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Abstract

Background

Conflicting evidence still prevails concerning the effect of preovulatory elevated progester-

one (EP4) on reproductive outcomes in fresh embryo transfer (ET). However, few studies

have analyzed the effect of EP4 on the likelihood of pregnancy using multivariate regression

approach. The potential confounding factors tested in these studies were limited to either

patient’s characteristics or to stimulation related parameters. Yet, several studies have

shown that postovulatory parameters such as midluteal progesterone (P4) level may be con-

sidered as a proxy variable of endometrial receptivity as well.

Objective

The aim of the present study was to estimate the independent effect of preovulatory P4

effect, if any, on the probability of live birth (LB) by considering the midluteal endocrine pro-

file when controlling for the potential confounding factors.

Methods

This is a secondary data analysis of a cohort of fresh IVF/ICSI cycles triggered with GnRH

agonist (n = 328) performed in a single IVF center during the period 2014–2016. Patients

contributed only one cycle and were stratified into four groups according to preovulatory P4

quartiles. We assessed the association between preovulatory P4 and the odds of LB calcu-

lated by logistic regression analysis after controlling for the most clinically relevant con-

founders. The primary outcome measure: Live birth rates (LBR).

Results

Both preovulatory and midluteal P4 were significantly correlated with the ovarian response.

Logistic regression analysis showed that preovulatory serum P4 did not have a significant

impact on LBR. In contrast, midluteal serum P4 level was an important independent factor
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associated with LBR. The optimal chance of LBR was achieved with midluteal serum P4 lev-

els of 41–60 ng/ml, [OR: 2.73 (1.29–5.78); p< 0.008].

Conclusion

The multivariate analysis suggests that the midluteal P4 level seems to impact LBR more

than the preovulatory P4 level in women undergoing IVF treatment followed by fresh ET.

Introduction

During the natural cycle, the progesterone (P4) rise precedes the luteinizing hormone (LH)

peak on the day of ovulation [1], and thus, may play a physiological role in the ovulation pro-

cess [2]. After ovulation, P4 is essential for the secretory transformation of the endometrium

and, thus, for the implantation [3,4]. However, during controlled ovarian hyperstimulation,

6–30% of cycles may display a rise in serum P4 levels particularly at the end of stimulation

mostly higher than those of natural cycle [5,6]. The preovulatory P4 rise might be attributed to

an increased number of follicles, each one produces a physiological amount of P4, rather than

P4 being produced by granulosa cells as a consequence of premature luteinization [7]. Over the

years, different thresholds of serum P4 have been proposed ranging from 0.8 to 2 ng/mL above

which deleterious in vitro fertilization (IVF) outcome may occur during fresh embryo transfer

(ET) [5,6]. Although the impact—or not of elevated progesterone (EP4) on reproductive out-

comes has been debated for almost three decades [7–9], this controversy remains unsolved,

presumably due to the lack of well-designed studies. In this respect, strong reservations have

recently been expressed regarding methodological approaches applied to address this question,

indicating that live birth (LB) is a multifactorial process that cannot be defined by a single

threshold value, in most instances suggested arbitrarily after dichotomizing continuous data

[10–12]. Further, the weakness of bivariate analysis in this context has also been well docu-

mented through receiver operating characteristic (ROC) curves as reported in several previous

studies demonstrating that the predictive performance of the preovulatory P4 level to discrimi-

nate between conception and non-conception cycles is very limited [13–15]. Accordingly, the

implementation of prognostic prediction models instead of simple bivariate analysis is manda-

tory to address the issue and thus, might serve as a useful tool to estimate the relative contribu-

tion of different factors to a single outcome [11,16]. Indeed, the multivariable analysis provides

the ability to remove the effect of confounders or other forms of biases and, thus, get a more

realistic picture compared to looking at only one variable [17–19]. So far, only a few studies

performed multivariate regression analyses to explore the possible effect of EP4 on the likeli-

hood of pregnancy [11,20–23]. Interestingly, the covariates tested in the regression models of

these studies were mostly related either to the patient’s characteristics or to the ovarian stimu-

lation parameters.

