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Simple Summary: Computer-aided segmentation and machine learning added values of clinical
parameters and diffusion-weighted imaging radiomics for predicting nodal metastasis in endometrial
cancer, with a diagnostic performance superior to criteria based on lymph node size or apparent
diffusion coefficient.

Abstract: Precise risk stratification in lymphadenectomy is important for patients with endome-
trial cancer (EC), to balance the therapeutic benefit against the operation-related morbidity and
mortality. We aimed to investigate added values of computer-aided segmentation and machine
learning based on clinical parameters and diffusion-weighted imaging radiomics for predicting
lymph node (LN) metastasis in EC. This prospective observational study included 236 women
with EC (mean age ± standard deviation, 51.2 ± 11.6 years) who underwent magnetic resonance
(MR) imaging before surgery during July 2010–July 2018, randomly split into training (n = 165)
and test sets (n = 71). A decision-tree model was constructed based on mean apparent diffusion
coefficient (ADC) value of the tumor (cutoff, 1.1 × 10−3 mm2/s), skewness of the relative ADC
value (cutoff, 1.2), short-axis diameter of LN (cutoff, 1.7 mm) and skewness ADC value of the
LN (cutoff, 7.2 × 10−2), as well as tumor grade (1 vs. 2 and 3), and clinical tumor size (cutoff,
20 mm). The sensitivity and specificity of the model were 94% and 80% for the training set and
86%, 78% for the independent testing set, respectively. The areas under the receiver operating
characteristics curve (AUCs) of the decision-tree was 0.85—significantly higher than the mean
ADC model (AUC = 0.54) and LN short-axis diameter criteria (AUC = 0.62) (both p < 0.0001).
We concluded that a combination of clinical and MR radiomics generates a prediction model
for LN metastasis in EC, with diagnostic performance surpassing the conventional ADC and
size criteria.
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1. Introduction

Endometrial cancer (EC) is one of the most common gynecological malignancies world-
wide. Its incidence rate has increased in successive generations in countries with rapid
socioeconomic transitions [1]. Early-stage EC has favorable outcomes [2]; however, the
prognosis for patients with lymph node (LN) involvement is considerably poorer. A lym-
phadenectomy is valuable in defining nodal status and tailoring adjuvant therapy [2]. How-
ever, routine lymphadenectomy in patients with EC remains controversial [3,4] because of
the potential postoperative morbidity and the technical difficulty of the procedure in obese
patients. However, emerging evidence suggests the survival benefit of systematic lym-
phadenectomy in patients with EC with intermediate or high risk for nodal metastasis [5].
This evidence highlights the importance of precise risk stratification in lymphadenectomy
to balance the therapeutic benefit against perioperative morbidity and mortality.

Magnetic resonance (MR) imaging is useful in defining the extent of nodal disease to
guide the anatomic border for lymphadenectomy [6]. However, conventional MR imaging
using a short-axis diameter of 10 mm or greater to identify suspicious LN could only achieve
a modest sensitivity of 48% [7]. Diffusion-weighted (DW) imaging has proven to increase
the conspicuity in pelvic LN identification [8,9], but the role of the apparent diffusion
coefficient (ADC) values in the prediction of LN metastasis in EC remains debatable.
The mean [10] and relative [11] ADC values can be considerably lower in metastatic
nodes than in benign nodes, but contradictory results have also been reported [9]. The
discordant results in literature may be partly explained by the considerable variations
in interobserver and intraobserver reproducibility in measuring LN ADC values [12].
Obtaining reliable ADC quantification for LN is challenging because of the small size of
LN. To optimize the diagnostic performance of DW imaging in LN staging, the analytical
technique should be refined. To achieve reproducible segmentation results, whole tumor
volumetric segmentation, rather than focused selected tumor region of interest (ROI), could
be used. LN was segmented using a computer-assisted method based on objective imaging
characteristics. The high-throughput radiomic ADC features through machine learning
have potentials in building a prediction model to serve as a risk stratification tool for
lymphadenectomy and guide the extent of operation through the localization of potential
LN metastasis regions.

The aim of this study was to investigate added values of computer-aided segmenta-
tion and machine learning based on clinical parameters and diffusion-weighted imaging
radiomics for predicting nodal metastasis in endometrial cancer.

