08-MAMM-A-188.1
https://doi.org/10.1016/j.biocon.2010.04.049


    |  17799WHETTEN

Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. Wiley.
Cullen, J. L., Sana, D. A., Lima, F., Abreu, K. C., & de Uezu, A. (2013). 

Selection of habitat by the jaguar, Panthera onca (Carnivora: Felidae), 
in the upper Paraná River, Brazil. Zoologia (Curitiba), 30, 379–387. 
https://doi.org/10.1590/S1984​-46702​01300​0400003

Dai, S., Zhan, S., & Song, N. (2015). Adaptive active Contour model: A 
localized mutual information approach for medical image segmen-
tation. KSII Transactions on Internet and Information Systems, 9(5), 
1840–1855. https://doi.org/10.3837/tiis.2015.05.016

Darudi, A., Rezaeifar, S., & Bayaz, M. H. J. D. (2013). Partial mutual infor-
mation based algorithm for input variable selection for time series 
forecasting. In 2013 13th International Conference on Environment 
and Electrical Engineering (EEEIC), 2013 (pp. 313–318). https://doi.
org/10.1109/EEEIC​-2.2013.6737928

de Azevedo, F. C. C., & Murray, D. L. (2007). Spatial organization and 
food habits of jaguars (Panthera onca) in a floodplain forest. 
Biological Conservation, 137(3), 391–402. https://doi.org/10.1016/j.
biocon.2007.02.022

De Boor, C. (1978). A practical guide to splines. Springer.
Eriksson, C. E., Kantek, D., Miyazaki, S., Morato, R., Santos-Filho, M., 

Ruprecht, J., & Peres, C. (2021). Extensive aquatic subsidies lead to 
territorial breakdown and high density of an apex predator. bioRxiv, 
https://doi.org/10.1101/2021.03.29.437596

Fontes, S. G., Morato, R. G., Stanzani, S. L., & Pizzigatti Corrêa, P. L. 
(2021). Jaguar movement behavior: Using trajectories and associ-
ation rule mining algorithms to unveil behavioral states and social 
interactions. PLoS One, 16(2), e0246233. https://doi.org/10.1371/
journ​al.pone.0246233

Hamdy, M. arXiv:1906.10221 [stat.ME].
Hanks, E. M., Hooten, M. B., & Alldredge, M. W. (2015). Continuous-time 

discrete-space models for animal movement. The Annals of Applied 
Statistics, 9(1), 145–165. https://doi.org/10.1214/14-AOAS803

Harmsen, B. J., Foster, R. J., Gutierrez, S. M., Marin, S. Y., & Doncaster, C. 
P. (2010). Scrape-marking behavior of jaguars (Panthera onca) and 
pumas (Puma concolor). Journal of Mammalogy, 91(5), 1225–1234. 
https://doi.org/10.1644/09-MAMM-A-416.1

Harris, K. J., & Blackwell, P. G. (2013). Flexible continuous-time modelling 
for heterogeneous animal movement. Ecological Modelling, 255, 29–
37. https://doi.org/10.1016/j.ecolm​odel.2013.01.020

Hefley, T. J., Broms, K. M., Brost, B. M., Buderman, F. E., Kay, S. L., Scharf, 
H. R., Tipton, J. R., Williams, P. J., & Hooten, M. B. (2017). The basis 
function approach for modeling autocorrelation in ecological data. 
Ecology, 98(3), 632–646. https://doi.org/10.1002/ecy.1674

Henning, B., Kist, A., Pinheiro, A., Camargo, R. L., Batista, T. M., Carneiro, 
E. M., & dos Reis, S. F. (2017). Modelling animal activity as curves: An 
approach using wavelet-based functional data analysis. Open Journal 
of Statistics, 7(2), 203–215. https://doi.org/10.4236/ojs.2017.72016

Hijman, R. J. (2019). geosphere: Spherical Trigonometry. R package version 
1.5-10. https://CRAN.R-proje​ct.org/packa​ge=geosp​here

