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ABSTRACT: Total organic carbon (TOC) content is one of the crucial parameters
that determine the value of the source rock. The TOC content gives important
indications about the source rocks and hydrocarbon volume. Various techniques have
been utilized for TOC quantification, either by geochemical analysis of source rocks in
laboratories or using well logs to develop mathematical correlations and advanced
machine learning models. Laboratory methods require intense sampling intervals to
have an accurate understanding of the reservoir, and depending on the thickness of the
interested formation, it can be time-consuming and costly. Empirical correlations based
on well logs (e.g., density, sonic, gamma ray, and resistivity) showed fast predictions and
very reasonable accuracies. However, other important parameters such as thermal
neutron logs have not been studied yet as a potential input for providing reliable TOC
predictions. Also, different studies estimate the TOC based on the well-logging data for
various formations; however, limited studies were reported to predict the TOC for the
Horn River Formation. Therefore, the objective of this study is to estimate the TOC variations based on the thermal neutron logs
using one of the largest source rocks in Canada: The Horn River Formation. More than 150 data sets were collected and used in this
work. The parameters of the artificial neural network (ANN) model were fine-tuned in order to improve the model’s prediction
performance. Furthermore, an empirical correlation was developed utilizing the optimized ANN model to allow fast and direct
application for the developed model. The developed correlation can predict the TOC with an average absolute error of 0.52 wt %.
The proposed TOC model was able to outperform the previous models, and the coefficient of determination was increased from
0.28 to 0.73. Overall, the proposed TOC model can provide high accuracy for TOC ranges from 0.3 to 6.44 wt %. The developed
model can provide a real-time quantification for the organic matter maturity, helping to allocate the zones of mature organic matter
within the drilled formations.

1. INTRODUCTION
In recent years, unconventional hydrocarbon production from
shale source rocks has gained a vast interest in the oil and gas
industry. Such interest is attributed to the depletion of
conventional resources and the advancements in directional
drilling and hydraulic fracturing.1−4 The total organic carbon
(TOC) content is one of the very important petrophysical
properties that indicate the quality of source rocks. TOC
represents the amount of organic matter deposited in the rock
and is one of the most critical parameters to investigate prior to
drilling for its significance in hydrocarbon quantification and
quality measurement of the resource.2,4−9 Organic matter
depositions are controlled by the primary production,
destruction, and dilution of organic matter where it maximizes
when the first is fairly greater than the latter two factors.10 Many
researchers proved the strong relation of TOC with many source
rock parameters, such as gas adsorption capacity11 and
porosity10 which emphasizes the importance of TOC as a rock
petrophysical feature.12,13

For TOC quantification, various techniques have been
utilized either by a geochemical analysis of source rock cores
in laboratories or using well logs to develop mathematical
correlations and advanced machine learning models. Laboratory
TOC quantification methods where core samples are tested for
organic material are considered to be reliable and standard
methods, such as the Rock-Eval 6 pyrolysis method.12−15 In the
Rock-Eval 6 method, a small amount of the targeted sample (up
to 100 mg) is thermally analyzed at high temperatures (up to
850 °C) in two stages: pyrolysis and oxidation. The pyrolysis
stage gives the amount of free hydrocarbons, released hydro-
carbons as a result of thermal cracking, and the amount of CO
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and CO2 released. On the other hand, the oxidation stage
determines the amount of released CO and CO2 when oxidizing
the residual organic matter from the pyrolysis stage.16,17

Eventually, TOC is determined by adding the amount of
produced organic carbon in the pyrolysis stage and the residual
amount of organic carbon from the oxidation stage.17,18 Peters et
al.19 stated many other laboratory techniques for TOC
quantification such as filter acidification,19 nonfilter acid-
ification,20,21 total minus coulometric,22 laser-induced pyrol-
ysis,23 and diffuse reflectance infrared Fourier transform
spectroscopy.24,25 Although these techniques can be reliable,
in order to achieve accurate results, researchers need to analyze
cores and outcrops in short intervals (e.g., every 25 cm). This
method can therefore be time-consuming and costly particularly
if the reservoir is thick and if the lateral TOC variations are also
needed to be taken into account. Moreover, core preservation
may be limited which is another drawback of laboratory-based
TOC quantitation tools.17 However, it is still crucial to
determine TOC even in the absence of core data. Hence,
other approaches that employ well logs have been established to
cover the shortage in TOC quantification when laboratory
methods are not applicable. Throughout the past decades, well-
log data have been used to assess numerous parameters starting
from the identification of source rocks and organic materials
since the 1940s26 and reaching the calculation of petrophysical
parameters.27−30 Additionally, the TOC content has been
assessed via well logs by approaches like the gross gamma ray
that utilizes gamma ray log,30 using hyperspectral imagery,31