2. Materials and Methods
2.1. Patients and Imaging Protocol

This study was performed in a prospective observational cohort diagnosed as
having EC during July 2010–July 2018 and during in a tertiary referral center by a
dedicated gynecologic oncology interdisciplinary team. The study was approved by
the local institutional review board (approval number: IRB101-2187B and IRB103-
7316A3), and written informed consent was obtained from all patients. Inclusion
criteria were (1) histologically proven and untreated EC for which operations were
scheduled and (2) age ≥ 18 years. Exclusion criteria were (1) MR contraindications
(cardiac pacemaker, insulin pump, cochlear implant, and metal shrapnel), (2) presence
of pelvic or hip metal prostheses, (3) impaired renal function with estimated glomerular
filtration rates < 60 mL/min/1.73 m2, and (4) inability to provide informed consent. A
flow diagram of the cohort selection is presented in Figure 1. All imaging exams were
conducted with a 3-T MR scanner (Tim Trio; Siemens, Erlangen, Germany) before the
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patients were scheduled for operations, with the detailed imaging protocol stated in
the Appendix A.
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Figure 1. Flowchart of study population. TP = true positive, TN = true negative, FP = false positive, FN = false negative.

2.2. Image Processing and Feature Extraction

By using in-house developed software written in MATLAB (version 8.3 R2014a; Math-
Works, Natick, MA, USA), we manually contoured the ROIs of the main tumors based
on DW imaging. Regional largest LNs were segmented using a computer-aided method
(Figure 2), and the details are described in the Appendix A. To improve the reliability
of ADC comparison, normalized ADC (nADC) was computed. Four classes of ADC pa-
rameter were extracted: tumor ADC (ADCt), LN ADC (ADCln), absolute ADC difference
between LN and tumor (rADC), and absolute ADC difference between tumor mean value
and LN histogram value (rmADC). Each class comprised 12 histogram-derived data: mean,
minimum and maximal pixel ADC (ADCmean, ADCmin and ADCmax, respectively); 10th-,
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25th-, 50th-, 75th-, and 90th-percentile pixel ADC (ADCp10, ADCp25, ADCp50, ADCp75,
and ADCp90, respectively), skewness, kurtosis, standard deviation, and variation. The 48
parameters were normalized with bladder ADC to generate 96 ADC-related parameters.
In addition, 6 MR imaging anatomical parameters (tumor volume, and LN: area, long-axis,
short-axis, mean diameters, and short-to-long axis ratio) and 7 standard-of-care preoper-
atively available clinical parameters, including histology [6,13,14], tumor grade [13–21],
tumor size [18,20,22], low segment location [13,22], presence of deep myometrial inva-
sion [6,13,14,16,18–22], pelvic LN metastasis based on MR report [6], and serum CA-125
level [6,13,15–17], were included for analysis. Finally, 109 clinical and radiomic parameters
were used for model development.
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Figure 2. Computer-assisted segmentation of the lymph node (LN) based on diffusion-weighted
(DW) imaging. (A) The graphical user interface using region growing algorithm for segmentation
of LN. The apparent diffusion coefficient (ADC) values of the lymph node are used for histogram
analysis. Short and long axes of the segmented lymph node were calculated automatically. (B) The
region-growing algorithm correctly segmented the LN on DW imaging. (C) The segmented ADC
map based on the result of (B).

2.3. Histopathology

The reference standard is based on final histopathology. All patients underwent a
standard surgical procedure. Surgeons with prior knowledge of the MR imaging findings
carefully identified any possible metastasis during pelvic lymphadenectomy. The details
are described in the Appendix A.

2.4. Statistical Analysis

Descriptive statistics were used to summarize the characteristics of the study pop-
ulation. We used the t-test on normally distributed variables, Mann–Whitney U test for
non-parametric continuous data, and Chi-square or Fisher’s exact test on categorical data,
when appropriate. A weighted decision-tree model based on the classification and regres-
sion tree method was applied to build the prediction model for LN metastasis through the
training/validation and testing process. The dataset of total 236 patients was randomly
split into training and testing sets consisting of 16 LN metastasis and 149 absent patients
(70%), and 7 LN metastasis and 64 absent patients (30%) respectively. A decision-tree
method on the region-based training data was employed for feature selection and deter-
mining the cut-off for the most appropriate model—RadScore, initially including all the
MR parameters. The rpart [23] package in R was used, to fit the trees with default cp = 0.01
and setting minsplit = 5 and maxdepth = 4 to control the size of the trees, and 10-fold
cross-validation process repeated 10 times was perform to select the best fitting. Thus,
a binary RadScore indicated the corresponding classification according to the tree rule
can be obtained, and it was then combined with clinical parameters to fit a composite
tree model—RadSignature. The success criteria for prediction were set to achieve high
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sensitivity and negative predictive value (NPV) while maintaining non-inferior specificity
to the standard of care based on metrics in internal validation, and the performance of
the model was assessed independently using testing set after training/validation step.
The quality metrics (sensitivity, specificity, and diagnostic accuracy) of the tree model and
conventional single parameter model based on ADC values (ADC model) or LN short-axis
diameter (SA model) were determined and presented with 95% confidence intervals. The
cut-off values for the ADC or SA models were chosen based on the Youden index. The
areas under the receiver operating characteristic (ROC) curve (AUCs) were calculated to
compare the diagnostic performance among models based on the De Long methods. All
data were analyzed using the SPSS (version 11; SPSS, Chicago, IL, USA), MedCalc for
Windows (version 9.2.0.0; MedCalc Software; Mariakerke, Belgium), or R (version 3.4.1).
All tests were two-sided, and p < 0.05 was considered statistically significant.