Hijmans, R. J. (2019). geosphere: Spherical trigonometry. R package version 
1.5-10. https://CRAN.R-proje​ct.org/packa​ge=geosp​here

Hooten, M. B., & Johnson, D. S. (2016). Basis function models for animal 
movement. Journal of the American Statistical Association, 112(518), 
578–589. https://doi.org/10.1080/01621​459.2016.1246250

Hooten, M. B., Johnson, D. S., McClintock, B. T., & Morales, J. M. (2017). 
Animal movement statistical models for telemetry data (1st ed.). Taylor 
and Francis. https://doi.org/10.1201/97813​15117744

Hooten, M. B., Scharf, H. R., Hefley, T. J., Pearse, A. T., & Weegman, M. 
D. (2018). Animal movement models for migratory individuals and 
groups. Methods in Ecology and Evolution, 9(7), 1692–1705. https://
doi.org/10.1111/2041-210X.13016

Johnson, D. S., London, J. M., Lea, M.-A., & Durban, J. W. (2008). 
Continuous-time correlated random walk model for animal telemetry 
data. Ecology, 89(5), 1208–1215. https://doi.org/10.1890/07-1032.1

Jonsen, I., Flemming, J., & Myers, R. (2005). Robust state-space mod-
eling of animal movement data. Ecology, 45, 589–598. https://doi.
org/10.1890/04-1852

Kantek, D. L. Z., & Onuma, S. S. M. (2013). Jaguar Conservation in the 
region of Taiamã Ecological Station, Northern Pantanal, Brazil. 
Publicatio UEPG Biológicas e da Saúde, 19(1), 69–74. https://doi.
org/10.5212/Publ.Biolo​gicas.v.19i1.0008

Klein, S., van der Heide, U. A., Lips, I. M., van Vulpen, M., Staring, M., 
& Pluim, J. P. W. (2008). Automatic segmentation of the pros-
tate in 3D MR images by atlas matching using localized mu-
tual information. Medical Physics, 35(4), 1407–1417. https://doi.
org/10.1118/1.2842076

Langley, R. (1999). Dilution of precision. GPS World, 10, 52–59.
Lewis, M. A., Fagan, W. F., Auger-Méthé, M., Frair, J., Fryxell, J. M., Gros, 

C., Gurarie, E., Healy, S. D., & Merkle, J. A. (2021). Learning and 
animal movement. Frontiers in Ecology and Evolution, 9, 441. https://
doi.org/10.3389/fevo.2021.681704

McClintock, B. T., Johnson, D. S., Hooten, M. B., Ver Hoef, J. M., & 
Morales, J. M. (2014). When to be discrete: the importance of time 
formulation in understanding animal movement. Movement Ecology, 
2, 21. https://doi.org/10.1186/s4046​2-014-0021-6

McClintock, B., London, J., Cameron, M., & Boveng, P. (2015). Modeling 
animal movement using the Argos satellite telemetry location error 
ellipse. Methods in Ecology and Evolution, 6, 266–277.

Meyer, P. E. (2014). infotheo: Information-theoretic measures. R package 
version 1.2.0. https://CRAN.R-proje​ct.org/packa​ge=infotheo

Morales, J., Haydon, D., Friar, J., Holsinger, K., & Fryxell, J. (2004). 
Extracting more out of relocation data: building movement models 
as mixtures of random walks. Ecology, 85, 2436–2445. https://doi.
org/10.1890/03-0269

Morato, R. G., Kantek, D. L. Z., Miyazaki, S., Deluque, T., & de Paula, R. C. 
(2021). Data from: Jaguar movement database—a GPS-based move-
ment dataset of an apex predator in the Neotropics. Movebank Data 
Repository. https://doi.org/10.5441/001/1.3c4fv0m4

