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ABSTRACT 

Background 

The enteric nervous system (ENS) is a complex network of interconnected ganglia within the gastrointestinal 

(GI) tract. Among its diverse functions, the ENS detects bowel luminal contents and coordinates the passing of 

stool. ENS defects predispose to GI motility disorders. Previously, distinct enteric neuron types were cataloged 

by dye-filling techniques, immunohistochemistry, retrograde labeling, and electrophysiology. Recent technical 

advances in single cell RNA-sequencing (scRNA-seq) have enabled transcriptional profiling of hundreds to 

millions of individual cells from the intestine. These data allow cell types to be resolved and compared to using 

their transcriptional profiles (“clusters”) rather than relying on antibody labeling. As a result, greater diversity of 

enteric neuron types has been appreciated. Because each scRNA-seq study has relied on different methods for 

cell isolation and library generation, numbers of neuron clusters and cell types detected differs between analyses. 

Cell counts in each dataset are particularly important for characterization of rare cell types since small numbers 

of profiled cells may not sample rare cell types. Importantly, each dataset, depending on the isolation methods, 

may contain different proportions of cells that are not detected in other datasets. Aggregation of datasets can 

effectively increase the total number of cells being analyzed and can be helpful for confirming the presence of 

low-abundance neuron types that might be absent or observed infrequently in any single dataset. 

Results 

Here we briefly systematically review each Mus musculus single cell or single nucleus RNA-sequencing enteric 

nervous system dataset. We then reprocess and computationally integrate these select independent scRNA-seq 

enteric neuron datasets with the aim to identify new cell types, shared marker genes across juvenile to adult 

ages, dataset differences, and achieve some consensus on transcriptomic definitions of enteric neuronal 

subtypes.  

Conclusions 

Data aggregation generates a consensus view of enteric neuron types and improves resolution of rare neuron 

classes. This meta-atlas offers a deeper understanding of enteric neuron diversity and may prove useful to 

investigators aiming to define alterations among enteric neurons in disease states. Future studies face the 
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challenge of connecting these deep transcriptional profiles for enteric neurons with historical classification 

systems.  

 

Keywords 

Enteric nervous system (ENS), single cell RNA-sequencing (scRNA-seq), single nucleus RNA-sequencing 

(snRNA-seq), Gene Expression Omnibus (GEO), uniform manifold approximation projection (UMAP), meta-

analysis.   

 

BACKGROUND 

 The enteric nervous system (ENS) is a network of ganglia within two layers of muscle within the gut wall 

that allows for passing of stool via peristalsis. The ENS, like the central nervous system and brain, is made up 

of several distinct neuronal subtypes whose function can correspond to their positioning along the intestine.1 

Historically, the ENS and its cell types have been defined by several techniques, including dye-filling, 

immunohistochemistry, retrograde labeling, electrophysiology, and numerous other methods.2 From these 

studies, the ENS field has gained a broader understanding of how the cells of the ENS function in situ and in 

vitro, allowing researchers to model perturbations in ENS function, which often result in gastrointestinal (GI) 

motility disorders in patients. It has been shown via some of these methods that the balance of subtypes of 

enteric neurons are altered in some GI motility disorders, including Hirschsprung disease.3,4 Given the imbalance 

of enteric neuronal subtypes in some GI motility disorders, it is important for treatment of these disorders that 

we understand the diversity of cell types in the ENS so that patients might have effective treatments.  

 Advances in single cell transcriptomics have enabled profiling of individual cells from an array of tissues 

including the ENS where efforts to define enteric neuron diversity previously relied on immunohistochemistry, 

dye-filling, or pharmacological studies of single neurons. To date, at least 13 distinct mouse ENS single cell or 

nucleus datasets have been produced from 11 different manuscripts, with each publication using different 

isolation methods, strains/ages of mice, and methods of cell or nuclei isolation.5-17 Multiple reviews have been 

published extensively comparing these datasets.2,18,19 Each study profiling ENS progenitors and mature enteric 

neurons applied distinct approaches both technological and bioinformatic to produce single cell or nucleus RNA-
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seq data. Variables included differing mouse lines, ages, tissue dissociation methods, techniques for 

encapsulation/library production, and depth of sequencing.5-17 These differences have led to variation in the 

number of cells sampled, cell types detected, and genes whose expression labels distinct cell clusters.2,18,19 A 

main point of discussion in the ENS field centers on reaching consensus regarding how many ENS cell types 

exist and what methods should be prioritized for classifying and naming them for consistency across the 

literature. Combining enteric neuron scRNA-seq datasets in a strategic manner is one means to gain greater 

understanding of diversity of enteric neurons. In this work, we first systematically review each published single 

cell or single nucleus RNA-seq dataset derived from the ENS, highlighting the main contributions to the field that 

each work produced. We then make the case below for combining the more mature enteric neuron datasets and 

illustrate the integration process, outlining both advantages and caveats for this method in the attempt to 

transcriptionally define enteric neuron states. Our goal is to demonstrate how meta-analysis (the process of 

pooling independent datasets together into one larger aggregate) can yield consistent cell states across 

datasets, a higher sample size of enteric neurons and therefore greater resolution to detect rare cell states. We 

offer this resource of similarly processed datasets for future mining by the ENS community.  

 

METHODS 

 We briefly review ENS publications that utilize single cell or single nucleus RNA-sequencing. We then 

highlight how integration of single cell RNA-seq datasets can contribute to the field. We subsequently extract the 

relevant publicly available mouse enteric neuron single cell or nucleus RNA-seq datasets, reprocess, integrate, 

and perform analyses to deepen transcriptional definitions of enteric neuron subtypes. 

 

Literature Review 

 We collected all relevant publications of which we were aware and used those as a starting point for 

review. We also utilized Google Scholar and the Vanderbilt University Library website interface to search for and 

access other papers using various related search terms, including “ENS”, “Enteric Nervous System”, “scRNA-

seq”, “single cell”, and “single cell RNA-sequencing”. We then screened papers for scRNA-seq datasets and 

excluded papers that were not peer-reviewed (e.g. preprint servers).  
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Data Access and Downloading ENS scRNA-seq Datasets 

 We downloaded the data from the following sources. Wright and colleagues’ 47 to 52 days old mouse 

distal colon myenteric plexus snRNA-seq data was downloaded from Gene Expression Omnibus accession 

number GSE156905 in the form of matrix, barcode, and feature (gene) files.11 Morarach and colleagues’ P21 

juvenile scRNA-seq mouse data were downloaded from Gene Expression Omnibus accession number 

GSE149524 in the form of matrix, barcode, and feature (gene) files.10 May-Zhang and colleagues’ 6-week-old 

mouse enteric neuron snRNA-seq data was downloaded from Gene Expression Omnibus accession number 

GSE153202 in the form of matrix, barcode, and feature (gene) files.9 We downloaded Zeisel and colleagues’ 

processed ENS P19, P20, and P21 scRNA-seq data in the form of a .Loom file from mousebrain.org.12,20 

Drokhlyansky and colleagues’ 11 to 104-weeks-old mouse enteric neuron data were downloaded (each cell type 

downloaded separately) from the Single Cell Portal at the Broad Institute website at accession number 

SCP1038), which requires a Google login and the data were in the form of matrix, barcode, and feature (gene) 

files.5  

 

Dataset Reprocessing 

 Each dataset’s individual sc/snRNA-seq library was read into R using Seurat’s Read10x and 

CreateSeuratObject functions with a minimum of 3 cells and minimum of 200 features.21-25 We then used Seurat’s 

PercentageFeatureSet function to get the percentage of mitochondrial gene expression per cell based on the 

gene prefix pattern “^mt-“. We then plotted histograms, violin plots, and FeatureScatter (Seurat plotting function) 

plots of percent mitochondrial gene expression, nFeature_RNA, and nCount_RNA. These were used in choosing 

quality control (QC) metrics when filtering the data. We also considered the QC metrics and clustering 

parameters listed in the publications. Please see the code for each dataset reprocessing for the specific metrics, 

which ranged from 200-2000 genes per cell/nuclei as the lower bound (nFeature_RNA > 200-2000). We decided 

that 20 percent mitochondrial RNA per cell in each dataset was of sufficient quality (percent.mt < 20). We note 

that the RAISIN-seq dataset from Drokhlyansky et al. have extremely high values of nCount_RNA at a mean of 

just under 1,000,000 (2020). This may have to do with the method (SMART-Seq2) that was used for assaying 
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these “RAISINs”.5,26 After QC filtering, we applied Seurat’s SCTransform v2 to each run, regressing out percent 

mitochondrial genes.27,28 Next, we ran principal component analysis (PCA), uniform manifold approximation 

projection (UMAP) dimensionality reduction, Seurat’s FindNeighbors, and FindClusters. After finding clusters 

and visualizing the UMAP through Seurat’s DimPlot function, we used DoubletFinder to identify and filter putative 

heterotypic doublets.29 This requires an expected percentage of doublets, which can be estimated based on the 

number of cells loaded into a 10X Chip.30 We used the number of cells in the object to estimate the cells 

recovered along with a linear function based on data found on the 10X Genomics website to estimate the 

multiplet rate.31 This rate was used in the round function of DoubletFinder. SCTransform v2, RunPCA, RunUMAP, 

FindNeighbors, and FindClusters were then run again on the data filtered for putative heterotypic doublets. After 

running each run of the datasets through this pipeline, we then integrated the runs using SCTransform v2.28 For 

most datasets, we reduced the number of clusters for Figure 2A-F by reducing the clustering resolution 

parameter. See the GitHub code and our Open Science Framework page for more details, where we outline 

code for the estimated doublet rate linear function and provide RMD files for each dataset. Code for reducing 

the cluster number for most datasets is in a separate R code file. 

 

Integration of datasets and Meta-Atlas Analysis 

 First, metadata were added to each dataset object generated, including the dataset first author last name, 

year of publication, age mouse, tissue section, etc. After, datasets were integrated and batch corrected via Seurat 

V5 by sequencing run into a meta-atlas using SCTransform v2 per the Seurat tutorial 

(https://satijalab.org/seurat/articles/seurat5_integration).21-25,27,28 We integrated by run to control for both the 

tissue segment and the age of the mice at the time of neuron isolation to the best of our ability. After integration 

and batch correction via SCTransform v2, we processed the meta-atlas dataset with RunPCA, RunUMAP, 

FindNeighbors, and FindClusters. Next, we normalized and scaled the “RNA” assay using Seurat’s 

NormalizeData and ScaleData functions. We used the PrepSCTFindMarkers function to prepare the data for 

differential gene expression for each cluster (using Seurat’s FindAllMarkers function). We then ran 

FindAllMarkers with both the SCT-corrected data and the normalized RNA data, for which the differences were 

minimal. We used the RNA-assay-based FindAllMarkers results going forward. We then displayed the top 30 
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putative marker genes per cluster (sorted by Log2FoldChange and significant Bonferroni-adjusted p-value from 

FindAllMarkers Wilcoxon rank-sum test) in a heatmap to see clustering patterns via gene expression.  To reduce 

the occurrence of multiple clusters sharing similar expression patterns, we reran the clustering algorithm with a 

lower resolution.   After re-running FindAllMarkers and re-generating the heatmap, the top 30 enriched genes for 

each cluster showed much less overlap than was originally observed. We then visually examined plots generated 

from the top 30 FindAllMarkers results for each cluster and chose genes that were unique to each cluster.  