3. Results
3.1. Demographics

From July 2010 to July 2018, a consecutive cohort of 300 patients was enrolled, and a
total of 236 patients were eligible for final analysis with mean ± standard deviation age
51.2 ± 11.6 years. Table 1 lists the clinical and demographic characteristics of the study
population. The interval between the MR examination and surgery was 27 ± 4 days.

Table 1. Demographics of the study participants.

Variables
RadScore

p-Value
All Negative Positive

n 236 (100.0) 213 (90.3) 23 (9.7)

Age (year, mean ± SD) 51.2 ± 11.6 50.6 ± 11.8 56.2 ± 7.7 0.004 *

Histology <0.0001 *
Non-endometrioid type 17 (7.2) 9 (3.8) 8 (3.4)
Endometrioid type 219 (92.8) 204 (86.5) 15 (6.3)

Grade <0.0001 *
3 44 (18.6) 30 (12.7) 14 (5.9)
1 + 2 192 (81.4) 183 (77.6) 9 (3.8)

Tumor size ≥ 20 mm 0.009 *
Presence 140 (59.3) 120 (50.8) 20 (8.5)
Absence 96 (40.7) 93 (39.5) 3 (1.2)

Deep myometrial invasion <0.0001 *
Presence 55 (23.3) 39 (16.6) 16 (6.7)
Absence 181 (76.7) 174 (73.7) 7 (3.0)

Low segment involvement 0.002 *
Presence 138 (58.5) 117 (49.6) 21 (8.9)
Absence 98 (41.5) 96 (40.7) 2 (0.8)

CA125 (mean ± SD, U/mL) 52.4 ± 202.4 33.2 ± 43.9 230.7 ± 618.2 0.140
SD = standard deviation. * p < 0.05, Data in parenthesis represents percentage.

3.2. Data Distribution

An average of 27 nodes per patient was harvested from the pelvic sidewalls (range:
0–83, total: 5078). The positive cases were 33 among the 472 analyzed regions (7.0%),
and 23 among the 236 patients (9.7%) based on the final pathology report, suggest-
ing sufficient positive and negative classes for model fitting. The 23 patients with
pelvic LN metastasis exhibited significant differences in age, histology, tumor grade,
tumor size, deep myometrial invasion and low segment involvement of the uterus,
as summarized in Table 1. Patients with metastatic nodes tended to have an older
(p = 0.004), non-endometrioid type (p < 0.001), grade 3 tumor (p < 0.001), larger tumor
size (p = 0.009), deep myometrial invasion (p < 0.0001) and low segment involvement
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on MR imaging (p = 0.002). The stepwise multivariate analysis identified the non-
endometrioid type and presence of deep myometrial invasion being the independent
clinical risk factors. We also found the positive LNs having a significantly larger short-
axis diameter (p < 0.0001) and short-to-long axis ratio (p < 0.0001), and significant lower
tumor ADCmean (p < 0.0001), ADCmin (p = 0.003), but not tumor ADCmax (p = 0.316).
The ADC values of the metastatic LNs were significantly lower than those of the benign
LNs (ADCmean, p = 0.049; ADCmin, p = 0.017). The correlation matrix demonstrated
a high correlation among the ADC parameters (Appendix A Figure A1). None of the
LNs showed lobulated or spiculated margins indicating metastasis.

3.3. Model Comparison and Subgroup Analysis

A RadScore was built using the decision-tree analysis, based on the radiomics pa-
rameters including mean ADC value of the tumor (ADCtmean: cutoff, 1.1 × 10−3 mm2/s),
skewness of the relative ADC value (rADCskewness: cutoff, 1.2), short-axis diameter of LN
(cutoff, 1.7 mm) and skewness ADC value of the LN (ADClnskewness: cutoff, 7.2 × 10−2)
(Figure 3a). The characteristics of patients according to the risk group based on the ra-
diomics parameters (RadScore) is detailed in Table 2. A RadSignature was composed based
on the RadScore, tumor grade (1 and 2 vs. 3), and clinical tumor size (cutoff, 20 mm)
(Figure 3b).