To our knowledge, none of the above studies incorporated parameters related to the luteal

phase particularly the endocrine profile, presumably owing to a lack of the availability of

serum hormones measurements, as the hormonal assessment is not routinely performed dur-

ing the luteal phase following fresh embryo transfer. Yet prior investigations have shown that

the midluteal P4 level may also be considered as a promising predictor of IVF outcome, not

only in fresh but also in frozen-thaw transfer cycles [24,25]. Based on this evidence, we hypoth-

esized that by controlling for the differences in midluteal P4 levels, the effect of the preovula-

tory serum P4 on the probability of LB might be more accurately estimated. Thus, the primary
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objective of the present study was to estimate the independent effect of preovulatory P4, if any,

on the probability of LB after 26 completed gestational weeks by considering the midluteal P4

level when controlling for the most common confounding factors. Moreover, the relationship

between preovulatory and midluteal P4 was investigated.

Materials and methods

Study design

This is a secondary analysis of data from a cohort of 328 patients undergoing a fresh IVF/intra-

cytoplasmic sperm injection (ICSI) cycles in which GnRH agonist (GnRH-a) was used for trig-

gering final oocyte maturation. The details of the flow chart of participants in the study have

been described previously [26]. Each patient was only included once. All cycles were per-

formed at the IVF unit- Ibn Rochd, Constantine, Algeria, between 2014 and 2016. All patients

gave written informed consent to participate in the study, which was conducted in accordance

with the Declaration of Helsinki and Good Clinical Practice. The research project was

approved by the Ethics Committee of the University hospital Centre Ibn Badis, Constantine,

20 October 2013. The original study was registered in ClinTrial.gov, Number: 02053779.

Ovarian stimulation

In brief, ovarian stimulation was performed with GnRH antagonist co-treatment, using exclu-

sively recombinant follicle stimulating hormone (r-FSH), (Gonal F., Merck Serono; Puregon.,

MSD) The initial dose of r- FSH was individualized for each patient according to the female’s

age and ovarian reserve markers (basal FSH level antral follicular count). Stimulation was

started from the day 3 of menstruation and dose adjustments were performed on day 5 or 6 of

stimulation based on ovarian response. GnRH antagonist 0.25 mg was daily administered

from cycle day 5 or 6 when follicles reached a mean diameter of 13 mm and continued until to

the day of final oocyte maturation. The ovulation was triggered with GnRH-a when minimum

of two follicles reached 17 mm or more in size and followed by oocyte pick up (OPU) 36–38

hours later. Fertilization of mature oocytes was carried out using either conventional IVF or

ICSI technique based on the sperm quality. Blood collection was done for FSH, LH and Estra-

diol (E2) on day 1 of stimulation, for FSH, LH, E2 and P4 on the day of triggering and on day

OPU+7 and for Beta-human chorionic gonadotropin (ß-hCG) on day OPU + 14. Serum was

analyzed for endocrine parameters by a central laboratory.

Blood samples have been processed according to the manufacturer’s instructions. Serum

was analyzed immediately using a Vidas kit (BioMerieux, France). The calibration range of the

VIDAS Progesterone kit is 0.25–80 ng/mL.

Embryo grading and embryo transfer

One to three embryos per patient were replaced on day OPU+2 or 3, depending upon the age

and the ovarian response. Embryo quality was assessed at the cleavage stage based on the

embryo morphology. A good quality embryo (Grade 1 and 2) was defined as follows: the 2–4

cells on day 2 and 6–8 cells by day 3,<20% of fragmentation, and regular shaped cells [27]. No

embryo transfer was cancelled due to EP4 on the day of GnRH-a trigger.

Luteal phase support

Luteal phase support (LPS) was previously described with more details [26]. Briefly, all patients

received a bolus of HCG 1500 IU 1 hour after OPU, micronized progesterone vaginally (600

mg/day) and estradiol orally (4 mg/day) starting from the night of OPU and continuing until
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12 weeks of gestation or a negative pregnancy test. Besides, patients have been randomized on

the day of embryo transfer into two groups; the study group received an additional single dose

of GnRH-a (Triptorlin 0.1 mg) on day OPU+6 while the control group did not.

The primary outcome of the current study was live birth rate (LBR) defined as a live neo-

nate beyond 26 weeks of gestation. Further, the correlation between preovulatory serum P4

levels, midluteal serum P4 levels and ovarian response was investigated.

Statistics

All statistical analyses were performed using IBM SPSS Statistics 26.0 (IBM Inc., New York,

USA).