 Because of the lack of specific expression of putative marker genes in the meta-atlas clusters for the 

subset juvenile datasets, we opted to reintegrate the data using the same approach outlined above including 

only the adult datasets. The adult meta-atlas only included runs from May-Zhang et al., 2021, Drokhlyansky et 

al., 2020, and Wright et al., 2021.5,9,11  

 Morarach et al., 2021 found that there was independent expression of Etv1 and Bnc2 in each of their 

developing “branched” neuronal populations that is maintained into their juvenile stages, yet some clusters at in 

their juvenile scRNA-seq data do not express either of these markers.10 To perform differential gene expression 

on Etv1 and Bnc2 expressing clusters versus clusters that do not express these, as well as finding genes that 

mark new subclusters, we performed differential gene expression via Seurat’s FindMarkers (Wilcoxon rank-sum 

test) function for these two groups. The top genes (sorted by Log2FoldChange and significant Bonferroni-

adjusted p-value) were then assessed for specificity. We used the same approach when performing differential 

gene expression between subtypes of enteric neurons based on unsupervised clustering. The marker genes 

identified in the figures were found by visual inspection for exclusivity for a specific cluster across all datasets 

via Seurat’s FeaturePlots. We used the same approach when performing FindMarkers between cell subtypes, 

which is outlined further below. These were used for Figures 5C’ and 5E’. 

 To perform differential gene expression analysis by sex, we subset the adult data further to only include 

sex annotations (subtracting Wright et al., 2021). We performed this analysis both by cluster using the Wilcoxon 

rank-sum test and via Seurat’s Logistic Regression method by cluster per segment, regressing out the dataset 

label metadata (i.e., first author plus the year of publication) to account for dataset differences.  

 

Availability of Data and Materials 
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 The datasets and R code supporting the conclusions of this article are available in the Open Science 

Framework repository, https://osf.io/evjx4/?view_only=38c1fb85b84e486db9f8c26ea5c61e65.  

 

RESULTS 

 

A multitude of neuron types revealed by single cell RNA-sequencing studies 

 

 Advances in single cell transcriptomics have enabled profiling of individual cells from an array of tissues 

including the ENS, where efforts to define enteric neuron diversity previously relied on immunohistochemistry, 

dye-filling, or pharmacological studies of single neurons. To date, at least 13 distinct mouse ENS single cell or 

nucleus datasets have been produced from 11 different manuscripts, with each publication using different 

isolation methods, strains/ages of mice, and methods of cell or nuclei isolation.5-17 Multiple reviews have been 

published extensively comparing these datasets.2,18,19 Here, we first review the dataset features and major 

findings of recent single cell/nuclei profiling studies as a prelude to our main goal of describing how data 

aggregation can be undertaken using the ENS as an example. 

 Lasrado and colleagues produced the first ENS scRNA-seq dataset.7 The study aimed to define spatial 

coordination of murine ENS development by relying on a Sox10-creERT2 transgenic activating a ROSA confetti 

reporter at 12.5 days post coitus (dpc). The analysis identified spatially distinct bipotent and fate-restricted 

progenitors/precursors originating from neuronal cells with limited proliferative capacity and glial progenitors with 

higher proliferative capacity. Using fluorescence activated cell sorting (FACS) the team isolated confetti-tagged 

ENS cells at 12.5-13.0 dpc for scRNA-seq libraries. While these experiments produced a small data set 

containing 120 cells, the analysis identified three cell clusters distinguished by expression of typical glial (Erbb3, 

Sox10, Fabp7), progenitor (Plp1) and neuronal (Tubb3, Elavl4, Ret) marker genes. The expression profiles were 

consistent and further refined earlier reports of neuronal and glial lineage divergence during colonization of the 

fetal mouse intestine and offered an initial view of the genes being transcribed at this critical stage in ENS 

development.32  
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 A second ENS scRNA-seq dataset was part of a larger mouse nervous system atlas from Zeisel et al., 

2018, in which mouse ENS cells were collected from postnatal (P) stages.12 This study relied on lineage tagging 

of ENS populations from Wnt1-Cre;ROSA26tdTomato reporter mice for fluorescent postnatal labeling of neural 

crest derivatives at P19, P20, and P21 (Table 1). Generation of tissue dissociates from younger mice is easier 

than in older animals, and the ages collected were designed to profile changes in the ENS that occur around the 

time of weaning (P20-P21) when animals transition to solid food. In this effort, analysis of the resulting scRNA-

seq libraries found most transcriptional profiles originated from enteric glia. This outcome most likely resulted 

from loss of membrane integrity among neurons during tissue dissociation that shears neuronal processes and 

allows uptake of viability dyes leading to cells being rejected during flow sort isolation. Despite this challenge, 

the team successfully profiled 727 enteric neurons that resolved into nine cell clusters in t-SNE representations 

using typical clustering algorithms. Overall, the analysis found gene expression patterns typical of glutamatergic, 

cholinergic, and nitrergic enteric neuron types.  

 Lau and colleagues subsequently produced an extensive fetal mouse ENS scRNA-seq data set at 13.5 

dpc while analyzing Hedgehog signaling.6,8 This team also relied on the Wnt1-cre;Rosa26YFP to isolate 7671 

neural crest cells from fetal mice. They compared their mouse transcriptional profiles to scRNA-seq from human 

pluripotent stem cell (hPSC)-derived neural crest derivatives. From principal component analysis, the group 

identified 8 mouse and 12 human cell clusters. Like the Lasrado study, Lau and colleagues also observed two 

distinct differentiation paths for enteric neurons and glia. They then captured additional enteric lineages for 

scRNA-seq by utilizing a GLI1-3 GFP fluorescent reporter mouse line, Tg(GBS-GFP), that mirrors hedgehog 

signaling levels. From this effort, they produced transcriptional profiles from 2017 Hedgehog “on” and 1841 

Hedgehog “low” signaling cells. Integration of these cells into their original 7671-cell scRNA-seq dataset found 

these cells are distributed across all 8 mouse cell clusters, which suggests GLI1-3 activity is dynamic across 

ENS differentiation.  

 Optimization of cell isolation methods and new informatic tools led to two independent studies in quick 

succession that compared scRNA-seq data from adult ENS of mice and humans authored by Drokhlyansky et 

al and May-Zhang et al.5,9 Drokhlyansky and colleagues transcriptionally profiled adult mouse and human ENS 

from older ages at single cell resolution.5 This team relied on two complementary strategies that facilitated 
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transcriptional profiling of enteric neurons via single nucleus RNA-Seq (snRNA-Seq). The first strategy consisted 

of a new technique for isolation of nuclei with bound ribosomes on the outer nuclear membrane called Ribosomes 

and Intact single nucleus (RASIN) RNA-Seq that generated sequence data with higher spliced mRNA recovery 

than RNA-Seq of nuclei alone. The second strategy, Mining Rare Cells sequencing (MIRACL-seq), informatically 

selected droplets containing rare cells from overloaded single cell encapsulations generated from human bowel. 

For comparison of human enteric neurons with those of mice, the team isolated ENS cells from adult mice of 

both sexes ranging from 11 to 104 weeks of age. Transgenic lines that fluorescently tagged nuclei of neural crest 

lineages (Sox10-cre:INTACT, Wnt1-cre:INTACT) or enteric neurons (Uchl1-H2BmCherry:GFP-gpi) were used 

for flow sorting to enable transcriptional profiling of 2657 neurons and 3039 glia from colon. The authors identified 

colonic neuron clusters that putatively represent 21 distinct neuron types consisting of excitatory and inhibitory 

motor neurons, interneurons, sensory types, and secretomotor/vasodilator neurons as well as three enteric glial 

types. The analysis indicated regional differences in the distribution of enteric neuron types in the mouse colon 

that also varied by age and circadian phase. The Drokhlyansky team then applied MIRACL-seq to characterize 

mouse and human enteric neurons. This strategy captured transcriptional profiles of 1938 mouse neurons that 

parsed into 18 neuron types with some notable differences detected between colonic and ileal neurons. Similar 

MIRACL-seq profiling of muscularis propria from human colon cancer patients ranging in age from 35-90 years 

identified 1,445 neurons that segregated into 14 neuron classes. By comparing the mouse RNA-seq data to the 

human MIRACL-seq profiles the authors concluded that multiple types of enteric neurons are transcriptionally 

similar between species. 

 Comparison of transcriptional profiles between species and subsequent in situ localization of neuronal 

subtype markers in mice and humans performed by May-Zhang and colleagues reached slightly different 

conclusions.9 This team aimed to compare enteric neuron gene expression between healthy young adult humans 

(18-35 years of age) and mice (6-7 weeks of age). Their efforts initially focused on capture of myenteric neuronal 

nuclei from duodenum, ileum, and colon based on Phox2b-H2BCerulean transgene expression that is highly 

expressed in differentiated neurons.33 The team successfully captured more than 25,000 nuclei with retention of 

18,500 profiles after quality control criteria were applied. Clustering of these data generated 15 distinct clusters 

that parsed into 22 neuron types. These 22 neuron types were present across all three intestinal regions studied. 
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Instead of attempting to flow sort neurons or neuronal nuclei from human intestine, the group relied on laser 

capture microdissection of histochemically stained myenteric ganglia collected from healthy young organ donors. 

The team used comparative analysis to remove genes expressed in surrounding muscle, producing a deep bulk 

data set specific to human myenteric ganglia. By comparing genes expressed in their human bulk RNA-seq data 

to those present in mouse myenteric neurons, the authors were able to identify genes that marked distinct types 

of enteric neurons in both species. The regional and cell type specific expression of these “marker genes” were 

assessed in situ via hybridization chain reaction to localize distinct neuron types in each bowel region for both 

species.34,35 Importantly, the May-Zhang study implemented a method for blocking lipofuscin auto-fluorescence 

that is problematic in visualization of human neurons and can confuse interpretation of labeling.36 The team’s 

analysis focused on localization of intrinsic primary afferent neurons (IPANs) in situ based on markers of 

somatostatin and calbindin-2 in parallel with Kelch Like Family Member 1 (KLHL1) present in murine IPANs.  The 

team found that there is incomplete congruence of expression for genes that mark neuron types in mice 

compared to those expressed in human enteric neurons. Moreover, these authors determined that multiple genes 

exhibited regional differences in gene expression between the duodenum, ileum, and colon of mice, and most 

of these regional expression patterns were not detected in human tissues. These findings illustrate some cross 

species congruence, yet point to species distinctions, indicating the need for caution when extrapolating studies 

in mice for comparisons with human ENS studies.   