utilizing bulk density log,26 and using transit time and resistivity
logs such as the widely used ΔlogR method.32 However, most of
the available methods may fail to provide accurate estimations
for the TOC due to the involvement of different parameters. For
example, the gross gamma ray is affected more by uranium, while
the bulk density log overestimates the TOC in clay-rich
formations. Also, the approach based on ΔlogR requires
multiple variables such as the level of maturation and baseline
resistivity which are not uniform especially in the frequently
interbedded shale rocks due to their extreme heterogene-
ity.13,15,19,33

New logging techniques such as nuclear magnetic resonance
and lithology scanning tools offer developments in TOC
quantification accuracy.34 However, they incur prohibitively
high costs and cannot be used conventionally, hence requiring
new robust and more convenient methods for TOC
quantification.7 Artificial intelligence (AI) has been considerably
used in the last few years in oil and gas research, and much work
has been made on the prediction of TOC based on core and well
log data.15,35−41 In most cases, AI methods are not globally
applicable due to the heterogeneity of shales, which indicates the

cruciality of studying the nature of the targeted fields and picking
proper logs for the model.1,33 Huang et al.39 demonstrated one
of the early applications of AI in predicting TOC using only
three conventional (gamma ray, resistivity, and sonic) logs as an
input and a pseudo-TOC log calculated from an empirical
correlation following the Passey et al.32 approaches.39

Subsequently, conventional logs have been fed as inputs, that
is, gamma ray log, density log, acoustic log, deep and medium
resistivity logs, and porosity log in addition to uranium (U),
thorium (Th), and potassium (K) contents.42−44 X-ray
fluorescence elements’ data (such as copper and nickel) and
thermal neutron porosity1 as well as conventional log
combinations displayed correlation with the TOC in the
investigated environment45−50 and were proofing evidence of
AI reliability in predicting TOC. Table 1 provides a summary of
the studies conducted for predicting the organic matter in shale
formations.

Different approaches have been used to estimate the TOC
including experimental measurements and empirical correla-
tions. Laboratory TOC determinations are expensive and time-
consuming methods, as well as require a large number of core
samples to construct the TOC profiles. Empirical correlations
based on regression and AI techniques showed a fast prediction
approach with very reasonable accuracy. Different algorithms
have been utilized to determine the TOC based on a wide range
of inputs; however, thermal neutron logs have never been
studied yet as a potential parameter that can be used to provide
reliable TOC estimations. The TOC content can be estimated
based on the response of thermal neutron logs due to the
relationship between the thermal neutron and TOC. The major
constituents of organic matter are carbon and hydrogen
elements which can significantly affect the movement of the
neutrons ejected during the thermal neutron logging. The
neutron tool responds primarily to the presence of hydrogen;
increasing the amount of hydrogen will lead to an increase in the
neutrons’ slowness.58 Also, hydrogen has a thermal capture unit
of 200 per gm/cm3, which is very high compared to other
elements.59 Hence, the theoretical relationship between neutron
count rates (thermal logs) and TOC is always feasible.
Therefore, in this study, we used the thermal neutron logs to
estimate the TOC variations. Different studies tried to estimate
the TOC based on the well-logging data for various formations;
however, limited studies were reported to predict the TOC for
the Horn River Formation.60,61 Therefore, the major objective
of this work is to develop a model to predict the TOC based on
the thermal neutron logs for the Horn River Formation. More
than 150 data sets were collected and used in this work. We used
the artificial neural network (ANN) method to propose a new
TOC model. The developed model was optimized to improve