The distributions of continuous parameters were evaluated using the Shapiro–Wilk test to

determine whether each variable followed a normal distribution. Serum P4 levels on the day of

trigger as well as midluteal P4 (OPU+7) levels were converted from continuous variables into

categorical variables by apportioning them into four groups (quartiles) based on 25th, 50th and

75th percentiles. Q1 included 0–25%, Q2 included 25–50%, Q3 included 50–75% and Q4

included 75–100%. Data are presented as means and standard deviations for continuous data

with normal distribution, as medians and ranges for continuous data with skewed distribution

and as percentages for categorical variables.

Differences in skewed continuous data between the four preovulatory P4 groups were

assessed using Kruskal–Wallis test followed by a post hoc pairwise comparison in case of a statis-

tical difference between groups. One-way analysis of variance analysis (Anova) was used in case

of normal continuous data. Difference in categorical variables between P4 groups was assessed

using Pearson’s chi-square test or Fishers exact test where appropriate. Spearman’s correlation

coefficient was used to assess the association between preovulatory and midluteal P4 levels as

well as ovarian response elements in terms of E2 on the trigger day, number of follicles> 11 mm

and number of oocytes retrieved. Patients contributed only one cycle in the dataset analysed.

Logistic regression analysis was used to assess 13 parameters possibly related to LBR, including

covariates demonstrating a P� .25 for the association with outcome in the univariable models as

well as clinically relevant predictive variables which were selected based on previous studies

[11,21,28]. The factors tested in the model were: (i) Patient’s characteristics: female age, female

BMI and number of previous failed IVF (ii) The intensity of ovarian response: total dose of FSH

consumption, duration of stimulation, number of follicles> 11 mm on the day of trigger which,

optimally, equals to the number of oocytes. (iii) LH on the day of GnRH-a trigger (iv) Embryo’s
characteristics: number of embryos obtained, whether at least one good embryo transferred and

number of transferred embryos. Additionally, an adjustment for midluteal P4 along with LPS

imbalances by including the extra dose of GnRH-a (yes versus no) as a covariate was performed.

A standard, i.e., direct logistic regression was used as an analysis method to develop the final

model [29]. Box and Tidwell, 1962 procedure was assessed to test the linearity of the continuous

variables with respect to the logit of the dependent variable, i.e., LB [30]. The multicollinearity

among all the factors was examined using the variance inflation factor (VIF). The model fit was

evaluated by the Hosmer and Lemeshow test [18]. Odds ratios (ORs) and 95% confidence inter-

vals (CIs) were assessed distinctly for each factor. All statistical analyses were two-tailed, and

results were considered significant when p-values< 0.05 were obtained.

Results

Baseline patient and cycle characteristics

The present study evaluated a total of 328 IVF/ICSI cycles followed by fresh ET. The spectrum

of patients was considered as large including both normal responders (NR): 80% (260/328)
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and high responders (HR) >18 follicles: 20% (68/328). Baseline and cycle characteristics

according to quartiles of serum P4 levels on the day of trigger are provided in Table 1. The

overall mean female age and female body mass index (BMI) were 31.17 ± 4.02 years and

27.23 ± 4.19 kg/m2, respectively. Patients were divided into four distinct groups according to

their quartile serum P4 levels on the day of GnRH-a trigger: [Q1: <0.74, Q2: 0.75–0.98, Q3:

0.99–1.30, and Q4:> 1.30 ng/mL]. Conversion factor to SI unit, 3.180. The four groups (Q1,

Q2, Q3 and Q4) were comparable as regards age, BMI, duration of ovarian stimulation, total

dose of FSH and serum FSH on day OPU+7. However, there were significant differences

between the groups regarding the ovarian response parameters (number of follicles >11mm

and E2) as well as hormones on day OPU+7 (LH, E2 and P4).

Relationship between preovulatory, midluteal P4 levels and ovarian

response

Spearman’s correlation revealed that the preovulatory P4 level was significantly correlated with

ovarian response elements in terms of E2 levels, number of follicles >11 mm and number of

oocytes retrieved (All P<0.0001) as well as with midluteal P4 level (P<0.007) (S1 Table).

Reproductive outcomes

Reproductive outcomes are provided in Table 2. The overall positive hCG rate per transfer,

ongoing pregnancy rate and LBR in the study was 44.2% (145/328), 34.5% (113/328) and

33.5% (110/328), respectively. Although the number of oocytes retrieved as well as the number

of embryos obtained were significantly different between the different P4 groups on the day of

ovulation trigger, however, the pregnancy outcomes were comparable (Table 2).