Bootstrap analysis of the training dataset revealed a sensitivity, specificity, accuracy,
positive predictive value, and NPV of 95.51% (87.9–100%), 86.91% (82.8–90.9%), 87.78%
(84.2–91.2%), 45.06% (38.3–53.4%), and 99.42% (98.4–100%), respectively, for the RadSigna-
ture on a regional basis. The ADC model was based solely on the mean ADC value of the
LN (ADClnmean < 1.1 × 10−3 mm2/s). The SA model was based on a short-axis diameter
of LN > 5 mm.
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Table 2. Characteristics of patients according to the risk group based on radiomics parameters (RadScore).

Variables
Lymph Node Metastasis

p-Value
All Absent Present

n 236 (100.0) 151 (64.0) 85 (36.0)

Age (year, mean ± SD) 51.2 ± 11.6 49.8 ± 11.8 53.6 ± 10.8 0.017 *

Histology 0.005 *
Non-endometrioid type 17 (7.2) 5 (2.1) 12 (5.1)
Endometrioid type 219 (92.8) 146 (61.9) 73 (30.9)

Grade 0.049 *
3 44 (18.6) 22 (9.3) 22 (9.3)
1 + 2 192 (81.4) 129 (54.7) 63 (26.7)

Tumor size ≥ 20 mm 0.002 *
Presence 140 (59.3) 78 (33.1) 62 (26.2)
Absence 96 (40.7) 73 (30.9) 23 (9.8)

Deep myometrial invasion <0.0001 *
Presence 55 (23.3) 20 (8.5) 35 (14.8)
Absence 181 (76.7) 131 (55.5) 50 (21.2)

Low segment involvement 0.015 *
Presence 138 (58.5) 79 (33.5) 59 (25.0)
Absence 98 (41.5) 72 (30.5) 26 (11.0)

CA125 (mean ± SD, U/mL) 52.4 ± 202.4 32.4 ± 36.3 87.9 ± 332.0 0.129
SD = standard deviation. * p < 0.05, Data in parenthesis represents percentage.

The diagnostic performances of models for the detection of pelvic LN metastasis
are summarized in Table 3. On the regional basis, the sensitivity of the RadSignature
for detecting LN metastasis (100%) was significantly higher than that of the ADC (44%,
p = 0.0001) or SA model (76%, p = 0.0313). The specificity of the RadSignature for detecting
LN metastasis (91%) was also significantly higher than that of the ADC (75%, p < 0.0001) or
SA model (61%, p < 0.0001), for the testing dataset. On a per patient basis, the sensitivity of
the RadSignature for detecting LN metastasis (100%) was significantly higher than that of
the ADC model (59%, p = 0.0156). The sensitivity of RadSignature was also higher than SA
model (88%, p = 0.5), but did not reach statistical significance level. The specificity of the
RadSignature to detect LN metastasis (90%) was significantly higher than that of the ADC
(67%, p = 0.0001) or SA model (41%, p < 0.0001), for the testing dataset. Based on the ROC
analysis, the RadSignature significantly outperformed the ADC and SA models for both
the region and patient bases.

The pairwise comparisons of ROC curves in detecting pelvic lymph node metastasis
is summarized in Table 4. The only two false-negativity of the RadSignature demonstrated
microscopic tumor nests of 0.8 mm and 3.3 mm, respectively (Figure 4).

The implication of over-diagnosis causes an unnecessary LN dissection, particularly in
low-risk patients. Therefore, we conducted a post-hoc subgroup analysis to investigate the
possibility of the over-diagnosis or under-diagnosis in a specific risk group. Subgroups were
defined according to the European Society of Gynaecological Oncology–European Society
for Medical Oncology guidelines [24]: (1) low-risk (stage IA, grade 1–2, endometrioid
type), (2) intermediate-risk (stage IA, grade 3 EC or IB grade 1–2 endometrioid type), (3)
high-risk (Stage IB, grade 3 endometrioid type or any stage any grade non-endometrioid
type). The RadSignature outperformed the ADC and SA models in all the risk groups for
all the study participants (Table 5). Notably, on the per patient basis, the RadSignature
retained a sensitivity of 100% to detect LN metastasis in all groups; moreover, its specificity
was significantly higher than that of the ADC (p = 0.0005) or SA model (p < 0.0001) in
the low-risk group. The specificity of the tree model to detect LN metastasis (86%) was
significantly higher than that of the SA model in the intermediate-risk (p = 0.0078) and
high-risk (p = 0.0313) groups.
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Table 3. Diagnostic accuracy for detecting pelvic lymph node metastasis based on selected magnetic resonance (MR)
imaging features.