 Complementary ENS profiling from Morarach et al., in 2021 produced transcriptional signatures from 

enteric populations in small intestines of mice as fetal progenitors differentiated towards neuronal fates.10 

Morarach and colleagues generated scRNA-seq profiles from neural crest-derived enteric neurons and glia 

based on Wnt1-Cre:R26R-Tomato expression with sequencing of 3260 cells at 15.5 dpc and 2733 cells at 18.5 

dpc. To assess murine juvenile enteric neuronal diversity, the team utilized a Baf53b-Cre transgene that labels 

large numbers of enteric neurons to gain transcriptional profiles of an additional 4892 cells from the myenteric 

plexus of the small intestine at P21. From these data, the authors defined 12 main transcriptional enteric neuron 

cell states that mostly express either Etv1 or Bnc2 in a dichotomous manner. The authors rigorously validated 

all detected neuron types via immunohistochemistry for marker genes in each cluster. Their validation studies 

showed that two neuron subsets exhibit morphological features consistent with known morphology of IPANs. In 
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their fetal datasets, the authors found the same Etv1, Bnc2 transcriptional dichotomy in two “branch” trajectories 

of emerging enteric neurons over developmental time. This distinctive binary split in development of enteric 

neuron lineages contrasts with neurogenesis programs in the central nervous system and indicates that neuronal 

diversity in the ENS is elaborated post-mitotically after these initial branching events. From their transcriptional 

profiling of developing ENS, Morarach and colleagues noted expression of Pbx3, a transcription factor expressed 

at a transition point bordering two neuron clusters in their scRNA-seq data. They further showed that loss of this 

gene produced altered ratios of Calbindin+ neurons. The team’s work illustrates how careful attention to 

emerging transcriptional programs can identify key regulators that establish normal neuronal diversity in 

development.    

 Later, a study from Wright et al., 2021 produced snRNA-seq data for mouse enteric neurons and glia 

from young adult mouse intestine based on labeling with Wnt1-CreERT2Cre/WT:R26R-H2BmCherry+ crosses.11 

The team analyzed numerous mouse reporter lines to identify this combination that produced bright labeling of 

ENS nuclei and avoided erroneous flow sort gating due to adherence of neurites and cellular fragments attached 

to negative cells, which can occur with cytoplasmic tdTomato labeling. The analysis identified seven distinct 

neuronal clusters from 635 adult neurons sampled. Wright and colleagues further profiled fetal cholinergic (ChAT-

EGFP-L10AD+) and nitrergic (Nos1-CreERT2Cre/WT;R26R-TdTomatoD+) neurons producing scRNA-seq data for 

707 neurons that distributed into 8 distinct clusters at 17.5 dpc. The authors noted multiple differentially 

expressed genes between neuron types were known regulatory factors and utilized conditional gene deletion 

strategies to assess whether deletion of individual genes altered abundance of myenteric neuron types. The 

team’s analysis demonstrated that Tbx3 is required in the fetal ENS for normal abundance of Nos+ neurons. In 

contrast, deletion of other transcription factors (Casz1, Tbx2, and Rbfox1) from developing ENS did not alter 

abundance of cholinergic neurons. These studies suggest that production of some neuron subtypes may rely on 

more than one regulatory factor, a key finding for future directed differentiation of enteric neuron classes.  

 More recently, Guyer and colleagues in 2023 produced single cell multiome sequencing data from 17690 

enteric glia from Plp1::GFP mice at P14.13 In addition, they also produced single cell RNA-seq data and single 

cell multiome sequencing for Plp1::GFP neurospheres derived from 12-14 week old mice. Using these data 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.10.31.621315doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.31.621315
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 
paired with immunofluorescence and RNAscope imaging, the authors confirm that enteric glial cells within 

ganglia are poised for undergoing neurogenesis in postnatal and adult stages.  

 Recently, Vincent et al. in 2023 produced a developmental ENS dataset comprised of RetCFP/+ and 

RetCFP/CFP (loss of Ret) mutant cells.14 They utilized this dataset to probe how the ENS develops in the absence 

of Ret expression, which they found affects the inhibitory neuron subtype differentiation, the timing required for 

proper neuronal and glial fate decisions, and ENS cell cycle dynamics. 

 Also in 2023, Kulkarni et al. published as version of record in eLife scRNA-seq data from isolated 

longitudinal muscle-myenteric plexus (LM-MP).15 By mining this data set the authors argue for identification of a 

subset of adult enteric neurons that are Wnt1-cre negative, meaning that they are not derived from the enteric 

neural crest cells. Kulkarni et al. conclude that these non-neural crest neurons increase in number as both mice 

and humans age. Furthermore, the team presents evidence that these non-neural crest enteric neurons express 

markers suggestive of a mesoderm-derived origin. These results were highly disputed by the reviewers, as the 

study did not use flow cytometry via their multiple mesoderm cre reporters to isolate these cells, opting for 

scRNA-seq of all cells from the LM-MP in mice at both 6 months of age and between P10-P30. This particular 

scRNA-seq data were not sequenced at a depth typical for scRNA-seq studies, which could cause these data to 

be dissimilar to other mouse enteric neuron single cell RNA-seq datasets from the same ages. Despite this 

caveat, the reviewers do acknowledge that there is a population of enteric neurons that originate from a lineage 

independent from the neural crest.  

 This year, Schneider et al. in 2024 performed scRNA-seq of enteric nervous system at P5 from 

Tyrosinase-Cre Bap1fl/fl mice showing that fetal deletion of Bap1, a chromatin modifier, caused a shift in enteric 

neuron subtypes, but this is not the case at postnatal stages.16 This reveals another gene that is required for 

proper subtype proportions, similar to Sox10 as found by Musser et al., 2015.3  

 Most recently, Zhou et al., 2024 performed scRNA-seq on three gastrointestinal regions at five 

developmental stages to attempt to assay cells that represent the migrating wavefront of enteric neural crest-

derived cells.17 From the stomach, small intestine, and colon at 10.5, 12.5, 14.5, 17.5 dpc, and P21, they assayed 

a total of 4741 ENS cells. The authors claim that they identify a set of genes and a cluster of cells that are 

specifically upregulated in the migrating wavefront. In addition to this, the authors perform spatial transcriptomics 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.10.31.621315doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.31.621315
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 
via Stereo-seq on the mouse gut segment containing the migrating wavefront at 12.5 dpc, from which they find 

enrichment of the upregulated genes in their wavefront scRNA-seq cluster to be enriched at the Stereo-seq 

wavefront. 

 Each study profiling ENS progenitors and mature enteric neurons applied distinct approaches both 

technological and bioinformatic to produce single cell or nucleus RNA-seq data. Variables included differing 

mouse lines, ages, tissue dissociation methods, techniques for encapsulation/library production, and depth of 

sequencing.5-17 These differences have led to variation in the number of cells sampled, cell types detected, and  

cluster-specific marker gene expression.2,18,19 A main point of discussion in the ENS field centers on reaching 

consensus regarding how many ENS cell types exist and what methods should be prioritized for classifying and 

naming them for consistency across the literature. Combining enteric neuron scRNA-seq datasets in a strategic 

manner is one means to gain greater understanding of diversity of enteric neurons. We make the case below for 

this strategy and illustrate the process, outlining both advantages and caveats. Our goal is to demonstrate how 

meta-analysis (the process of pooling independent datasets together into one larger aggregate focused on the 

same question) can yield greater consistency of interpretation and offer a resource of similarly processed 

datasets for future mining by the ENS community. 

 

Why combine? The case for a meta-atlas of ENS scRNA-seq data 

 

 In scRNA-seq experiments, sampling of each cell type within a tissue can be challenging, especially when 

those cells are rare. This is particularly the case for the ENS, where enteric neurons are embedded within the 

bowel wall, making up a low percentage of total cell numbers in the tissue. Low abundance is further complicated 

by difficulties in tissue dissociation and loss of neuronal processes due to shear forces during isolation. Even 

after successful cell isolation, differences in cell numbers profiled and the labeling strategy used to fluorescently 

tag enteric neurons for flow sort isolation contribute substantially to differences in the data generated. Recent 

success in combining multiple independent scRNA-seq data sets into a single aggregate, or “meta-analyses”, 

illustrate how combinatorial approaches have been informative for studies of COVID patients, liver homeostasis, 

and atherosclerotic tissues.37-39 Each of these studies leveraged similarities across individual datasets and the 
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increased cell number resulting from the integration to ask questions pertaining to the cell types of interest. They 

also successfully derived a consensus of cell type classifications and found novel cell subtypes that were not 

previously characterized from the individual datasets alone. Likewise, we take advantage of the similarities 

between ENS scRNA-seq datasets to successfully compile a “meta-atlas” of enteric neurons that offers a deeper 

resource for discrimination between enteric neuron types. This approach (Figure 1) reveals both commonalities 

between datasets as well as some differences between neuron types that were not as evident until data 

aggregation was performed. 

 

Advantages of reprocessing scRNA-seq data  

 

 Comparably processed datasets are optimal for production of a meta-atlas. Typically, initial scRNA-seq 

data in its large FASTQ file format is aligned via tools like CellRanger that produce barcode, matrix, and gene 

files.30 These outputs are then imported into programs like Seurat for filtering, normalization, scaling, and 

dimensionality reduction to visualize differentially expressed genes.21-25 It is possible to obtain aligned files 

associated with each publication although these often include alterations that result from data processing. Some 

authors provide the completely processed Seurat object; however, these files are too large for easy sharing. 

Importantly, use of derivative Seurat objects for comparisons can be complicated by how each dataset was 

processed. Differences in quality control metrics or clustering parameters can cause cells to be dropped from 

further analysis, lead to retention of poor-quality cells, or cause cell clustering differences. Reprocessing aligned 

data, such as that found in raw counts matrices and using a consistent set of parameters avoids these 

complications and leads to greater confidence in the outcomes produced by cross-study comparisons.  

 To illustrate how a meta-atlas can be produced, we primarily relied on semi-processed data files (such 

as CellRanger outputs) from alignment to the mouse genome (version mm10). We focused our ENS meta-

analysis on juvenile and adult ENS scRNA-seq datasets from the mouse, as these cell states are most alike 

(Table 1). In contrast, the developmental datasets, despite expressing pan-neuronal marker genes, contain 

immature progenitor populations that are less likely to align with mature neuron clusters and can exhibit transient 

expression of developmental genes that are not retained in mature neuron types. We sourced these data from 
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either the Gene Expression Omnibus (GEO), the Single Cell Portal at the Broad Institute, or from 

mousebrain.org.5,9,10,11,12 Some of the Drokhlyansky datasets had been pre-processed to eliminate heterotypic 

cells (sequenced droplets that contain two or more cells or nuclei of different types) using MIRACL-seq 

algorithms. We relied on these processed datasets for convenience, as most groups interested in utilizing these 

datasets may not have the computational tools for genome alignment. While not perfect, this is a straightforward 

approach for many groups that do not have advanced bioinformatics capabilities.  

 

Combining datasets: process, gains, and caveats 

 

Reprocessing each sc/snRNA-seq dataset 

 For data comparison and integration, we used the R package, Seurat, for quality control metrics and 

unsupervised clustering and Seurat’s SCTransform v2 to integrate each dataset’s sequencing replicates 

(referred to as runs).21-25,27,28 Initially, similarities between enteric neuron (EN) scRNA-seq datasets were 

assessed by several standard bioinformatic approaches. All data sets were plotted concurrently using the same 

uniform manifold approximation projection (UMAP) parameters (Figure 2A-F). UMAP plotting is a dimensionality 

reduction approach that shows how cells, represented as dots, are transcriptionally similar to each other as 

displayed by the distance between cells. Cells that are closer together are transcriptionally more similar than 

cells that are widely separated on a UMAP. These plots reveal the differences in cell numbers between datasets. 