Table 1. Summary for Predicting the TOC Using Different AI Methods

reference objective technique input parameters geological information

Alizadeh et al.51 TOC and S2 estimations ANN RT and DT logs Dezful Embayment basin in Iran
Tan et al.52 TOC prediction SVM and RBF GR, AC, CNL, TH, U, K, PE, RT, and RHOB Huangping syncline basin in China
Wang et al.53 TOC prediction nonlinear regression RT and DT logs Sichuan Basin in China
Mahmoud et al.15 TOC prediction ANN DT, GR, RHOB, and RT Devonian Shale in America
Zhao et al.54 TOC prediction nonlinear regression CNL Bakken formations in the USA
Rui et al.55 TOC prediction SVM GR, RHOB, SP, DT, and RT Beibu Gulf formations in China
Lawal et al.56 TOC prediction ANN XRD such as Al2O3, SiO2, CaO, and MgO Devonian formations in America
Sultan57 TOC prediction ANN and differential evolution DT, GR, RHOB, and RT Devonian formations in America
Wang et al.46 TOC and S2 estimations ANN NPHI, RHOB, DT, and RT Bohai Bay formations in China
Handhal et al.14 prediction of TOC SVM, ANN, and random forest RHOB, GR, RLLD, DT, and NPHI Rumaila formations in Iran

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c06918
ACS Omega 2023, 8, 4790−4801

4791

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06918?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the prediction performance. Finally, an empirical correlation was
proposed using the optimized ANN program to allow fast and
direct application for the developed model.

2. METHODS AND DATA DESCRIPTION
2.1. Methods. In this work, ANN models were developed

and trained using the petrophysical parameters and the
measured TOC. More than 150 data sets including TOC and
well-logging data were collected and used in this study. The
petrophysical logs are corrected far thermal counting (CFTC)
rate, thermal neutron porosity (NPHI), standard resolution
formation photoelectric factor (PEFZ), enhanced thermal
neutron porosity (NPOR), and formation capture cross-section
(SIGF) logs. Basically, in this work, the thermal logs (CFTC,
NPHI, and NPOR) were selected since they were not tested
before in predicting the TOC, while the formation lithology logs
(PEFZ and SIGF) were used to give more information about the
layers. The PEFZ log provides very useful information about
rock mineralogy based on measuring the photoelectric
absorption factor (Pe). For example, high Pe values can indicate
high percentages of clays. The TOC values were obtained for
around 150 core samples. The TOC contents were measured by
Weatherford Laboratories using LECO (Laboratory Equipment
Corporation) combustion; more details about the TOC
measurements can be found in Dong et al.12 Elman-type neural
networks were developed and trained using a Bayesian

regularization backpropagation algorithm. Different types of
transfer functions were utilized to propose the best prediction
model. In addition, the model parameters were optimized by
examining different numbers of neurons and training function
types, till achieving the best prediction performance. The ANN
model was assessed using different approaches such as visual
check and various evaluation indexes including correlation
coefficient (CorrCoef), root-mean-square error (RMSE),
average absolute error (AAE), and coefficient of determination
(R2). Moreover, an explicit empirical equation was developed
based on the weights and biases of the best-performing ANN
model. The proposed model can provide fast and reliable TOC
estimations based on the logging parameters.

Figure 1 shows a flow chart describing the main steps used in
this work which are data preprocessing, model development,
and model testing. The preprocessing stage includes data
collection and cleaning in order to remove the noisy and outlier
points. We detected and removed the outliers manually based on
the standard deviation values. Also, zeros and negative readings
were removed manually. Data stratification was applied which
indicates the separation of all data into different groups: training
and testing. In the second phase, we developed and optimized
the ANN model by examining different ANN types and
structures. The examined types include feedforward neural
networks, correlation filter neural networks, densely connected
time delay neural networks, and Elman-type neural networks.