Table 3. summarizes the results of a multivariate regression analysis related to the LBR. The

logistic regression model was statistically significant, X2 = 60.02, p< .0005. The model

explained 23.6% (Nagelkerke R2) of the variance in LB and correctly classified 73% of cases.

Table 1. Baseline patient and cycle characteristics according to serum P4 quartiles on the day of GnRH agonist trigger.

Characteristic a P4 Q1 (<0.74) P4 Q2 (0.75–0.94) P4 Q3 (0.95–1.30) P4 Q4 (>1.30) P-value b Total

Number 88 80 79 81 NA 328

Age (years) 32.50 ±3.66 32.25 ± 3.84 31.68 ±3.77 31.17±4.02 .12 31.91±3.84

BMI (kg/m2) 28.69 ±5.17 28.45 ± 4.31 27.52 ±4.72 27.23±4.19 .12 27.99±4.65

Previous IVF, (n) 1 (1–3) 1 (1–3) 1 (1–3) 1 (1–4) .44 1.3 ± 0.57

Stimulation, (days) 9 (7–15) 9 (6–12) 9 (6–13) 9 (6–15) .79 9(6–15)

r-FSH (IU) 1871.30±333.63 1825.93±294.50 1809.17±288.54 1840.43±303.25 .66 1837.65±305.71

Follicles >11mm trigger, (n) 9 (4–28) 10 (5–26) 15 (4–30) 16 (4–26) .0001 13 (4–30)

E2 trigger, (pg/mL) 1277.50(37–6298) 1646.45(304–3000) 1880(426–3000) 2600(433–4300) .0001 1943.21 (304–6298)

LH trigger, IU/L 0.92 (0.10–3.30) 0.98 (0.10–4.65) 0.93 (0.10–4.57) 1.25 (0.10–6) .02 1.28 (0.10–6)

P4 (OPU+7), ng/mL 38.71 (10–127) 36.20 (7–182) 40 (14–322) 49 (11.78–192.80) .02 45.53 (7–322)

E2 (OPU+7), pg/mL 739(89–4747) 903(110–4300) 948(144–6071) 1033(182–4315) .001 867.47 (89–6071)

LH (OPU+7), IU/L 2.5(0.10–13.43) 1.93(0.10–9) 1.60(0.10–8.32) 2.47(0.10–9.34) .003 2.77 (0.10–13.43)

FSH (OPU+7), IU/L 0.74 (0.14–2) 0.67 (0.10–2.46) 0.63 (0.15–1.81) 0.68 (0.19–2.50) .41 0.77 (0.10–2.50)

a Descriptive data are presented as mean ± SD for continuous normal data and as median (range) for continuous skewed data. Groups are compared using Anova or

Kruskal-Wallis tests as appropriate.
b Two-side P < .05 were considered significant.

BMI, body mass index; E2, estradiol; IVF, in vitro-fertilization; IU, international units; LH, luteinizing hormone; NA, not applicable; OPU, oocyte pick-up; P4,

progesterone(ng/ml); Q, quartile; r-FSH, recombinant follicle-stimulating hormone; SD, standard deviation.

https://doi.org/10.1371/journal.pone.0246440.t001
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Table 2. Outcome of ovarian stimulation, fertilization and embryo transfer according to serum P4 quartiles on the day of GnRH agonist trigger.

Characteristica P4 Q 1 (<0.74) P4 Q2 (0.75–0.94) P4 Q 3 (0.95–1.30) P4 Q 4 (>1.30) P valueb Total

Number 88 80 79 81 NA 328

Oocytes retrieved 8.47 ± 4.88 7.78 ± 3.74 10.33 ± 5.84 11.33 ±5.84 .0001 9.41 ± 4.97

2PN oocytes 5.43 ± 3.42 5.08 ± 2.60 5.94 ± 3.43 6.46 ± 3.43 .04 5.72 ± 3.27

Embryos 5.09 ± 3.24 4.79 ± 2.62 5.59 ± 3.14 6.17 ± 3.33 .02 5.41 ± 3.13

Embryo transfer 2.31 ± 0.63 2.43 ± 0.61 2.30 ± 0.58 2.32 ± 0.49 0.50 2.34 ± 0.58

Positive hCG, n (%) 41 (46.60%) 34 (42.5%) 38 (48.10%) 32 (39.50%) 0.68 145 (44.2%)

Ongoing pregnancy, n (%) 31 (35.22%) 30 (37.5%) 28 (35.44%) 24 (29.63%) 0.74 113 (34.5%)

Live birth, n (%) 31 (35.22%) 29 (36.25%) 26 (32.91%) 24 (29.62%) .41 110 (33.5%)

aAll values are presented as mean ± (SD) or count n (%)

bKruskal-Wallis test or Chi-squared test for differences between preovulatory serum P4 groups.