Second, we evaluated expression of genes known to mark discrete enteric neuron types and displayed the 

expression of these marker genes for each data set using dot plots (Figure 2A’-F’). This approach revealed 

consistent detection of canonical neuron subtype markers across datasets, especially those with highest cell 

numbers. We also performed differential gene expression within each dataset to find putative cluster marker 

genes (Seurat’s FindAllMarkers), which can be found in Supplementary Tables 1-7. 

 

Removal of putative non-neuronal clusters pre-integration 

 We then focused our meta-analysis on clusters that were present in all datasets. In these initial 

comparisons, we noted that the May-Zhang 10X data contained several cell clusters that did not or mostly did 
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not correspond to clusters in the other cohort datasets. Specifically, May-Zhang 10X reprocessed clusters 7, 11, 

12, 13, and 14 (corresponding to clusters 4, 11, 12, 13, and 14 from May-Zhang et al., 2021’s in-publication 

processing) were not present or not detected in the final analyses of Drokhlyansky and Morarach.5,9,10 We 

estimated that May-Zhang 10X cluster 13 (in-publication cluster 12) appeared consistent with our reprocessing 

of Morarach et al., 2021’s cluster 3, which was marked as a mix of enteric glia and neurons in their Figure 1d 

(Figure 2C).9,10 These clusters express both glial and neuronal markers, and as a result were excluded from the 

original analysis by Morarach and colleagues.10 To specifically focus on differentiated neuron types, we excluded 

most of the clusters that were in May-Zhang et al., 2021 that expressed markers that were not shared across 

other datasets (Supplemental Figure 1A,B). We also excluded the cells from the Morarach dataset’s reprocessed 

cluster 3 for the same reasoning as the May-Zhang et al., 2021 unknown clusters (Supplemental Figure 1C). 

Retaining such dataset-specific clusters in the meta-atlas would not aid in determining cell identity for these 

clusters because the clusters do not gain additional cells when integrated with other datasets, and therefore do 

not have higher resolution. May-Zhang et al., 2021’s in-publication cluster 8 was an unassigned cell type, but 

expressed Nos1, Gal, and Sst (at lower levels), so we chose to leave corresponding reprocessed clusters with 

this expression pattern in the meta-atlas that did not express those non-neuronal genes.9 In a similar light, we 

also removed reprocessed cluster 0 in the Wright et al., 2021 dataset due to expression of glial cell markers 

(Supplemental Figure 1D). We postulate that the differences in cluster presence between datasets most likely 

has to do with the fluorescent reporters that were used to isolate the cells.  

 

Integration of reprocessed datasets to generate a single cell transcriptomic meta-atlas of enteric neuron 

types 

 To integrate all datasets into one, we integrated by biological replicate, which resulted in the integrated 

dataset represented by a UMAP dimensionality reduction with 22 clusters generated via unsupervised clustering 

(Figure 2G). We confirmed that the characteristic neuron type marker genes initially detected in each individual 

dataset (Figure 2A’-F’) were consistently observed in the integrated dataset by re-examining these markers using 

dot plots (Figure 2G’). As expected, the markers are expressed in distinct patterns after integration. The process 

of batch correction is an analytic technique designed to remove effects in the data that are due to the methods 
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by which the data are generated, or technical variation, allowing discernment of true similarities or differences 

between datasets upon integration. Batch correction can be performed by any of several approaches.40 In our 

processing we applied batch correction via SCTransform v2 integration.27,28 To demonstrate this batch correction 

approach performed appropriately, we show UMAP and PCA plots with cells and split by cluster (Figure 3A, 

Supplemental Figure 1E-G). If batch correction were not successful, the plots could show one of two possibilities. 

Either the cells from each dataset would not be dispersed relatively evenly throughout each cluster, or clusters 

of differing cell types would be merged.  

 When combining datasets, we can achieve a depth of cell types that is greater than the individual datasets 

alone. For example, in our reprocessing of each individual dataset, each displayed varying numbers of neuronal 

types, and the datasets with the fewest cells had less diversity of neuronal types in their clustering. Interneurons 

and IPANs all clustered together in our reprocessing of the data from Wright et al., 2021 (cluster 5), and 

interneurons marked by Sst and IPANs marked by Nxph2 and Ntng1 were low in number in Zeisel et al., 2018 

(clusters 8, 7; Figures 2E’,F’).11,12 In the meta-atlas dataset, these cells clustered with their appropriate 

counterparts from datasets with larger cell counts (Figures 2G,G’,3A).  

 

Expression markers of meta-atlas neuron types detected via differential gene expression 

 With higher cell counts brought together by combining individual scRNA-seq datasets, one can further 

mine the meta-atlas for hypothesis generation and compare the integration to its original dataset components. 

We assessed a few basic questions to probe the integrated meta-atlas dataset. First, we aimed to identify genes 

that are significantly differentially upregulated in each cluster versus all other clusters, as these might assist in 

detection of expression markers of novel neuron types that were missed in the individual analyses. To accomplish 

this, we performed differential gene expression analysis for each cluster versus all others using Seurat’s 

FindAllMarkers function.21-25 We identified the top differentially upregulated genes per cluster by filtering the 

FindAllMarkers results to those genes that had average log2 fold change of greater than 1 and a significant 

Bonferroni adjusted p-value (p < 0.05; Supplemental Table 8). We then visually examined where on the UMAP 

these genes were expressed to prioritize those whose expression was primarily within a single neuron cluster. 

This process produced a list of putative marker genes for each of the resulting 22 clusters (Figure 3B).  
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Meta-atlas enteric neuron types defined by prior literature definitions 

 The meta-atlas can also allow us to compare proportions of cell types within each component dataset as 

well as use previous definitions of enteric neuron types to interrogate which clusters correspond to which neuron 

type. We have presented these data in table format and an accompanying dot plot (Table 2; Figure 3C). We use 

and add to the neuronal cell definitions from Dharshika & Gulbransen’s Figure 2, which shows the putative 

anatomy and morphology of cell types marked by gene expression from scRNA-seq, as well as use the “ENC” 

definitions from Morarach et al., 2021.2,10 Using their marker gene definitions, we plotted their expression for 

each cluster, showing distinct patterns (Figure 3C; Dharshika & Gulbransen: left dot plot; Morarach “ENCs”: right 

dot plot). Our clusters often expressed genes corresponding to conflicting cell types, so we opted to list those 

possibilities in Table 2. Of note, Dharshika & Gulbransen use Slc18a2 expression as a marker for enteric glia.2 

However, we found that this gene is also expressed in our neuronal cluster 14 (as well as lowly expressed in 

other clusters), which we posit is a secretomotor, vasodilator, inhibitory motor, or descending interneuron 

because of its expression of Glp2r, Gfra1, Etv1, and Gad2.2 Therefore, Slc18a2 may not be a reliable marker 

exclusively for enteric glia in situ. From Table 2 and Figure 3C, we hypothesize that there are at least 15 shared 

distinct types of enteric neurons across these datasets, and that all the “ENCs” are represented here, with 

seemingly higher complexity. 

 

Differential abundance of putative enteric neuron types detected by age and intestinal segment  

 Integrating these datasets gives us an opportunity to identify distinctions between datasets and various 

annotations such as age and tissue section. To understand the differences in clustering distribution across age 

and tissue type (Figure 4A,B, Table 2), we performed Monte-Carlo permutation tests for each cluster (Figure 

4C)41. We found that clusters 7, 13, 1, and 8 had significant proportional bias towards adult (May-Zhang et al., 

2021, Drokhlyansky et al., 2020, and Wright et al., 2021) cells while clusters 5, 2, and 17 were proportionally 

biased towards juvenile cells (Morarach et al., 2021, Zeisel et al., 2018; Figure 4C, left). We also found that at 

least clusters 21, 8, and 7 had proportional bias towards colonic cells while clusters 5, 7, and 9 were 
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proportionally biased towards small intestinal cells (Figure 4C, right). These patterns could hint at how enteric 

neuron populations change over time and throughout the length of the intestine.  

 

Distinct expression patterns of top neuronal marker genes detected by age in the meta-atlas 

 To identify differences in expression between datasets, we used our top 30 genes per cluster from the 

FindAllMarkers results of the integrated dataset to plot heatmaps displaying expression patterns (Figure 4D,E, 

Supplementary Table 8). When we plot the gene expression for the subset adult datasets, the patterns of markers 

per cluster are relatively maintained, with dataset from Wright et al., 2021 displaying the worst congruence 

(Figure 4D). However, when plotting the subset juvenile Morarach et al., 2021 and Zeisel et al., 2018 datasets, 

many clusters do not have their own patterns of gene expression (Figure 4E). This leads us to conclude that the 

adult datasets, especially May-Zhang et al., 2021 10X dataset, are biasing the FindAllMarkers differential gene 

expression data, and that any further conclusions about cell type diversity must come from either the adult or the 

juvenile, but not both unless explicitly comparing the two general timepoints or finding what is common across 

age. Because of this, we decided to reintegrate only the adult datasets and use these data for downstream 

analyses (Figure 5A). We also perform FindAllMarkers differential gene expression analysis on these adult 

integrated data (Supplemental Table 9). 

 

Expression markers of clusters that do not express enteric neuron lineage markers Bnc2 and Etv1 

 With the effectively greater-per-cluster cell numbers, we were able to assess potential novel gene 

expression markers. For example, Morarach et al., 2021 found that the two “branched” neuronal lineages in the 

developing ENS were marked by the genes Bnc2 and Etv1, respectively and the expression of these genes 

carried into juvenile stages. However, in their study (refer to Figures 2e,6f in Morarach et al., 2021), it appears 

there are cells that do not express Bnc2 (ENC6, some of ENC7, end of Branch B) in the same way that the other 

branched linage expresses Etv1 almost entirely.10 Following integration of the adult ENS single cell datasets, the 

distinct expression of Bnc2 and Etv1 is apparent (Figure 5B, left). This provides the opportunity to probe the 

adult meta-atlas at higher resolution than their original datasets to determine whether cells that lack Bnc2 or Etv1 

express a gene or set of genes that distinguish these separate populations that might be expressed at fetal 
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stages and maintained into adulthood. To explore this possibility, we took all our integrated clusters that 

expressed either Bnc2 or Etv1 and performed differential gene expression versus the clusters that do not 

appreciably express either of these two genes (Supplementary Table 10). At least 13 prominent genes emerged 

from this process (Figure 5B, right), each of which mark the clusters that do not express Bnc2 or Etv1. For 

example, Tbx2 was previously shown to have differential expression between neuronal types via 

immunohistochemistry and cells expressing this gene were enriched in cholinergic enteric neurons.11 Loss of 

this gene, however, did not alter density of Chat+ enteric neurons. Postnatal motility experiments in adult or 

juvenile mice were not possible because Tbx2 mutants died shortly after birth.11 Tlx2 has been established to 

interact with Phox2a/b in neural crest-derived cell development, with three Tlx2 knockout mouse models having 

ENS defects42-46. Iqgap2, seemingly the most specific marker, has been reported to be required for inflammatory 

responses in the mouse colon.47 Identification of these genes as markers that distinguish these neurons from 

those expressing Bnc2/Etv1 offers the opportunity to interrogate these cell types further in adult and younger 

stages. 