Parameters n TP TN FP FN Sensitivity Specificity Accuracy

Region basis
(Training)

RadSignature 330 22 267 40 1 95.7% (78.1–99.9%) 87.0% (82.7–90.5%) 87.6% (83.5–90.9%)
RadScore 330 22 248 59 1 95.7% (78.1–99.9%) 80.8% (75.9–85.0%) 81.8% (77.2–85.8%)

ADC 330 21 91 216 2 91.3% (72.0–98.9%) 29.6% (24.6–35.1%) * 33.9% (28.8–39.3%) *
SA 330 16 213 94 7 69.6% (47.1–86.8%) * 69.4% (63.9–74.5%) * 69.4% (64.1–74.3%) *

Region basis
(Testing)

RadSignature 142 8 114 18 2 80.0% (44.4–97.5%) 86.4% (79.3–91.7%) 85.9% (79.1–91.2%)
RadScore 142 8 106 26 2 80.0% (44.4–97.5%) 80.3% (72.5–86.7%) 80.3% (72.8–86.5%)

ADC 142 7 32 100 3 70.0% (34.8–93.3%) 24.2% (17.2–32.5%) * 27.5% (20.3–35.6%) *
SA 142 7 85 47 3 70.0% (34.8–93.3%) 64.4% (55.6–72.5%) * 64.8% (56.3–72.6%) *

Patient basis
(Training)

RadSignature 165 15 119 30 1 93.8% (69.8–99.8%) 79.9% (72.5–86.0%) 81.2% (74.4–86.9%)
RadScore 165 15 105 44 1 93.8% (69.8–99.8%) 70.5% (62.5–77.7%) 72.7% (65.3–79.4%)

ADC 165 15 25 124 1 93.8% (69.8–99.8%) 16.8% (11.2–23.8%) * 24.2% (17.9–31.5%) *
SA 165 12 80 69 4 75.0% (47.6–92.7%) 53.7% (45.3–61.9%) * 55.8% (47.8–63.5%) *

Patient basis
(Testing)

RadSignature 71 6 50 14 1 85.7% (42.1–99.6%) 78.1% (66.0–87.5%) 78.9% (67.6–87.7%)
RadScore 71 6 44 20 1 85.7% (42.1–99.6%) 68.8% (55.9–79.8%) 70.4% (58.4–80.7%)

ADC 71 6 9 55 1 85.7% (42.1–99.6%) 14.1% (6.6–25.0%) * 21.1% (12.3–32.4%) *
SA 71 5 28 36 2 71.4% (29.0–96.3%) 43.8% (31.4–56.7%) * 46.5% (34.5–58.7%) *

Data in parentheses are 95% confidence intervals. TP = true positive, TN = true negative, FP = false positive, FN = false negative,
PPV = positive predictive value, NPV = negative predictive value, SA = short axis, ADC = mean apparent diffusion coefficient value of the
lymph node. * p < 0.05 McNemar test, as compared with the RadSignature model.

Table 4. Pairwise comparisons of ROC curves in detecting pelvic lymph node metastasis.

Variables AUC Value (95% CI) p Value

Region basis
RadSignature 0.89 (0.86–0.92)
ADC 0.56 (0.52–0.61)
SA 0.69 (0.64–0.73)
RadSignature vs. ADC <0.0001 †

RadSignature vs. SA <0.0001 †

ADC vs. SA 0.0406

Patient basis
RadSignature 0.85 (0.80–0.90)
ADC 0.54 (0.47–0.60)
SA 0.62 (0.56–0.69)
RadSignature vs. ADC <0.0001 †

RadSignature vs. SA <0.0001 †

ADC vs. SA 0.1742
Data in parentheses are 95% confidence intervals. ROC = receiver operating characteristic, SA = short axis,
ADC = mean apparent diffusion coefficient value of the lymph node. † The differences were significant according
to Bonferroni correction for multiple comparisons.
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endometrioid adenocarcinoma with squamous differentiation, low segment and cervical stromal involvement, pathological
staging T2N1mi; tumor size of 6.5 cm, and serum CA125 level of 37.3 U/mL. The lymph node (LN) was regarded false-
negative based on the RadSignature criteria: mean ADC value of the tumor (ADCtmean: 0.928 × 10−3 mm2/s), skewness of
the relative ADC value (rADCskewness: 0.051), short-axis diameter of LN (1.506 mm) and skewness ADC value of the LN
(0.413 × 10−2). Microscopic nodal metastasis with a tumor nest size of 0.8 mm was identified based upon the hematoxylin
and eosin (H&E) stain. (b) A 6-year-old patient with grade 2 endometrioid adenocarcinoma, no low segment and cervical
stromal involvement, pathological staging T1bN1a; no low segment involvement, tumor size 1 cm, CA125 = 24.3 U/mL.
The LN was regarded false-negative based on the RadSignature criteria: mean ADC value of the tumor (ADCtmean:
0.779 × 10−3 mm2/s), skewness of the relative ADC value (rADCskewness: 2.3263), short-axis diameter of LN (3.364 mm)
and skewness ADC value of the LN (2.178 × 10−2). Nodal metastasis with a tumor nest size of 3.3 mm was identified based
upon the H&E stain.