Morato, R. G., Stabach, J. A., Fleming, C. H., Calabrese, J. M., De Paula, R. 
C., Ferraz, K. M. P. M., Kantek, D. L. Z., Miyazaki, S. S., Pereira, T. D. 
C., Araujo, G. R., Paviolo, A., De Angelo, C., Di Bitetti, M. S., Cruz, P., 
Lima, F., Cullen, L., Sana, D. A., Ramalho, E. E., Carvalho, M. M., … 
Leimgruber, P. (2016). Space use and movement of a neotropical top 
predator: The Endangered Jaguar. PLoS One, 11, e0168176. https://
doi.org/10.1371/journ​al.pone.0168176

Morato, R. G., Thompson, J. J., Paviolo, A., de La Torre, J. A., Lima, F., 
McBride, R. T., Paula, R. C., Cullen, L., Silveira, L., Kantek, D. L. Z., 
Ramalho, E. E., Maranhão, L., Haberfeld, M., Sana, D. A., Medellin, 
R. A., Carrillo, E., Montalvo, V., Monroy-Vilchis, O., Cruz, P., … 
Ribeiro, M. C. (2018). Jaguar movement data-base: A GPS-based 
movement dataset of an apex predator in the Neotropics. Ecology, 
99, 1691. https://doi.org/10.1002/ecy.2379

Noonan, M. J., Fleming, C. H., Akre, T. S., Drescher-Lehman, J., Gurarie, 
E., Harrison, A.-L., Kays, R., & Calabrese, J. M. (2019). Scale-
insensitive estimation of speed and distance traveled from animal 
tracking data. Movement Ecology, 7, 35. https://doi.org/10.1186/
s4046​2-019-0177-1

Owoeye, K., Musolesi, M., & Hailes, S. (2018) Characterizing animal 
movement patterns across different scales and habitats using infor-
mation theory. bioRxiv, 311241. https://doi.org/10.1101/311241

Palomares, F., González-Borrajo, N., Chávez, C., Rubio, Y., Verdade, L. M., 
Monsa, R., Harmsen, B., Adrados, B., & Zanin, M. (2018). Scraping 
marking behaviour of the largest Neotropical felids. PeerJ, 6, e4983. 
https://doi.org/10.7717/peerj.4983

Parton, A., & Blackwell, P. G. (2017). Bayesian inference for multistate 
‘Step and Turn’ animal movement in continuous time. Journal of 
Agricultural, Biological and Environmental Statistics, 22, 373–392. 
https://doi.org/10.1007/s1325​3-017-0286-5

https://doi.org/10.1590/S1984-46702013000400003
https://doi.org/10.3837/tiis.2015.05.016
https://doi.org/10.1109/EEEIC-2.2013.6737928
https://doi.org/10.1109/EEEIC-2.2013.6737928
https://doi.org/10.1016/j.biocon.2007.02.022
https://doi.org/10.1016/j.biocon.2007.02.022
https://doi.org/10.1101/2021.03.29.437596
https://doi.org/10.1371/journal.pone.0246233
https://doi.org/10.1371/journal.pone.0246233
https://doi.org/10.1214/14-AOAS803
https://doi.org/10.1644/09-MAMM-A-416.1
https://doi.org/10.1016/j.ecolmodel.2013.01.020
https://doi.org/10.1002/ecy.1674
https://doi.org/10.4236/ojs.2017.72016
https://CRAN.R-project.org/package=geosphere
https://CRAN.R-project.org/package=geosphere
https://doi.org/10.1080/01621459.2016.1246250
https://doi.org/10.1201/9781315117744
https://doi.org/10.1111/2041-210X.13016
https://doi.org/10.1111/2041-210X.13016
https://doi.org/10.1890/07-1032.1
https://doi.org/10.1890/04-1852
https://doi.org/10.1890/04-1852
https://doi.org/10.5212/Publ.Biologicas.v.19i1.0008
https://doi.org/10.5212/Publ.Biologicas.v.19i1.0008
https://doi.org/10.1118/1.2842076
https://doi.org/10.1118/1.2842076
https://doi.org/10.3389/fevo.2021.681704
https://doi.org/10.3389/fevo.2021.681704
https://doi.org/10.1186/s40462-014-0021-6
https://CRAN.R-project.org/package=infotheo
https://doi.org/10.1890/03-0269
https://doi.org/10.1890/03-0269
https://doi.org/10.5441/001/1.3c4fv0m4
https://doi.org/10.1371/journal.pone.0168176
https://doi.org/10.1371/journal.pone.0168176
https://doi.org/10.1002/ecy.2379
https://doi.org/10.1186/s40462-019-0177-1
https://doi.org/10.1186/s40462-019-0177-1
https://doi.org/10.1101/311241
https://doi.org/10.7717/peerj.4983
https://doi.org/10.1007/s13253-017-0286-5