 

Differential gene expression analysis identifies differences between Nxph2+ ENC12 and Nmu+ ENC6 

subclusters 

 Increasing cell numbers through data integration also allows further subdivision of clusters to resolve 

previously unappreciated neuron subtypes. Morarach et al., 2021 reported that their cluster ENC12 was complex 

in both its scRNA-seq profile and in morphology observed by immunohistochemistry. Subtypes of this cluster 

were evident in their analysis, although cell numbers were fewer than other clusters in their dataset. We probed 

the adult integrated meta-atlas dataset to determine whether any of these subtypes could be further discerned 

or characterized within the adult stages. In the adult meta-atlas, clusters 14 and 21 coincided with Morarach 

ENC12 as verified by expression of ENC12 marker gene Nxph2 and ENC12 subtype marker Piezo2, respectively 

(Figure 5C). Utilizing the higher adult meta-atlas cell count for ENC12 and Seurat’s FindMarkers differential gene 

expression analysis, we found additional adult marker genes for these subclusters, including Abca9 and Syt10 

for cluster 21 and Flrt2 and Gna14 for cluster 14 (Supplementary Table 11, Figure 5C,C’). 
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 When performing unsupervised clustering in both the complete and adult-only meta-atlas, we noticed 

that the Nmu+ cluster was split into two subclusters (Figures 2G, 3A, 5A). To determine whether this clustering 

could be reflective of biology and two enteric neuronal subtypes, we performed differential gene expression 

between the adult meta-atlas clusters 5 and 16 (Supplementary Table 12). By visual inspection of the top 

differentially expressed genes per cluster for specificity, we found at least 8 differentially expressed genes that 

may be tested for functional relevance (Figure 5D,D’). Marking cluster 5, we find hepatocyte growth factor (HGF) 

receptor Met and previously identified Rab27b (Figure 5D,D’).9 Marking cluster 16 we find Ptgfr and keratin gene 

Krt19 (Figure 5D,D’). 

 

Non-neuronal expression markers persist in the adult meta-atlas 

 When integrating datasets from different sources, clusters that might not have been previously identified 

could manifest. In the complete integrated and adult meta-atlas datasets, we observed that meta-atlas cluster 8 

and adult meta-atlas cluster 6 express genes that typically mark non-neuronal cell types (Acta2, Actg2, Des, 

Myh11, Myl9, Mylk, Rgs5; Figures 2G, 5E, Supplemental Figure 2A). When split by dataset of origin, the adult 

integrated dataset UMAP shows that most of these cells come from the May-Zhang et al., 2021 datasets 

(Supplementary Figure 2B). When these non-neuronal marker genes are mapped back to the original May-

Zhang et al., 2021 datasets, we find that they are widely expressed throughout, with highest expression in their 

unclassified clusters (Figure 2A,B, Supplementary Figure 2C,D). These genes were also expressed in the other 

two datasets. In the reprocessed Morarach dataset, there is limited expression of these non-neuronal genes in 

cluster 3 (Figure 2C, Supplementary Figure 2E). Expression is more dispersed in the reprocessed Drokhlyansky 

dataset, with highest expression in clusters 1, 6, and 7 (Figure 2D, Supplementary Figure 2F). It’s possible this 

dispersed expression of non-neuronal genes could be the result of ambient RNA due to muscle cell lysis during 

generation of nuclei from laminar muscle preparations. This expression could also arise from hetero-doublets 

(two nuclei of distinct cell types in the same droplet), although this is less likely given the use of FACS-sorting 

with size gating. However, Zeisel and colleagues reported the presence of enteric mesothelial fibroblasts marked 

by expression of Pth1r, Kcnj8, Abcc9, Cd82, Tagln, Dcn, Lum, Pdgfra, Sox10, Aldh1a3, and Anxa11.12 In the 

integrated adult meta-atlas, a subset of these genes (Kcnj8, Abcc9, Cd82, Tagln, Dcn, Lum, and Pdgfra) exhibit 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.10.31.621315doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.31.621315
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 
expression mostly in cluster 6 (Figure 5A, Supplementary Figure 2G). Whether the differences between datasets 

are due to technical challenges in sample processing or reflect biologically relevant cell types or states remains 

to be determined. 

 

Sex differences validated and major dataset differences identified through differential gene expression 

 Most of the reports used to source data for the integrations of this analysis used recorded or estimated 

sex to either display cell distribution by sex, account for sex in differential gene expression (DGE) analysis, or 

perform DGE analysis by this recorded or estimated sex metadata. Because the aggregate higher cell quantities 

exceeded those of each individual dataset, we decided to use the opportunity to probe the meta-atlas for sex 

differences via DGE in our adult integrated data. However, since Wright et al., 2021 did not record sex, and since 

the contributions to the overall data are smaller than the other three, we elected to remove the Wright et al 

scRNA-seq runs for the sex-differences analysis.11 In order to track sex, we used both the annotations from the 

Drokhlyansky et al., 2020 and May-Zhang et al., 2021 publications, as well as the expression of known genes 

Ddx3y, Uty, Tsix, and Xist (Supplemental Figure 3A,B,D,E,G).5,9 Before going forward with the DGE analysis, we 

looked at the proportions of each dataset’s cells per sex per tissue segment. This approach revealed an obvious 

bias in the small intestine segments for the data in May-Zhang et al., 2021’s 10X data in females (8164 May-

Zhang 10X neurons versus 641 other dataset neurons) and both the May-Zhang 10X and InDrop datasets in 

males (3638 and 2227 May-Zhang 2021 10X and InDrop neurons, respectively, versus 63 Drokhlyansky 2020 

neurons; Figures 6A,B). These inequalities in initial input cell numbers may skew the analysis and result in 

differentially expressed genes that can be explained by the dataset of origin instead of sex. In spite of this 

limitation, we performed DGE by sex per cluster. This revealed an unexpected and concerning issue in the data: 

the presence of “human” gene symbols and fluorescent protein fusion-coding genes such as Lrig1-mApple were 

differentially expressed and upregulated in mostly males (cluster 6, Figure 6C). These genes should not be 

present in these data and indicate that there was some error in the alignment process during initial processing 

of one of these datasets. To determine which dataset was the source of these genes, we plotted a select few of 

these problematic genes by dataset, which revealed that the InDrop data from May-Zhang et al., 2021 expressed 

these exclusively (Figure 6D). In their publication, May-Zhang et al. were unable to include the InDrop data in 
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the final analysis because they did not integrate well with their 10X datasets. However, they integrated well here,  

possibly due to the more recent software packages used (Seurat V2 to V5) or the inclusion of more datasets 

(Figures 2G,3A,5A, Supplementary Figure 1E-G).9 Going back to review which alignment software was used for 

the InDrop runs in May-Zhang et al., 2021, we found these alignments relied on the DropEST pipeline in contrast 

to the 10X Genomics datasets that used CellRanger.5,9,30 We presume that the use of a different mapping 

reference with the DropEST pipeline is the origin of the unexpected gene symbols. To retain the InDrop run data 

for the sex analysis, we first removed any obvious erroneous genes from the integrated dataset. We then 

performed DGE analysis with the InDrop data compared against the 10X Genomics assayed cells in the 

integrated dataset to find the top genes that were enriched in the InDrop data, with the goal of identifying 

erroneously aligned genes that were not immediately obvious (Supplementary Table 13). In total, we removed 

8764 obviously incorrect annotations from the integrated data due to sequence alignment to human genome 

regions or plasmid vectors and subsequently reran the DGE analysis by sex per cluster and for the data overall. 

Generally, we observed comparable top differentially expressed genes (ranked by Bonferroni-adjusted p-value, 

average Log2FoldChange, and absolute value of the percent difference between male and female cells that 

express a gene) for this cleaned analysis as obtained from the initial analysis that included the erroneous 

alignment features. In males, as expected, we see upregulation of Uty, Kdm5d, Ddx3y, and Eif2s3y and in 

females we see, as expected, upregulation of, in some clusters, Cntnap5a, Xist and Tsix (Supplementary Table 

14). We also observe that Malat1 is also differentially upregulated consistently across clusters in females 

(Supplementary Table 14). We then used logistic regression to regress out the effects of dataset of origin (i.e., 

May-Zhang 2021 10X, May-Zhang 2021 InDrop, Drokhlyansky 2020) while performing differential gene 

expression analysis by sex per cluster and per tissue segment (duodenum, ileum, colon; Supplementary Table 

15). The strongest differentially expressed genes between male and female in each cluster for each intestinal 

region from this analysis were the same as previously stated. Malat1 is differentially expressed in specific clusters 

in specific intestinal segments although always upregulated in female data (Supplementary Table 15). 

 

DISCUSSION 
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 Here we have illustrated how the integration of six individual scRNA-seq or snRNA-seq datasets provides 

higher power to statistical analyses, while also adding more complexity. Meta-analysis of juvenile to adult mouse 

EN scRNA-seq datasets produced higher cell numbers for cell types shared across datasets, enabling 

verification of prior enteric neuron classifications, extending the identification of additional marker genes, and 

offering greater resolution for the subdivision of clusters. Our approach also allowed us to identify differences 

between datasets including major expression differences across age, differences in cell type distribution, and 

identification of clusters and cell populations that are specifically enriched within individual datasets or intestinal 

segments. In our permutation analyses, we found that a group of putative ENC12-like, Ntng1+ inhibitory motor 

(cluster 13), ENC8-like inhibitory motor (cluster 1), and ENC9-like, inhibitory motor (clusters 7, 8) neuron types 

were upregulated in adult, and that ENC1 and 3-like, Necab2+ excitatory motor (clusters 2, 5) and ENC1-like, 

Necab and Htr2b downregulated excitatory motor neuron types were upregulated in juvenile ages (Figures 

3D,4C, Table 2). In addition, we found that putative inhibitory motor neurons (clusters 21, 8, 7, 10), a rare variant 

of excitatory motor (clusters 18), and an intrinsic primary afferent neuron or interneuron type (cluster 12) are 

upregulated in the colon. Finally, we found that inhibitory motor (clusters 5, 17) and a Piezo2- , ENC7-like 

neuronal types are upregulated in the small intestine. These findings indicate that the ENS may change in 

composition over time and throughout intestine segment, but this will require experimental validation. There was 

some overlap observed between clusters that significantly differ between age and intestine segment, which may 

indicate dataset-specific effects in the permutation analysis. Our attempt to identify sex-specific differential gene 

expression analysis confirmed previous findings. but it is difficult to know whether the novel differentially 

expressed genes, including Malat1, are being driven by sex or by a dataset-specific effect, even after regressing 

out dataset metadata. 