Figure 1. Flow chart describing the algorithm used for optimizing the artificial neural network (ANN) model for determining the total organic carbon
(TOC) profile.
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Also, we tested the performance of the developed model using
the testing data set, which was kept unseen by the model during
the development/training stage. Finally, we extracted the ANN
parameters to be used for developing a new ANN-based
equation.
2.2. Data Description. The TOC values used in this study

come from the Maxhamish core of the Horn River Formation,
Canada, and are adapted from Dong et al.12,13 The Horn River
Formation shows significant reservoir heterogeneity issues due
to subtle changes in grain size within the shale formation.59Fig-
Figure 2 shows the log profiles used to estimate the TOC;
TechLog software was used to plot the logs. The logs include
CFTC, NPHI, NPOR, PEFZ, SIGF, and TNPH. NPOR
measures the formation porosity based on the emission of the

fast neutron, and the tool can detect the hydrogen atoms present
in the pores, since hydrogen has the biggest effect in slowing
down and capturing neutrons. PEFZ is a supplementary
measurement to the bulk density, and the tool is used as an
additional input to resolve mixtures of minerals such as complex
carbonates, dolomitic limestones, and anhydritic dolomites.
SIGF is the atomic capture section for neutrons which can detect
the effective area required to pass and capture the neutrons.
TNPH can measure the slowing down and capture of neutrons
between a source and one or more thermal neutron detectors. It
should be highlighted that different inputs were examined in
order to improve the TOC prediction. We have found out that
using logs such as the formation lithology (PEFZ and SIGF) can
improve the TOC predictions. Also, relatively high values for

Figure 2. Log profiles used in this work to estimate the total organic carbon variation.
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CorrCoef were observed between the PEFZ and TOC, as will be
discussed in the Results and Discussion section.

In addition, statistical analysis was carried out to estimate the
minimum, maximum, mean, and standard deviation, as provided
in Table 2. The studied region showed a wide porosity range
between 1 and 25%, while TOC varies between 0.03 and 6.44 wt
% with a mean value of 2.83%. Finally, the histograms for all
input and output are provided in Figure 3. It can be seen that the
data showed different distributions; however, this will not affect
the ANN performance, since the ANN tool automatically
normalizes the data between the minimum and maximum values
for each parameter, which will minimize the impact of different
data distributions on the prediction process.

3. RESULTS AND DISCUSSION
Thermal neutron logs can be positively related to the total
carbon content because the ejected neutrons from the logging
tool can be significantly influenced by the high percentages of
carbon and hydrogen elements in the formation. Therefore, a
continuous TOC profile can be constructed utilizing the thermal
neutron tool. In this work, an ANN technique was employed to
develop a new model for estimating the TOC. This section
presents the data analytics and the machine learning approach
used in this work to provide reliable TOC predictions. Also, a
new correlation for estimating the TOC is presented and
validated.
3.1. Data Analytics. The results of the statistical analysis of

the data set used in this work are given in Tables 3 and 4, for the
training and testing data sets, respectively. The input parameters
are CFTC rate, thermal neutron porosity based on ratio method
(NPHI), enhanced thermal neutron porosity (NPOR), standard
resolution formation photoelectric factor (PEFZ), formation
capture cross-section (SIGF), and thermal neutron porosity
(TNPH). In this work, the TOC values were transferred into
different domains, and we found out that the logarithmic
domain will lead to the best TOC predictions; similar
observations were reported by many studies.1,9,15 Also, the
ANN technique usually uses the L2 norm regularization for its
cost function. The L2 regularization is the most common type of
all regularization techniques and is also commonly known as
weight decay regression. L2 norm works well with normal
Gaussian distribution data; this could be the reason for getting
better results once the TOC data were transformed to the log
domain. The values of the Log (TOC) are given in the last
columns in Tables 3 and 4. Statistical parameters such as
skewness and kurtosis were determined to indicate the
distribution of each parameter. Most of the variables showed
non-normal distributions. It is worth mentioning that the whole
data were subdivided into two groups: training and validation
data. We used a randomized function to select the training and
validation data sets. Also, different training−validation ratios
were examined. The most suitable ratio was selected based on
the minimum error profiles. The training data represent 70% of
the whole data and were mainly used to train the ANN model to

determine the relationship between the input parameters and
the TOC. The validation data were not used during the training
stage and were used only to test the model’s reliability.