E2, estradiol; IU, international units; LH, luteinizing hormone; NA, not applicable; OPU, oocyte pick-up; P4, progesterone (ng/mL); PN, pronuclei; Q, quartile; r-FSH,

recombinant follicle-stimulating hormone; SD, standard deviation.

https://doi.org/10.1371/journal.pone.0246440.t002

Table 3. Multivariate regression analysis of independent factors related to the live birth.

Variable Regression coefficient Standard error OR 95% CI P-value
P4 day of trigger, ng/mL

Q1 < 0.74 [reference category] 1

Q2 (0.75–0.94) .004 .366 1.00 0.49–2.06 0.99

Q3 0.95–1.30) -.038 .372 0.96 0.46–2.00 0.92

Q4 >1.30 -.582 .392 0.56 0.26–1.20 0.14

LH day of trigger, IU/L

Q1 < 0.68 [reference category] 1

Q2 (069–0.98) .178 .379 1.19 0.57–2.51 0.64

Q3 (0.99–1.60) .206 .375 1.23 0.59–2.56 0.58

Q4 >1.60 .856 .379 2.35 1.12–4.94 0.02a

Follicles> 11 mm day of trigger, (n)

(1–6) [reference category] 1

(7–18) -.434 .391 0.65 0.30–1.40 0.29

(>18) -2.263 .586 0.10 0.03–0.33 0.000a

Embryos, (n) .142 .054 1.15 1.04–1.28 0.008a

Embryos transferred, (n) .621 .294 1.86 1.04–3.31 0.03a

P4 (OPU+7), ng/mL

Q1 <28 [reference category] 1

Q2 (29–40) -.397 .379 0.67 0.32–1.41 0.29

Q3 (41–60) 1.007 .382 2.73 1.29–5.78 0.008a

Q4 >60 .406 .453 1.50 0.62–3.64 0.37

For estimates, adjustment was made for female age; female BMI; number of previous failed IVF; duration of stimulation; total dose of FSH during stimulation; number

of follicle > 11mm on the day of trigger; hormones on the day of trigger (P4 and LH); number of embryos obtained; number of embryos transferred; whether at least

one good embryo transferred; additional dose of GnRH agonist on day OPU+6 (yes vs. no) and P4 on day OPU+7.

Note

Preovulatory serum P4 was compared between the first quartile (<0.74 ng/mL; reference category). and the rest of quartiles (2–4). Follicles> 11 mm were compared

between low ovarian response (< 6 follicles; reference category), and intermediate response (6–18) and high ovarian response (>18). Preovulatory serum LH was

compared between the first quartile (<0.68 IU/L; reference category), and the rest of quartiles (2–4). Midluteal serum P4 (OPU+7) was compared between the first

quartile (<28 ng/mL; reference category) and the rest of quartiles (2–4).

https://doi.org/10.1371/journal.pone.0246440.t003
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Sensitivity was 43.1%, specificity was 88.3%, positive predictive value was 65.3% and negative

predictive value was 75.2%. The independent factors found to be significantly associated with

LB were: midluteal serum P4 level, i.e., on day OPU+7, serum LH levels and final follicles >11

mm on the day of trigger, number of embryos obtained, number of transferred embryos and

whether at least one good embryo transferred. However, adding the extra dose of GnRH ago-

nist on day OPU+6 (yes versus no) to the regression model did not change estimates

significantly.

Fig 1 depicts the OR, 95% CI for LBR according to serum P4 quartiles on the day of ovula-

tion trigger versus serum P4 quartiles on day OPU+7. Each group of P4 was compared with the

lowest quartile (Q1) [Fig 1A and 1B], respectively. After adjustment for relevant confounders,

serum P4 on the day of trigger did not have a significant impact on LBR [Fig 1A]. In contrast,

the LBR increased significantly in patients with a midluteal serum P4 level of 41–60 ng/mL

compared to the lowest quartile Q1 (P4 < 28 ng/mL = a reference category); [OR: 2.73 (1.29–

5.78); p< 0.008] [Fig 1B].