17800  |    WHETTEN

Ramsay, J., & Dalzell, C. (1991). Some tools for functional data analysis. 
Journal of the Royal Statistical Society. Series B (Methodological), 53(3), 
539–572. https://doi.org/10.1111/j.2517-6161.1991.tb018​44.x

Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis (2nd 
ed.). Springer.

Scharf, H. R., Hooten, M. B., Fosdick, B. K., Johnson, D. S., London, J. M., 
& Durban, J. W. (2016). Dynamic social networks based on move-
ment. The Annals of Applied Statistics, 10(4), 2182–2202. https://doi.
org/10.1214/16-AOAS970

Scharf, H. R., Hooten, M. B., Johnson, D. S., & Durban, J. W. (2018). Process 
convolution approaches for modeling interacting trajectories. 
Environmetrics, 29(3), e2487. https://doi.org/10.1002/env.2487

Sneha, J., & Ma, S. (2020). Functional measurement error in functional 
regression. Canadian Journal of Statistics, 48(2), 238–258. https://
doi.org/10.1002/cjs.11529

Sollmann, R., Torres, N., & Silveira, L. (2008). Jaguar conservation in Brazil: 
The role of protected areas. Cat News Spec. Issue 4.

Togunov, R. R., Derocher, A. E., Lunn, N. J., & Auger-Méthé, M. (2021). 
Characterising menotactic behaviours in movement data using hid-
den Markov models. Methods in Ecology and Evolution, 12(10), 1984–
1998. https://doi.org/10.1111/2041-210X.13681

Towns, V., Leon, R., de la Maza, J., & de la Torre, J. A. (2017). Marking 
behaviours of jaguars in a tropical rainforest of southern Mexico. 
CAT News, 66, 33–35.

Ullah, S., & Finch, C. F. (2013). Applications of functional data analysis: 
A systematic review. BMC Medical Research Methodology, 13, 43. 
https://doi.org/10.1186/1471-2288-13-43

Wand, M. P., & Jones, M. C. (1995). Kernel smoothing. Chapman Hall/CRC.
Whetten, A. B. (2021). Localized Mutual Information Monitoring 

of Pairwise Associations of Animal Movement. arXiv. 
arXiv:2111.10628. https://arxiv.org/abs/2111.10628

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. 
Springer-Verlag.

SUPPORTING INFORMATION
Additional supporting information may be found in the online 
version of the article at the publisher’s website.

How to cite this article: Whetten, A. B. (2021). Smoothing 
splines of apex predator movement: Functional modeling 
strategies for exploring animal behavior and social interactions. 
Ecology and Evolution, 11, 17786–17800. https://doi.
org/10.1002/ece3.8294

https://doi.org/10.1111/j.2517-6161.1991.tb01844.x
https://doi.org/10.1214/16-AOAS970
https://doi.org/10.1214/16-AOAS970
https://doi.org/10.1002/env.2487
https://doi.org/10.1002/cjs.11529
https://doi.org/10.1002/cjs.11529
https://doi.org/10.1111/2041-210X.13681
https://doi.org/10.1186/1471-2288-13-43
https://arxiv.org/abs/2111.10628
https://doi.org/10.1002/ece3.8294
https://doi.org/10.1002/ece3.8294