Table 5. Subgroup analysis of diagnostic accuracy of MR imaging for detecting pelvic lymph node metastasis.

Parameters n TP TN FP FN Sensitivity Specificity Accuracy

Low risk
RadSignature 165 4 135 25 1 80.0% (28.4–99.5%) 84.4% (77.8–89.6%) 84.2% (77.8–89.4%)
RadScore 165 4 116 44 1 80.0% (28.4–99.5%) 72.5% (64.9–79.3%) 72.7% (65.3–79.4%)
ADC 165 5 26 134 0 100.0% (47.8–100.0%) 16.3% (10.9–22.9%) * 18.8% (13.1–25.6%) *
SA 165 1 86 74 4 20.0% (0.5–71.6%) * 53.8% (45.7–61.7%) * 52.7% (44.8–60.5%) *
Intermediate risk
RadSignature 36 3 20 12 1 75.0% (19.4–99.4%) 62.5% (43.7–78.9%) 63.9% (46.2–79.2%)
RadScore 36 3 19 13 1 75.0% (19.4–99.4%) 59.4% (40.6–76.3%) 61.1% (43.5–76.9%)
ADC 36 4 4 28 0 100.0% (39.8–100.0%) 12.5% (3.5–29.0%) * 22.2% (10.1–39.2%) *
SA 36 2 14 18 2 50.0% (6.8–93.2%) 43.8% (26.4–62.3%) * 44.4% (27.9–61.9%) *
High risk
RadSignature 35 14 14 7 0 100.0% (76.8–100.0%) 66.7% (43.0–85.4%) 80.0% (63.1–91.6%)
RadScore 35 14 14 7 0 100.0% (76.8–100.0%) 66.7% (43.0–85.4%) 80.0% (63.1–91.6%)
ADC 35 12 4 17 2 85.7% (57.2–98.2%) 19.0% (5.4–41.9%) * 45.7% (28.8–63.4%) *
SA 35 14 8 13 0 100.0% (76.8–100.0%) 38.1% (18.1–61.6%) * 62.9% (44.9–78.5%) *

Data in parentheses are 95% confidence intervals. TP = true positive, TN = true negative, FP = false positive, FN = false negative,
PPV = positive predictive value, NPV = negative predictive value, SA = short axis, ADC = mean apparent diffusion coefficient value of the
lymph node. * p < 0.05 McNemar test, as compared with the RadSignature model.

4. Discussion

In the present study, we combined all available clinical and MR imaging parameters
to build a composite prediction model— the RadSignature. The major advantages of
decision-tree analysis are ease in interpretation of the tree using the binary splitting rule,
which efficiently balances model accuracy and model simplicity or interpretability, and
familiarity of the end user with the modeling technique. The RadSignature model yields an
excellent NPV (98%), thus a subset of low-risk patients with EC who may not benefit from
lymphadenectomy can be reliably identified. For patients undergoing lymphadenectomy,
the prediction model could guide surgery through localization of potential laterality of
nodal metastasis with reasonable accuracy. To the best of our knowledge, this is the first
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model predicting LN metastasis in EC based on the most comprehensive clinical and
radiomic information obtained preoperatively.

Although not selected in the decision-tree model, we found that the ADCmean and
ADCmin of metastatic LNs were significantly lower than those of the benign LNs. Our
findings are in line with a previous study that showed that the ADCmean and ADCmin of
metastatic LNs are significantly lower than those of non-metastatic LNs [10]. A recent
publication supporting this point demonstrated that the ADC metrics of lymph nodes,
including ADCmin, ADCmax, ADCmean, ADCSD, and rADC, showed high values enabling
differentiation between metastatic and non-metastatic lymph nodes [25]. However, other
studies have reported contradictory results of no significant difference in the mean ADC
values between metastatic and non-metastatic nodes either at 1.5 T with b = 0, 800 mm2/s [9]
or at 3 T with b = 0, 1000 mm2/s [8]. The controversial result might be attributed to potential
bias in manual measurement which might be solved by using computer-aided segmentation
in the present study.