Figure 4 presents the relationship between the input and
output parameters where a high value indicates a strong
relationship. Also, positive values reveal direct proportion,
while negative values indicate inverse proportion. The TOC
showed a strong relationship with all of the thermal counting
rates, formation photoelectric factor, and thermal neutron
porosity. All parameters (except CFTC) showed a positive
impact. Increasing any of these parameters can lead to an
increase in the organic content. Also, all porosity logs (NPHI,
NPOR, and TNPH) showed positive relationships with the
TOC, which is very reasonable. In general, increasing the
volume of organic matter will result in reducing the matrix
density and hence increase the formation porosity. Moreover,
higher TOC can lead to higher PEFZ which can be attributed to
the higher absorption factor by the organic matter. However, the
thermal counting rate showed a negative relationship with the
TOC value. The formation of high carbon content can lead to
reducing the readings of the CFTC logs.

In addition, Figure 4 shows the relative importance of the
input variables with TOC after using the logarithmic trans-
formation. Transferring the TOC values into the logarithmic
domain showed considerable improvements in the input−
output relationship. All parameters showed an increase in
relative importance without changing the signs of the values,
indicating that transferring the TOC into logarithmic values can
improve the prediction performance as well as persevering the
petrophysical relationship between the input parameters and the
TOC values.
3.2. Building the ANN Model. In this work, the ANN

technique was used to propose a new TOC model; ANN was
selected because it has shown strong prediction performance in
different applications. Various training and transferring
functions can be used in the ANN model till achieving an
acceptable prediction performance. In the ANN model, training
functions are used to train the model to capture the relationship
between the inputs and output, while the transfer function
translates the input signals to output signals. In this work, a new
ANN model was built to estimate the TOC values based on the
well logs. All ANN parameters are carefully selected in order to
minimize the prediction error. RMSE, AAE, and the R2 were
utilized as error indexes. The ultimate objective is to find the best
ANN parameters that can provide the minimum RMSE and
AAE and the maximum R2.

In general, the TOC ANN model is composed of six input
neurons which are the thermal counting rate (CFTC), thermal
neutron porosity (NPHI), neutron porosity (NPOR), photo-
electric factor (PEFZ), formation capture (SIGF), and thermal
neutron porosity (TNPH) logs. It should be highlighted that the
data analysis showed a weak relationship between the TOC and
SIGF and PEFZ logs, but we included these logs because they
can give important information about the formations.

Table 2. Statistical Analysis of the Data Used in This Study

parameters CFTC (HZ) NPHI (V/V) NPOR (V/V) PEFZ (B/E) SIGF (M-1) TNPH (V/V) TOC (wt %)

max 15968.94 0.18 0.25 8.13 3.43 0.16 6.44
min 2217.21 0.001 0.01 1.81 0.81 0.01 0.03
mean 4649.30 0.09 0.09 4.95 2.09 0.08 2.83
range 13751.72 0.17 0.27 5.13 2.62 0.16 6.41
st. deviation 2295.38 0.04 0.04 0.81 0.61 0.03 1.45
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Figure 3. Histograms for the input and the output parameters.
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The best ANN model is defined with three layers with eight
neurons in the middle ANN layer. The number of ANN neurons
was examined till acquiring the best prediction performance.

Different combinations of neurons’ number, hidden layers,
training, and transfer functions were used, and around 30
combinations (cases) were examined. Figure 5 shows the error

Table 3. Statistical Analysis of the Training Data Used for TOC Prediction

parameters CFTC (HZ) NPHI (V/V) NPOR (V/V) PEFZ (B/E) SIGF (M-1) TNPH (V/V) TOC (wt %) log (TOC)

max 15968.94 0.18 0.25 8.13 3.43 0.16 6.44 0.81
min 2217.21 0.00 0.02 3.00 0.81 0.01 0.03 −1.55
mean 4649.30 0.09 0.09 4.95 2.09 0.08 2.83 0.35
range 13751.72 0.17 0.27 5.13 2.62 0.16 6.41 2.36
st. deviation 2295.38 0.04 0.04 0.81 0.61 0.03 1.45 0.40
skewness 2.52 −0.34 0.39 1.25 0.11 −0.51 0.20 −2.50
kurtosis 7.49 0.06 2.39 4.09 −0.79 0.39 −0.31 7.57