Discussion

Using a multivariate regression analysis, the present study suggests that the preovulatory P4

level did not show a significant effect on reproductive outcomes. In contrast, the midluteal P4

level significantly impacted the LBR in a nonlinear pattern suggesting that both low and high

P4 levels during this period, may reduce the chance of LB in women undergoing IVF treatment

followed by fresh ET. Indeed, an optimal midluteal P4 range (41–60) ng/mL was identified.

The same pattern was seen for both crude and adjusted OR of preovulatory and midluteal P4

levels. Furthermore, a positive correlation was found between the magnitude of the ovarian

response and P4 levels on the day of ovulation induction as well as on the day OPU +7. Regard-

ing the preovulatory P4, our data failed to reproduce the findings of previous studies, particu-

larly those which implemented a multivariate regression analysis and showing negative effect

of EP4 on reproductive outcomes [11,20–26]. The discrepancy between these studies and our

findings may be attributed to the following reasons; (i) Aside from the hypothesis of being a

true null result, an underpowered genuine effect of preovulatory P4 on LBR may be considered

in the framework of the present study design limitations since the sample size is relatively

modest compared to the previous reports which may constitute a type II error [31]. (ii)

Another possibility that deserves to be examined in the interpretation of the present results is

that we included the midluteal P4 as a novel covariate to adjust for along with the patient

Fig 1. Forest plot of adjusted live birth rates according to preovulatory (A) versus midluteal serum P4 levels (B) after

IVF/ICSI with fresh ET. Data are presented in OR (95% CI) of the comparison of the odds between each P4 quartile

with the lowest P4 quartile (Q1: reference category). For estimates of live birth, adjustment was made for female age;

female BMI; number of previous failed IVF; duration of stimulation; total dose of FSH during stimulation; number of

follicle> 11mm on the day of trigger; hormones on the day of trigger (P4 and LH); number of embryos obtained;

number of transferred embryos; whether at least one good embryo transferred; additional dose of GnRH agonist on

day OPU+6 (yes vs. no) and P4 on day OPU+7.

https://doi.org/10.1371/journal.pone.0246440.g001
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characteristics and stimulation parameters; this may generate different estimates in the regres-

sion model. (iii) The current published data on EP4 and IVF outcomes predominantly derive

from hCG triggered cycles [8] whereas in our study, all patients were triggered with GnRH-a.

In this respect, the P4 concentration during the early luteal phase was found to be significantly

higher in hCG trigger compared to GnRH-a trigger [32,33] which may yield substantial dis-

crepancy in the endocrine profile [34].

In contrast with earlier studies suggesting that the impact of EP4 on pregnancy outcome

does not seem to be modulated by the ovarian response [20,21], it has been recently shown

that the number of oocytes may be an important confounder associated with both the exposure

(EP4) and the outcome (LB) [11]. In this respect, accumulating evidence revealed that EP4

does not seem to significantly affect reproductive outcomes in the high response (HR) category

in which EP4 is being more common than poor and intermediate response categories.

[11,14,23]. In the current study, the final follicle count >11mm was found in the regression

analysis to significantly reduce LBR in HR (> 18 follicles) when compared with poor and

intermediate responders [OR: 0.10, 95% CI, 0.03–0.33] (Table 3), which is consistent with the

findings reported by a recent study showing a steady reduction in LBR beyond twenty oocytes

retrieved, presumably due to supraphysiological circulating steroids levels [35]. Besides, the

present data show a significant correlation between the ovarian response and both preovula-

tory and midluteal P4 levels (S1 Table) suggesting that each follicle contributes to the pool of

serum P4 before ovulation triggering [20,36] as well as after oocyte retrieval [24,37]. Contrast-

ing the preovulatory serum P4 level, the current results suggest that the midluteal P4 level is an

independent factor associated with LB potential, and, interestingly, in a nonlinear pattern,

[OR: 2.73 (1.29–5.78); p< 0.008] (Table 3). While sufficient evidence has accrued, demonstrat-

ing that a low luteal P4 level is associated with low pregnancy rates in fresh ET despite transfer

of morphologically good embryos [38], the impact of EP4 during the midluteal period on the

cycle outcome has not been fully elucidated. A recent study analyzing a dataset of 602 patients

reported that the optimal chance of pregnancy was achieved with midluteal serum P4 of 150–

250 nmol/l, i.e., 47–78 ng/mL which is close to the optimal range found in our study, 41–60

ng/mL [24].