LN short-axis diameter is indeed an outstanding factor [10,26] for predicting LN
metastasis in EC and was selected in the present decision-tree analysis. However, a study
reported no size differences between the metastatic and non-metastatic nodes on T2W
images, but reported a significant difference on pathology slices [9]. Such controversial
results imply the potential pitfall of LN segmentation on MR imaging, thereby again
highlighting the computer-assisted segmentation technique applied in this study could
reduce the potential bias caused by selecting small ROI of LN. Notably, based on our
previous work, combining size and relative ADC values can result in higher sensitivity
(25% vs. 83%) but similar specificity (98% vs. 99%) to detect LN in gynecologic cancers
compared to conventional MR imaging [11], with the smallest detected metastatic LN being
of 5 mm on its short axis [11].

In the present study, grade I EC with a tumor size < 20 mm can reliably exclude nodal
metastasis, as supported by the results from previous studies [6,15,17]. Studies have also
shown that preoperative assessment based on MR imaging and tumor histological grade
can identify low-risk patients for nodal metastasis, and lymphadenectomy may be omitted
in this subgroup of patients [17,27]. The Mayo-modified criteria (well or moderately
differentiated endometrioid histology, <50% invasion, and tumor size < 20 mm) are also
widely applied to assess nodal disease risk in patients with EC [28]. Our data and all the
aforementioned models suggest tumor histology grade and size remain a central role of
preoperative assessment for LN metastasis.

Our proof-of-concept model, although seemingly promising, has several limitations
that merit further discussion. First, the overfitting of the model may occur due to the
smaller sample size relative to the number of features extracted. Although the statistical
power was sufficient, as well as the cross-validation and independent set being tested in
this prospective study, our preliminary results must be validated externally before a wider
adaptation into a clinical decision process. Second, the radiomic features extracted from
the images are related to histogram analysis of ADC value while not including the higher
order texture analysis, because 97% of the lymph node regions contain <100 pixels for
analysis. Third, some imaging characteristics of the LNs (such as LN margin) were not
included in the algorithm. Lobulated and spiculated LN margins indicate metastatic LNs,
whereas smooth margin suggests benign LNs. Inclusion of this information might further
enhance the performance of the prediction model. Finally, region-based analysis was used
in this study, but we were unable to assess precise node-to-node radiological pathology
correlation. Nevertheless, the strength of the present study is that the computer-assisted
segmentation technique could reduce the potential bias caused by selecting small lymph
nodes in pelvic MR. The decision-tree learning method has an advantage in interpretation
using the binary splitting rule, which efficiently balances model accuracy and model
simplicity or interpretability.
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5. Conclusions

In conclusion, computer-aided segmentation and machine learning added values
of clinical parameters and DW radiomics for predicting nodal metastasis in EC, with a
diagnostic performance superior to that of the current ADC and size criteria. The high-
throughput radiomic ADC features through machine learning have potential in building a
prediction model to serve as a risk stratification tool for lymphadenectomy and guide the
extent of operation through the localization of potential LN metastasis regions.
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Appendix A

Appendix A.1. Imaging Protocol

All exams were conducted with a 3-T MR scanner (Tim Trio; Siemens, Erlangen,
Germany) before the patients were scheduled for operations. The integrated spine coil and
body-phased array coil were used to cover the entire pelvis. Pelvic T2-weighted (T2W) and
DW imaging were acquired with identical slice thicknesses and gaps in the true sagittal and
axial planes. High-resolution T2W imaging was performed using fast spin-echo sequences
(repetition time [TR] ms/echo time [TE] ms, 5630/87; average, 3; matrix, 256 × 320; field of
view [FOV], 20 cm). DW imaging was performed using a single-shot echo-planar technique
with fat suppression (TR/TE, 3300/79; average, 4; slice thickness, 4 mm; gap, 1 mm; matrix,
128 × 128; FOV, 20 cm). The MR examinations were conducted during minimal breathing.
No premedication was administered. ADCs were calculated using the slope of logarithmic
monoexponential signal intensity decay curve against the b values of 0 and 1000 s/mm2

(VB17a, Syngo; Siemens).

Appendix A.2. Segmentation of Tumors and Lymph Nodes (LNs)