Table 4. Statistical Analysis of the Testing Data Used for TOC Prediction

parameters CFTC (HZ) NPHI (V/V) NPOR (V/V) PEFZ (B/E) SIGF (M-1) TNPH (V/V) TOC (wt %) log (TOC)

max 12238.08 0.15 0.15 6.46 3.21 0.14 5.87 0.77
min 2492.29 0.01 0.01 1.81 1.03 0.01 0.03 −1.57
mean 4854.40 0.09 0.08 4.46 1.98 0.08 2.79 0.32
range 9745.78 0.14 0.14 4.65 2.17 0.13 5.85 2.34
st. deviation 2492.00 0.03 0.03 0.93 0.53 0.03 1.49 0.47
skewness 2.35 −0.64 −0.39 −0.67 0.08 −0.90 0.14 −2.69
kurtosis 4.79 0.79 0.56 1.28 −0.41 1.16 −0.30 8.74

Figure 4. Relative importance of the input variables with total organic carbon (TOC), before and after using the logarithmic transformation.

Figure 5. Correlation coefficient (CorrCoef), root-mean-square error (RMSE), and maximum error (Max_Err) performance with different cases.
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profiles for different combinations or cases. In addition, Figure 6
shows the measured and predicted TOC values based on the
developed ANN model. The values showed good alignment
along with the 45°-line, indicating effective prediction perform-
ance from the ANN model. The developed model can predict
the TOC values with an RMSE of 0.14 and an R2 value of 0.88. It
should be noted that the ANN model will predict the values of
log(TOC), and then the values should be transformed from the
logarithmic domain into normal TOC values. It could be
observed that the values presented in Figure 6 are overlapped;
hence, to provide clearer visualization, the distribution of TOC
values along depth is provided in Figure 7. The AAE between the
laboratory-measured TOC and that predicted by ANN is 0.55
wt %. The laboratory-measured TOC is labeled by (Core), and
the predicted values are labeled by (ANN). A good match
between the measured and predicted values can be observed.
3.3. New Correlation. In this work, the optimized ANN

model was used to propose an easy and fast-applicable model
that can be used to compute the TOC variations based on the
thermal logs. Figure 8 shows the schematic of the ANN model
proposed in this work. A new TOC mathematical model is
presented by utilizing the weights and biases of the ANN
program. The proposed equation can help in estimating the
TOC without the need of using the ANN code. The required
inputs to estimate the TOC are the corrected thermal counting
rate (CFTC), thermal neutron porosity (NPHI), enhanced
thermal neutron porosity (NPOR), formation photoelectric
factor (PEFZ), formation capture cross-section (SIGF), and
thermal neutron porosity (TNPH) logs. Equation 1 represents
the proposed TOC equation based on the optimized ANN
model.
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where TOC indicates the amount of organic matter, N equals 8
which is the number of neurons used in this work, w1 and w2 are
the weights of the input and last ANN layers, respectively, Xjdn

represents the normalized model inputs, and b1 and b2 are the
biases for the input and target layers, respectively.

Importantly, the range of applicability of this correlation is
provided in Table 3. Also, all inputs used in eq 1 should be used

as normalized values (Xj dn
). The minimum (Xj dmin

) and maximum
(Xj dmax

) can be used to determine the normalized values for each
variable, as given by eq 2. The maximum (Xj dmax

) and minimum
(Xj dmin

) values for all variables are given previously in Table 3, and

Figure 6.Regression plot of the actual measured total organic carbon (TOC) and the predicted values from the artificial neural network (ANN) model,
in the logarithmic domain.