Currently, it is not yet clarified whether the late follicular P4 rise is a cause or a confounder

of lower reproductive outcome in fresh ET since the conclusions drawn from bivariate analysis

may be prone to bias [11]. Further, in the majority of previous studies where the midluteal P4

was not considered in the multivariate regression analysis, it is believed that the preovulatory

EP4 per se reduces pregnancy outcome by altering the endometrial receptivity [39,40] rather

than oocyte/embryos quality [41].

Conversely, the current study argues against the above-mentioned findings, showing

that the detrimental effect of EP4 seems to be attributed to the EP4 during midluteal time

rather than to EP4 at the day of ovulation induction. As depicted in Fig 1A, preovulatory P4

levels did not affect LBR. Importantly, the nonlinear model of the correlation between mid-

luteal P4 levels and LBR suggests that there is an optimal range of midluteal P4, a window at

which the most optimal implantation rates can be expected since pregnancy rates are lower

with both low and high P4 levels Fig 1B, which is in agreement with a previous report [42].

Indeed, the present study suggests that a suboptimal midluteal P4 level seems to decrease

the chance of LB following fresh ET from 45.10% in patients with optimal midluteal P4 lev-

els (41–60) ng/mL to 30.12%, 25.27% and 30.77% in patients with P4 < 28 ng/mL, P4 (29–

40) ng/mL and P4 >60 ng/mL respectively (S2 Table). Accordingly, we speculate that the

likely reason for the negligible effect of preovulatory EP4 on the cycle outcome of HR may

be explained by the availability of adequate P4 around the time of implantation rather than

the availability of high-quality embryos including blastocysts for transfer, as previously
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suggested [43,44]. Further, one might wonder whether reports failing to show any relation

between late follicular P4 levels and the reproductive outcome may have analyzed more HR

who had an appropriate midluteal endocrine profile. Providing further support for our

observations, Wang et al. retrospectively compared the effect of preovulatory versus early

luteal P4 levels on reproductive outcomes in 384 patients [34]. The study showed that low

responders undergoing intensive ovarian stimulation are more likely to exhibit low repro-

ductive outcomes in fresh ET compared to normal and HR which was attributed to an ele-

vated P4 ratio (the rise in P4 between trigger day and oocyte retrieval) rather than to

preovulatory P4 level per se.The strength of the present findings derives from the fact that

they are provided by multivariable regression analysis instead of bivariate analysis which

may remove the effect of confounders and, thus, more reliably may estimate the true effect

of preovulatory P4 on the LBR. Nonetheless, the study also has some limitations, including

the fact that the observed data derive from a post hoc analysis which may prevent statistical

detection of further significant differences particularly when the study is underpowered and

not truly negative; moreover, data collection ended in 2016; at that time, the use of blasto-

cyst transfer was not systematically implemented in our center. Although new confounders

such as those related to the luteal phase have been added to the regression model, there

could still be residual variables which are not considered. Furthermore, the findings of the

current study may not be applicable to a population triggered with hCG. Lastly, the validity

of a single measurement instead of a median value [45], and the performance and precision

of immunoassay systems, particularly in the lower range of detectable P4levels (<2.5 ng/

mL) [46]. From a clinical perspective, this study highlights that monitoring P4 levels during

the midluteal phase would be an important and innovative practice which might increase

the reproductive outcomes of fresh ET; thus, in patients with P4 levels below 40 ng/mL,

additional progesterone could still be provided to rescue the cycle [47]; alternatively in

cycles with P4 levels above 60 ng/mL, additional progesterone support is redundant and

likely to be harmful for the endometrial receptivity. To conclude, the findings of the present

study suggest that the midluteal P4 level seems to impact LBR more than the preovulatory

P4 level. The most optimal midluteal P4 level identified was 41–60 ng/mL, and both preovu-

latory and midluteal phase serum P4 are positively correlated with the ovarian response.

More research into the luteal phase steroids profile of the IVF cycle is needed before final

conclusions can be drawn.
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