 In our analysis of the adult meta-atlas, we found gene expression markers of subclusters of both Nxph2+ 

“ENC12” and Nmu+ “ENC6”. In addition to previously identified Piezo2 and Nxph2, we extended the known 

marker genes for “ENC12” subcluster 14, with differential expression of Gna14, Flrt2, and Onecut2, while 

subcluster 21 expresses Abca9, Rfx6, and Syt10 when these subclusters are compared (Figures 5C,C’). Flrt2 

has novel tumor suppressor activity in breast cancer and localizes to pre- and post-synapses in the postnatal 

developing hippocampus where it may play a role in synapse formation.48,49 Gna14 is differentially expressed in 
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Pou3f3+ versus Pou3f3- immature enteric neurons at 17.5 dpc and was also reported as a marker gene of the 

entire ENC12 cluster by Morarach, now shown to be a marker of ENC12 “subcluster” cluster 14.10,11 Abca9 was 

recently identified as a novel gene involved in triple-negative breast cancer.50 Nmu+ ENC6 previously was probed 

for subclusters in May-Zhang et al., 2021’s analysis across the intestinal segments (May-Zhang et al., 2021 Sup. 

Figure 5A).9 However, this cluster did not immediately split via unsupervised clustering of the entire dataset in 

May-Zhang et al., 2021 like it did in our adult meta-atlas. Using these unsupervised clusters as subclusters of 

Nmu+ ENC6, we found that subcluster 5 differentially expressed Met and Rab27b (Figure 5D,D’). Interestingly, 

marking Nmu+ cluster 5, as well as clusters 17 and 18, we found that the gene coding for the hepatocyte growth 

factor (HGF) receptor Met, which has been shown to be important for development of a subset of intrinsic primary 

afferent neurons (IPANs) which regulate motility and injury response pathways in the intestine, exhibited 

differential expression for cluster 5 (Figure 5D,D’).51 Met has recently been suggested as a marker of a putative 

mesoderm-derived enteric neuron lineage in the aged intestine. However, further validation using FACS to enrich 

these putative Met+ populations is needed.15 Nmu+ cluster 5 also differentially upregulated Rab27b, which was 

also found to be mostly restricted to a subset of Nmu+ neuronal cells in the integrated findings from May-Zhang 

et al., 2021 (May-Zhang et al., 2021 Sup. Fig. 5A; Figure 5D,D’).9 We also found that Krt19, a keratin gene, was 

differentially upregulated and expressed selectively in Nmu+ subcluster 16. We validated that expression of Krt19 

was also enriched in cluster ENT9 in the juvenile dataset from Zeisel et al., 2018 (not explicitly in the publication, 

but on MouseBrain.org), which is an Nmu+ cluster (Figure 5D,D’).12,52 Finally, Ptgfr was found to be differentially 

upregulated in Nmu+ cluster 16, and it is expressed mainly in a subset of this cluster (Figure 5D,D’). Ptgfr was 

found to be enriched in clusters ENC5 and ENC6 in the dataset from Morarach et al., 2021, but seems to be 

restricted to this Nmu+ subcluster in these later adult stages (Morarach et al., 2021 Figure 2a, left; Figure 

5D,D’).10 Like the subclustering described in the previous section for “ENC12”, these findings must be validated 

with in situ experiments or flow sort purification to determine whether these initial findings reflect genuine enteric 

neuronal subtypes. Given the rarity of these neuron subclusters parsed by the additional marker genes, future 

validation efforts will need to incorporate significant enrichment strategies to derive experimental evidence that 

these subclusters reflect authentic enteric neuron subtypes within the adult ENC6 and ENC12. 
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 The potential applications of an enteric neuron meta-atlas are tremendous, as this framework can be 

used to assess changes in cell profiles with age, disease, diet, or microbiome.  Multiple groups have posted 

individual data sets online for continued access.5-17 However, to date no single repository exists for aggregated 

ENS data that is designed to facilitate access by investigators without bioinformatics expertise. To encourage 

further efforts and begin to address this challenge for the field, we offer the R objects and code from the present 

meta-atlas compilation on Open Science Framework so other investigators can readily extend and mine this 

meta-atlas going forward. 

 Our meta-atlas relied upon robust batch correction approaches to reduce variation between datasets as 

is typically done. However, recent advances in barcoding and multiplexing strategies position the field for 

simultaneous sequencing of distinct samples that will facilitate comparative analysis and further reduce 

variation.53,54 Multiplexing would be particularly useful for analysis of ENS change across the lifespan as iterative 

sampling for a single mouse line could be readily performed by a single laboratory. Challenges will remain for 

controlling variance between studies due to differences in transgenic lines, genetic background of strains, or diet. 

Reporting specifics of these variables in each publication is essential so that these factors can be accounted for 

and noted when differences are observed between datasets. Variation among human studies will remain a 

greater challenge compared to the ability to control environment, including microbiome, in rodents. 

 Choosing to process these data in readily available, previously aligned forms, has benefits and detriments 

in a meta-analysis such as this. For example, if one does not have access to enough computational resources 

to perform alignment via a program such as CellRanger, which requires at least 64GB of RAM, it is easy to 

download these processed data and see the results that may match the results from each publication. However, 

differences in alignment approaches, mapping references, or other data processing methods from each 

publication can lead to complications, such as was the case for the InDrop datasets from May-Zhang et al., 2021.  

Reprocessing and realigning the FASTQ files could potentially offer cleaner results across all datasets, due to 

greater uniformity of gene symbols used for combining the counts for each gene across all datasets during the 

merging process. Otherwise, gene synonyms and alternative aliases across different mapping references can 

prevent counts from being properly binned in the resulting matrix. 
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 Importantly, the field still faces the challenge of profiling young, healthy adult human enteric neurons at 

single cell resolution. The prior May-Zhang study relied on laser capture to gather entire ganglia sections from 

young adults. Drokhlyansky and colleagues used MIRACL-seq to assess RNA from older colorectal cancer 

patients.5 Because enteric neurons are affected by colorectal cancer, isolation of single enteric neurons for 

transcriptional profiling from young healthy adults is still needed.55,56 While optimized methods of tissue 

dissociation that maintain neuronal viability would enable this process, use of frozen tissue isolates to generate 

nuclei, combined with sequencing of vast cell numbers as sequencing costs decline, will likely succeed in 

circumventing this issue.57   

 A greater challenge for the ENS field will be linking the emerging transcriptional profiles of cell types with 

the historical morphological and electrophysiological data that has previously been the gold standard for 

classifying enteric neurons. Expression of single immunohistochemical markers has in some cases facilitated 

linking a transcriptionally defined neuron cluster with prior knowledge of neuron classes.10 May-Zhang and 

colleagues relied upon expression of known markers detected within some neuron types to propose the neuronal 

identity of clusters in their single cell data.9 One approach could be to sequence single neurons after 

electrophysiological studies as has been done for brain neurons.58 However, culture of enteric neurons to 

evaluate their polarization profiles may alter gene expression patterns. As sequencing technologies advance, it 

is more likely that spatial sequencing or transcriptional profiling of live cells will lead to success in defining the 

transcriptome of healthy human enteric neurons in situ.59 

 We acknowledge that our approach lacks validation in situ or in vivo that will be essential to cofirm the 

cell subtypes revealed in this study reflect authentic enteric neuron subtypes. We encourage those in ENS 

neurobiology to further investigate these potential novel neuronal classes to gain further insights for the field.  

 Finally, while there is great excitement given the advances in technology for both producing and analyzing 

scRNA-seq, we acknowledge other processes beyond transcription are important for cell identity. Translation, 

post-translational modifications, and protein turnover may all be at work in producing the final identity and 

functionality of enteric neurons. Integration of transcriptional profiles, multiplex immunolabeling, proteomics, and 

lipidomics will aid in realizing the full diversity of neurons within the ENS. 
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CONCLUSION 

 

In this work, we performed a synthesis of publications assessing the enteric nervous system at a single cell level. 

We shared key insights from an integrated mouse meta-atlas of both adult and juvenile and adult single cell and 

nucleus RNA-seq enteric neurons. In our atlas, all previously annotated enteric neuronal types are present, and 

were further subtyped using known and newly identified marker genes. We also identified dataset differences, 

sex differences by cluster and by intestinal segment, and age differences in our enteric neuron meta-atlas. These 

findings have great potential to improve our understanding of the ENS, following validation by the ENS research 

community. 

 
REFERENCES 
 

1. Furness, J. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9, 

286–294 (2012). 

2. Dharshika C, Gulbransen BD. Enteric Neuromics: How High-Throughput "Omics" Deepens Our 

Understanding of Enteric Nervous System Genetic Architecture. Cell Mol Gastroenterol Hepatol 

2023;15:487-504. 

3. Musser MA, Correa H, Southard-Smith ME: Enteric Neuron Imbalance and Proximal Dysmotility in 

Ganglionated Intestine of the Sox10Dom/+ Hirschsprung Mouse Model. Cell Mol Gastroenterol Hepatol 

2015;1:87–101. 

4. Cheng LS, Schwartz DM, Hotta R, Graham HK, Goldstein AM: Bowel dysfunction following pullthrough 

surgery is associated with an overabundance of nitrergic neurons in Hirschsprung disease. Journal of 

Pediatric Surgery 51 (2016) 1834–1838. 

5. Drokhlyansky E, Smillie CS, Van Wittenberghe N, et al. The Human and Mouse Enteric Nervous System 

at Single-Cell Resolution. Cell 2020;182:1606-1622 e23. 

6. Lai FP, Li Z, Zhou T, et al. Ciliary protein Kif7 regulates Gli and Ezh2 for initiating the neuronal 

differentiation of enteric neural crest cells during development. Sci Adv 2021;7:eabf7472. 

7. Lasrado R, Boesmans W, Kleinjung J, et al. Lineage-dependent spatial and functional organization of the 

mammalian enteric nervous system. Science 2017;356:722-726. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.10.31.621315doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.31.621315
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

8. Lau ST, Li Z, Pui-Ling Lai F, et al. Activation of Hedgehog Signaling Promotes Development of Mouse 

and Human Enteric Neural Crest Cells, Based on Single-Cell Transcriptome Analyses. Gastroenterology 

2019;157:1556-1571 e5. 

9. May-Zhang AA, Tycksen E, Southard-Smith AN, et al. Combinatorial Transcriptional Profiling of Mouse 

and Human Enteric Neurons Identifies Shared and Disparate Subtypes In Situ. Gastroenterology 

2021;160:755-770 e26. 

10. Morarach K, Mikhailova A, Knoflach V, et al. Diversification of molecularly defined myenteric neuron 

classes revealed by single-cell RNA sequencing. Nat Neurosci 2021;24:34-46. 

11. Wright CM, Schneider S, Smith-Edwards KM, et al. scRNA-Seq Reveals New Enteric Nervous System 

Roles for GDNF, NRTN, and TBX3. Cell Mol Gastroenterol Hepatol 2021;11:1548-1592 e1. 

12. Zeisel A, Hochgerner H, Lonnerberg P, et al. Molecular Architecture of the Mouse Nervous System. Cell 

2018;174:999-1014 e22. 