Figure 7. Variations of core measured total organic carbon (TOC)
values and artificial neural network (ANN) predicted ones along with
the depth.
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weights and biases of the ANN-based model for determining the
total organic content are given in Table 5

= ×X
X X

X X
2 1jn

j j

j j
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max min
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3.4. Model Validation. The developed TOC model was
validated using hidden data that were not used previously. We
have chosen the validation data randomly; however, it is ensured
that a reasonable TOC range was covered. Figure 9 shows a
cross plot between the measured TOC values and the predicted
one using the proposed ANN correlation (eq 1). The TOC
values were predicted with an AAE of 0.52 wt % and a CorrCoef
of 0.84. Also, the variation of the predicted and actual TOC
values along with the depth, for the validation data, is given in
Figure 10.

In addition, the performance of the developed model in
predicting the TOC was compared with different models
available in the literature. The conventional logs such as density,
gamma ray, resistivity, and sonic logs were used to estimate the
TOC utilizing Passey’s model, Schmoker’s model, and the ANN
model developed by Mahmoud et al.15 In this work, we
compared and presented our predictions with the Mahmoud et
al.’s15 model because it is one of the effective and most recent
methods developed for TOC determinations. Also, their
developed model was able to outperform all previous TOC

models.15 It should be mentioned that ANN models are
empirical models that have been built using a certain set(s) of
data, and the weights and biases of Mahmoud et al.’s model were
determined using a special set and values of logging tools.
However, we are comparing our developed model with
Mahmoud et al.’s model since the formation studied in this
work is similar to Mahmoud et al.’s formation, where the TOC is
varying between 0.1 and 6 wt %, the gamma ray is changing
between 20 and 200 API, and the bulk formation density is
varying between 2.4 and 2.8 g/cm3, with very few points are
outside these ranges. Figure 11 shows the actual against the
predicted TOC using the ANN model developed in this work
and the model proposed by Mahmoud et al.15 The correlation of
determination was increased from 0.28 to 0.73, and the AAE was
reduced from 1.56 to 0.55 wt % using the ANN model developed
in this work, indicating the good performance of the newly
developed TOC model.

4. CONCLUSIONS
This work examines the use of thermal neutron logs to predict
the TOC using the ANN approach. More than 150 data sets
were used to build and validate the proposed TOC model. Based
on the current study, the following conclusions can be drawn:

• Thermal logs can be effectively used to predict the TOC
due to the relationship between neutron count rates and
TOC.

• The CorrCoef analysis confirmed the strong relationship
between the TOC and CFTC rate.

Figure 8. Neural network schematic showing the input variables and
the output variable total organic carbon (TOC).

Table 5. Weights and Biases of ANN-Based Model for Determining the Total Organic Content

weights between input and middle layer (w1)

hidden layer neurons
(N)

CFTC
(HZ)

NPHI
(V/V)

NPOR
(V/V)

PEFZ
(B/E)

SIGF
(M-1)

weights between hidden and target
layer (w2)

hidden layer bias
(b1)

target layer bias
(b2)

1 0.711 1.838 −2.525 2.376 0.425 −2.173 −0.936 1.111
2 −2.967 −1.052 0.073 0.016 2.360 −0.297 −1.176
3 −1.693 2.912 −1.767 0.443 5.244 −1.656 1.873
4 −0.120 −0.601 0.248 −0.471 −2.955 1.187 1.150
5 0.422 1.281 2.635 0.804 3.634 3.282 1.781
6 3.285 3.801 −0.274 1.240 −2.803 0.121 −0.661
7 −1.729 −0.319 −3.165 0.753 −1.208 −0.740 −2.883
8 2.150 −0.764 1.627 −3.518 −0.423 −0.365 −1.722

Figure 9. Cross plot between the actual measured total organic carbon
(TOC) and the predicted values based on the artificial neural network
(ANN) program, for the validation data.
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• Transferring the TOC data into the logarithmic domain
showed an improvement in the CorrCoef values, leading
to a significant increase in the prediction accuracy.

• Also, a new correlation was developed based on the
optimized ANN model. The new correlation can predict
the TOC values with high accuracy; the AAE is 0.52 wt %
on average.

• The proposed TOC model was able to outperform the
previous model, and R2 was increased from 0.28 to 0.73.

• Overall, the proposed TOC model can give a real-time
determination of the organic matter, which will help in
identifying the zones of mature organic matter.
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