The anonymous magnetic resonance imaging (MRI) dataset was digitally transferred
from the picture archiving and communication system workstation (GE Centricity PACS
RA1000; GE Healthcare, Milwaukee, WI, USA) to a personal computer with an Intel Core
i7-5960X 2.4-GHz processor and 3 GB RAM running Windows 7 in a 64-bit environment. By
using an in-house developed software written in MATLAB version 8.3 R2014a (MathWorks,
Natick, MA, USA), the first reader (Y.T.H, a gynecologic radiologist with eight years of
experience) drew regions of interest (ROIs) around the tumor on each section on the high
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b-value diffusion weighted images (DWIs) with reference to the apparent diffusion coef-
ficient (ADC) maps and T2-weighted images. The second reader independently verified
the ROIs (G.L, a gynecologic radiologist with 10 years of experience). Both readers were
blinded to clinical outcome. Care was taken to avoid ROI contaminated by the adjacent
normal cervical stroma or vascular structures, or by areas of fluid or Nabothian cysts in the
cervix. Normalized ADC (nADC) was computed and used for comparison in this study.
The nADC was defined as ADC (tumor or LN)/ADC (reference). ADC reference value
was obtained from the urine, with ovoid ROI placed in the center of the bladder lumen.
Due to the small size of pelvic LNs, which made them difficult for accurate manual seg-
mentation by MRI, an application software with a graphic user interface (Figure 2) specific
for LN segmentation developed in-house was used for this purpose. The largest LNs in
the left and right pelvic areas were identified on axial pelvic DWI along with T2-weighted
images (T.Y.S, a radiologist with two years of experience). The identified LN was auto-
matically segmented using a region-growing algorithm (https://www.mathworks.com/
matlabcentral/fileexchange/19084-region-growing/content/regiongrowing.m; accessed
on 7 February 2020). Specifically, a pixel is initially selected as the starting point of a region.
The region is grown iteratively by comparing the neighboring pixels to the region. In every
iteration, the neighboring pixel with the smallest intensity difference to the region mean
is included to the region. This process terminates when the intensity difference between
region mean and all neighboring pixels exceed a predefined threshold, thereby providing a
100% reproducibility of segmentation. The reason we use 2D instead of 3D is that LN size
is too small to be segmented in 3D.

Appendix A.3. Surgical Procedure and Histopathology

Primary surgical treatment consisted of hysterectomy, bilateral salpingo-oophorectomy
and pelvic LN dissection. Para-aortic LN dissection was carried out for patients with high-
risk histopathological type or with clinical suspicion of deep myometrial invasion. The
resected nodes were anatomically labeled in left or right pelvic regions by the surgeons.
The LNs were then cut into parallel slices of thickness 2 to 3 mm. All nodal tissue was
routinely processed and embedded in paraffin, followed by staining with hematoxylin
and eosin. The histopathology report included the number of total harvested LNs and the
identified metastatic ones in each region respectively. Histopathologic types and tumor
grades were evaluated in the consensus of a general pathologist and a specialized gyneco-
logical pathologist (R.C.W), with relevant clinical information available. A consensus read
between surgeons, pathologists and radiologists for providing the most accurate assign-
ment between MR and histopathology were performed in the weekly panel discussion of
gynecologic oncology.

Appendix A.4. Statistical Analysis

The prediction problem was set to predict pathological LN metastasis, and the target
variable was categorical (presence or absence). The decision tree used in this study used
iterative back propagation, but unlike deep learning, the decision tree can identify impor-
tant parameters and determine the priority of the steps to construct an actionable plan. A
decision tree, in general, does not have the best predictive accuracy compared with some
other machine learning techniques. However, it has the advantage of interpretability, with
a format consistent with many clinical pathways. A decision tree based on classification
and regression tree method was used to identify combined clinical and MR parameters
predictive for LN metastasis. The tree construction was performed using R package rpart
(R Foundation, http://cran.r-project.org/web/packages/rpart/rpart.pdf; accessed on 8
August 2020). The classification rules are applied sequentially with each rule partitioning
a predictor (so-called attribute) into a binary response. The splitting rule was built based
on minimizing the impurity in the attribute, so that selecting a root attribute could vary
according to the splitting rule and scaling. The classification and regression tree method
automatically identified and removed redundant independent variables. The practical costs

https://www.mathworks.com/matlabcentral/fileexchange/19084-region-growing/content/regiongrowing.m
https://www.mathworks.com/matlabcentral/fileexchange/19084-region-growing/content/regiongrowing.m
http://cran.r-project.org/web/packages/rpart/rpart.pdf
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of prediction errors would be more important to prevent underdiagnosis. In order to learn
a model which have high sensitivity and acceptable accuracy and specificity, based on the
data with imbalance structure in LN positive rate, a weighted algorithm was introduced.
The selected weight value led to the achievement of 90% sensitivity. The success criteria
for prediction were set to achieve high sensitivity and NPV whilst remaining non-inferior
specificity to the standard of care, based on metrics in internal validation. The sample size
and power calculation of machine learning methods need to be constructed by numerical
simulation and estimation. In general, the power can achieve more than 90% if sample size
per class is more than 4 at significance level 5%, for a number of groups being less than
10 [29]. In the present study, we optimized the growing of the tree, setting minsplit = 5 and
maxdepth = 4, to control the size to avoid over-fitting and low-power. We did not perform
data preprocessing, including data cleaning or transformation or outlier removal. Missing
data were excluded from the analysis case-wise.
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