13. Guyer RA, Stavely R, Robertson K, et al. Single-cell multiome sequencing clarifies enteric glial diversity 

and identifies an intraganglionic population poised for neurogenesis. Cell Reports 2023;42:112194. 

14. Vincent E, Chatterjee S, Cannon GH, Auer D, Ross H, Chakravarti A, Goff LA: Ret deficiency decreases 

neural crest progenitor proliferation and restricts fate potential during enteric nervous system 

development. PNAS 2023;120(34): e2211986120 

15. Kulkarni S, Saha M, Slosberg J, Singh A, Nagaraj S, Becker L, Zhang C, Bukowski A, Wang Z, Liu G, 

Leser JM, Kumar M, Bakhshi S, Anderson MJ, Lewandowski M, Vincent E, Goff LA, Pasricha PJ: Age-

associated changes in lineage composition of the enteric nervous system regulate gut health and 

disease. eLife 12:RP88051. 

16. Schneider S, Anderson JB, Bradley RP, Beigel K, Wright CM, Maguire BA, Yan G, Taylor DM, Harbour 

JW, Heuckeroth RO: BAP1 is required prenatally for differentiation and maintenance of postnatal murine 

enteric nervous system. J Clin Invest. 2024;134(9):e177771. 

17. Zhou B, Feng C, Sun S, Chen X, Zhuansun D, Wang D, Yu X, Meng X, Xiao J, Wu L, Wang J, Wang J, 

Chen K, Li Z, You J, Mao H, Yang S, Zhang J, Jiao C, Li Z, Yu D, Wu X, Zhu T, Yang J, Xiang L, Liu J, 

Chai T, Shen J, Mao CX, Hu J, Hao X, Xiong B, Zheng S, Liu Z, Feng J: Identification of signaling 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.10.31.621315doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.31.621315
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

pathways that specify a subset of migrating enteric neural crest cells at the wavefront in mouse embryos. 

Dev Cell 59, 1689–1706. 

18. Li Z, Ngan ES. New insights empowered by single-cell sequencing: From neural crest to enteric nervous 

system. Comput Struct Biotechnol J 2022;20:2464-2472. 

19. Guyer RA, Mueller JL, Goldstein AM. Applications of single-cell sequencing technology to the enteric 

nervous system. Biomolecules 2022;12:452. 

20. The Mouse Brain Atlas. https://storage.googleapis.com/linnarsson-lab-loom/l1_enteric.loom Accessed 

02 July 2024. 

21. Satija R, Farrell JA, Gennert D, et al. Spatial reconstruction of single-cell gene expression data. Nat 

Biotechnol 2015;33:495-502. 

22. Butler A, Hoffman P, Smibert P, et al. Integrating single-cell transcriptomic data across different 

conditions, technologies, and species. Nat Biotechnol 2018;36:411-420. 

23. Stuart T, Butler A, Hoffman P, et al. Comprehensive Integration of Single-Cell Data. Cell 2019;177:1888-

1902 e21. 

24. Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. Cell 

2021;184:3573-3587 e29. 

25. Hao, Y., Stuart, T., Kowalski, M.H. et al. Dictionary learning for integrative, multimodal and scalable single-

cell analysis. Nat Biotechnol 42, 293–304 (2024). 

26. Picelli, S., Björklund, Å., Faridani, O. et al. Smart-seq2 for sensitive full-length transcriptome profiling in 

single cells. Nat Methods 10, 1096–1098 (2013). 

27. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using 

regularized negative binomial regression. Genome Biol 2019;20:296. 

28. Choudhary S, Satija R. Comparison and evaluation of statistical error models for scRNA-seq. Genome 

Biol 2022;23:27. 

29. McGinnis CS, Murrow LM, Gartner ZJ: DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing 

Data Using Artificial Nearest Neighbors. Cell Systems 2019:8, 329–337. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.10.31.621315doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.31.621315
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

30. Zheng GX, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. 

Nat Commun 2017;8:14049. 

31. 10X Genomics Website. https://kb.10xgenomics.com/hc/en-us/articles/360001378811-What-is-the-

maximum-number-of-cells-that-can-be-profiled- Accessed 02 July 2024. 

32. Young HM, Bergner AJ, Muller T. Acquisition of neuronal and glial markers by neural crest-derived cells 

in the mouse intestine. J Comp Neurol 2003;456:1-11. 

33. Corpening JC, Cantrell VA, Deal KK, et al. A Histone2BCerulean BAC transgene identifies differential 

expression of Phox2b in migrating enteric neural crest derivatives and enteric glia. Dev Dyn 

2008;237:1119-32. 

34. Choi HMT, Schwarzkopf M, Fornace ME, et al. Third-generation in situ hybridization chain reaction: 

multiplexed, quantitative, sensitive, versatile, robust. Development 2018;145. 

35. Choi HMT, Schwarzkopf M, Pierce NA. Multiplexed Quantitative In Situ Hybridization with Subcellular or 

Single-Molecule Resolution Within Whole-Mount Vertebrate Embryos: qHCR and dHCR Imaging (v3.0). 

Methods Mol Biol 2020;2148:159-178. 

36. May-Zhang AA, Benthal JT, Southard-Smith EM. Hybridization Chain Reaction for mRNA Localization in 

Single Cells from Mouse and Human Cryosections. Curr Protoc 2022;2:e439. 

37. Garg M, Li X, Moreno P, et al. Meta-analysis of COVID-19 single-cell studies confirms eight key immune 

responses. Sci Rep 2021;11:20833. 

38. Rocque B, Barbetta A, Singh P, et al. Creation of a Single Cell RNASeq Meta-Atlas to Define Human 

Liver Immune Homeostasis. Front Immunol 2021;12:679521. 

39. Zernecke A, Winkels H, Cochain C, et al. Meta-Analysis of Leukocyte Diversity in Atherosclerotic Mouse 

Aortas. Circ Res 2020;127:402-426. 

40. Chazarra-Gil R, van Dongen S, Kiselev VY, et al. Flexible comparison of batch correction methods for 

single-cell RNA-seq using BatchBench. Nucleic Acids Res 2021;49:e42. 

41. Miller SA, Policastro RA, Sriramkumar S, et al. LSD1 and aberrant DNA methylation mediate persistance 

of enteroendocrine progenitors that support BRAF-mutant colorectal cancer. Cancer Res 2021;81:3791-

3805. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.10.31.621315doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.31.621315
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

42. Borghini S, Bachetti T, Fava M, et al. The TLX2 homeobox gene is a transcriptional target of PHOX2B in 

neural-crest derived cells. Biochem J 2006;395:355-361. 

43. Borghini S, Duca MD, Santamaria G, et al. Transcriptional Regulation of TLX2 and impaired intestinal 

innervation: possible role of the PHOX2A and PHOX2B genes. European Journal of Human Genetics 

2007;15:848-855. 

44. Parisi MA, Baldessari AE, Iida MH et al: Genetic background modifies intestinal pseudo-obstruction and 

the expression of a reporter gene in Hox11L1−/− mice. Gastroenterology 2003; 125: 1428–1440 

45. Hatano M, Aoki T, Dezawa M et al: A novel pathogenesis of megacolon in Ncx/HOX11L1 deficient mice. 

J Clin Invest 1997; 100: 795–801. 

46. Shirasawa S, Yunker AM, Roth KA, Brown GA, Horning S, Korsmeyer SJ : Enx (HOX11L1)-deficient mice 

develop myenteric neuronal hyperplasia and megacolon. Nat Med 1997; 3: 646–650. 

47. Ghaleb AM, Bialkowska AB, Snider AJ, Gnatenko DV, Hannun YA, Yang VW, Schmidt VA: IQ motif-

Containing GTPase-Activating Protein 2 (IQGAP2) Is a Novel Regulator of Colonic Inflammation in Mice. 

Plos One 2015; 10(6): e0129314. 

48. Bae H, Kim B, Lee H, et al. Epigenetically regulated Fibronectin leucine rich transmembrane protein 2 

(FLRT2) shows tumor suppressor activity in breast cancer cells. Sci Rep 2017;7:272. 

49. Li J, Shinoda Y, Ogawa S, et al. Expression of FLRT2 in Postnatal Central Nervous System Development 

and After Spinal Cord Injury. Front Mol Neurosci 2021;14:756264. 

50. Chen J, Qian X, He Y, et al. Novel key genes in triple-negative breast cancer identified by weighted gene 

co-expression network analysis. J Cell Biochem 2019;120:16900-16912. 

51. Avetisyan M, Wang H, Schill EM, Bery S, Grider JR, Hassell JA, Stappenbeck T, Heuckeroth RO: 

Hepatocyte Growth Factor and MET Support Mouse Enteric Nervous System Development, the 

Peristaltic Response, and Intestinal Epithelial Proliferation in Response to Injury. J Neurosci 2015; 35(33): 

11543–11558. 

52. Mouse Brain Atlas Cell Types: ENT9. http://mousebrain.org/celltypes/ENT9.html Accessed 02 July 2024. 

53. Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to 

embryonic stem cells. Cell 2015;161:1187-1201. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.10.31.621315doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.31.621315
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

54. Shin D, Lee W, Lee JH, et al. Multiplexed single-cell RNA-seq via transient barcoding for simultaneous 

expression profiling of various drug perturbations. Sci Adv 2019;5:eaav2249. 

55. Rademakers G, Vaes N, Schonkeren S, et al. The role of enteric neurons in the development and 

progression of colorectal cancer. Biochim Biophys Acta Rev Cancer 2017;1868:420-434. 

56. Ray K. Crosstalk between enteric neurons and colorectal cancer stem cells influences self-renewal. Nat 

Rev Gastroenterol Hepatol 2022;19:416. 

57. Clark IC, Fontanez KM, Meltzer RH, et al. Microfluidics-free single-cell genomics with templated 

emulsification. Nat Biotechnol 2023. 

58. Fuzik J, Zeisel A, Mate Z, et al. Integration of electrophysiological recordings with single-cell RNA-seq 

data identifies neuronal subtypes. Nat Biotechnol 2016;34:175-183. 

59. Chen W, Guillaume-Gentil O, Rainer PY, et al. Live-seq enables temporal transcriptomic recording of 

single cells. Nature 2022;608:733-740. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.10.31.621315doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.31.621315
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 
 

 
Table 1. Characteristics of ENS RNA-sequencing datasets. 

First Author Year Stage 
(dpc) Mouse Model Genetic Background Phenotype Cell or Neuron 

Counts 

Lasrado 2017 13; Tam 
12.0 

Sox10-creERT2(SER93) 
;R26R-tdTomato 

129S1/Sv x 129X1/SvJ x 
129S6/SvEvTac x 
C57BL/6NCr 

WT 120 

Zeisel 2018 P21 Wnt1-cre;R26RTomato Not Defined WT 727 ENS neurons 

Lau 2019 13.5 Wnt1-cre;YPF, Tg(GBS-GFP) Not Defined WT Wnt1-cre;YPF: 7671, 
Tg(GBS-GFP): 3858 

Drokhlyansky 2020 P77-728 
Sox10-cre;INTACT,  
Wnt1-cre2;INTACT,  
Uchl1-H2BmCherry:GFP-gpi 

C57BL/6J, (C57BL/6 x 
CBA)F1, C57BL/6 x C3H, 
129, (C57BL/6 x SJL)F2 

WT RAISIN 2657; 
MIRACL 2411 

Lai 2021 13.5 Wnt1-Cre;Rosa26YFP, Wnt1-
Cre;Kif7f/f;Rosa26YFP C57 x 129/S6, mixed outbred 

WT, Kif7 
conditional 
KO 

Control 7671; Mutant 
15522 

May-Zhang* 2021 P42-47 Phox2b-H2BCFP C3HeB/FeJ x C57BL/6J F1 WT 18547 
Morarach 2021 15.5  Wnt1-cre;R26R-tdTomato Not Defined WT 3260 
Morarach 2021 18.5 Wnt1-cre;R26R-tdTomato Not Defined WT 2733 
Morarach 2021 P21 Baf53b-cre;R26R-tdTomato Not Defined WT 4892 

Wright 2021 17.5 
Chat-EGFP-L10A+;  
Nos1-creERT2/+;R26R-
tdTomato 

C57BL/6J WT 707 neurons 

Wright* 2021 P47–52 Wnt1-cre;R26R-H2BmCherry 
(C57BL/6J x CBA/J)F1 x 
(129S4/SvJaeSor x 
C57BL/6J)F1  

WT 635 neurons 

Guyer 2023 P14 B6;CBA-Tg(Plp1-
EGFP)10Wmac/J C57BL/6 x CBA WT 17690 enteric glial 

cells 

Vincent 2023 12.5, 
14.5 RetCFP/+, RetCFP/CFP C57BL/6 

Ret null, Ret 
heterozygous 
mutant 

1003 

Kulkarni 2023 P21; 
~P180 C57BL/6 C57BL/6 WT 

Neural-crest-derived: 
~1300, putative 
mesoderm-derived: 
~500; Neural-crest-
derived: 1737, 
putative mesoderm-
derived: 2223 

Schneider 2024 P5 
TyrBap1 
R26R-TdTomato (KO) and 
Bap1-wt/wt, Tyr-Cre R26-
TdTomato 

C57BL/6 WT, Tyr- 
Bap1 KO 

WT: 1392; Tyr- 
Bap1: 2382 

Zhou 2024 

10.5, 
12.5, 
14.5, 

17.5, P21 

Sox10-CreER T2 ;Rosa26R-
EGFP (No FACS) 

C57BL/6, CBA/J, 
129S4/SvJaeSor mixed 
backgrounds 

WT  4741 

* These studies utilized single nucleus RNA-sequencing.   
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Table 2: Distribution of cells across unsupervised clusters per dataset. 
   Cell Counts Per Dataset  

Putative Neuron Type Putative 
“ENC” Meta-Atlas 

Cluster 

Adult Juvenile 
Meta-
Atlas 
Total 

May-
Zhang 

10X 
May-

Zhang 
InDrop Drokhlyansky Wright Morarach Zeisel 

Excitatory Motor ENC1 0 2341 557 401 6 628 97 4030 
Inhibitory Motor ENC8 1 1653 334 562 59 190 24 2822 

Necab2+ Excitatory Motor ENC3 2 917 272 231 34 771 31 2256 
Npy+ Inhibitory Motor ENC8 3 1050 277 264 56 450 28 2125 

Excitatory Motor ENC2 4 1187 239 313 16 301 56 2112 
Necab2+ Excitatory Motor ENC1 5 946 289 100 7 688 52 2082 
Intrinsic Primary Afferent ENC6 6 1187 195 213 8 120 45 1768 

Inhibitory Motor ENC9 7 1039 214 342 37 115 5 1752 
Inhibitory Motor ENC9 8 970 377 143 111 130 7 1738 

Piezo2- 
IPAN/Intestinofugal 

Afferent ENC7 9 1075 201 60 10 270 79 1695 
Npy+ Inhibitory Motor ENC8 10 905 180 313 44 225 17 1684 

Ntng1+ Inhibitory Motor ENC8 11 819 143 145 25 415 37 1584 
IPAN/Interneuron ENC12 12 817 209 310 50 140 21 1547 

Ntng1+ Inhibitory Motor ENC12, 
Nxph2- 13 986 197 220 12 99 8 1522 

Vip-, Glp2r+, Gad2+, 
Slc18a2+, Etv1+ Neurons 

(Secretomotor/Vasodilator, 
Inhibitory Motor, 

Descending Interneuron) ENC10 14 859 166 159 9 234 10 1437 

Excitatory Motor 
ENC3, 

Ndufa4l2, 
Fut9- 15 526 144 253 18 223 17 1181 

Intrinsic Primary Afferent ENC6 16 725 97 146 14 116 52 1150 
Necab2, Htr2b 

Downregulated,  
Excitatory Motor ENC1 17 261 175 71 60 531 40 1138 

Excitatory Motor, Rare 
Variant ENC4 18 482 127 264 42 135 26 1076 

Sst+, Oprk1- Excitatory-
like Interneuron ENC5 19 545 113 200 6 106 8 978 

Piezo1 Downregulated, 
Excitatory Motor ENC2 20 512 104 118 12 201 11 958 

Glp2r+, Npy+, Ntng1+, 
Inhibitory Motor ENC11 21 243 77 159 13 49 3 544 

Table of putative neuron cell counts grouped by cluster and dataset of origin. Putative neuron types are derived 

from Dharshika & Gulbransen Figure 2.15 
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FIGURE LEGENDS 
 
Figure 1:  Overview of data integration process and analysis approach. 
 
 
Figure 2: General consensus of enteric neuron types distributed across each single cell dataset.  Panels 

A, B, C, D, E, and F show UMAP plots for each ENS dataset. Panels A’, B’, C’, D’, E’, F’, and G’ display dot 

plots of established marker genes detected in enteric neuron clusters. Panel G shows the UMAP of the integrated 

ENS meta-atlas. EMN: excitatory motor neuron; IMN: inhibitory motor neuron; IN: interneuron; IPAN: intrinsic 

primary afferent neuron.  

 

Figure 3: Post-integration gene expression in unsupervised clusters reveal distinct neuronal classes in 

relation to prior classifications. A UMAP from Figure 2G grouped and split by the dataset of origin, showing 

the results of batch correction of the cells from each dataset.  B Dot plot of significant differentially expressed 

upregulated genes per cluster based on high log2 fold change and exclusive cluster expression. C Dotplot 

showing expression of marker genes from Dharshika & Gulbransen Figure 2 (Left) and Morarach and colleagues’ 

Figure 1j by cluster upon which the table classifications are based.
6,15 

D UMAP from Figure 2G grouped by 

putative “ENC” classifiers from Morarach et al., 2021.
6
  

 

Figure 4: Post-integration cell distribution in unsupervised clusters, marker genes unveils distinct 

similarities and differences between datasets. A Stacked bar plot displays the distribution of adult and 

juvenile cells per cluster. B Stacked bar plot displays the distribution of colon and small intestine cells per cluster. 

C Permutation analysis displayed on a forest plot comparing the abundance of adult and juvenile cells per cluster 

and abundance of colonic and small intestine cells per cluster. D Heatmap displaying expression for the top 30 

genes for each cluster from FindAllMarkers differential expression results of the meta-atlas dataset ranked by 

lowest p-value and highest log2 fold change plotted on the four adult datasets. E Heatmaps displaying the same 

30 genes in F plotted on the two juvenile datasets.  

 

Figure 5: Probing the adult ENS meta-atlas for subclasses of enteric neurons. A UMAP of the new adult-

only integrated meta-atlas. B Dot plots showing either Bnc2 and Etv1 expression is shown for all clusters (left) 
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except 13, 18, and 19, which have distinct markers (right). C Dot plot showing expression of differentially 

expressed genes between clusters 14 and 21, with three representative genes’ expression per cluster plotted 

on the UMAPs in C’. D Dot plot showing expression of genes that typically mark non-neuronal types are 

expressed at low levels throughout the data but are most prominent in cluster 23. E Dot plot showing expression 

of differentially expressed genes between clusters 5 and 16, with two of these representative genes’ expression 

per cluster plotted on the UMAPs in E’.  

 

Figure 6: Sex and dataset differences identified in the adult meta-atlas. A Distribution of sex in the dataset 

visualized through a split UMAP. B UMAP displaying distribution of datasets of origin in the adult meta-atlas split 

by intestinal segment and stacked by sex. C Volcano plotting differential gene expression in cluster 6 between 

male and female cells showing erroneous genes upregulated in males. D Expression dot plot showing expression 

of “human” and a fluorescent fusion protein gene across datasets of origin. 

 

Supplementary Figure 1: Identification of putative non-neuronal clusters to remove for effective meta-

atlas generation and batch correction. A-C Dot plots displaying expression of gene markers of unknown 

clusters from May-Zhang et al., 2021 for both May-Zhang et al., 2021 datasets and the Morarach et al., 2021 

juvenile dataset. D Expression of glial-like markers in the Wright et al., 2021 dataset on a dot plot. E Pre- and F 

post-integration PCA, showing proper integration of enteric neuron datasets. G Pre-integration UMAP of the 

enteric neuron meta-atlas. 

 

Supplementary Figure 2: Muscle-like and enteric mesothelial fibroblast gene expression in the juvenile 

and adult meta-atlas. A Dot plot displaying expression of “muscle” expression markers in the combined juvenile 

and adult meta-atlas. B UMAPs showing expression of genes from A in the adult meta-atlas split by dataset, 

which identifies May-Zhang et al., 2021 as the main source of this gene expression. C-F UMAPs showing 

expression of genes from A in the May-Zhang et al., 2021 10X (C), InDrop (D), Morarach et al., 2021 (E), and 

Drokhlyansky et al., 2020 (F). G Dot plot showing expression of enteric mesothelial fibroblast marker genes 

identified in Zeisel et al., 2018 in clusters of the adult meta-atlas.  
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Supplementary Figure 3: Sex-biased gene expression of Ddx3y, Uty, Tsix, and Xist in each sc/snRNA-

seq component datasets. A Heatmap of expression of sex-biased genes in MIRACL-seq colon neuronal cells 

from Drokhlyansky et al., 2020 split by mouse. B Heatmap of expression of sex-biased genes in MIRACL-seq 

Ileum neuronal cells from Drokhlyansky et al., 2020 split by mouse. C Heatmap of expression of sex-biased 

genes in Morarach et al., 2021 split by scRNA-seq run. D Heatmap of expression of sex-biased genes in RAISIN-

seq colon neuronal cells from Drokhlyansky et al., 2020 split by mouse. E Heatmap of expression of sex-biased 

genes in May-Zhang et al., 2021 10X data split by snRNA-seq run.  F Heatmap of expression of sex-biased 

genes in Wright et al., 2021 split by snRNA-seq run. G Heatmap of expression of sex-biased genes in May-

Zhang et al., 2021 InDrop data split by snRNA-seq run. H Heatmap of expression of sex-biased genes in Zeisel 

et al., 2018 split by snRNA-seq run. 
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