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ABSTRACT We isolated Thermus thermophilus strain HB5018 from Mine Hot Spring
in Japan, where the type strain HB8 was isolated nearly half a century ago. The com-
plete genome sequence of HB5018 showed 99.1% average nucleotide identity with
HB8, suggesting strict species conservation in the habitat over the past 50 years.

An extreme thermophile, Thermus thermophilus, which grows optimally between
70°C and 75°C, was first isolated by Tairo Oshima about 50 years ago at Mine Hot

Spring (34.7567N, 138.9828E) in Japan (1). Since then, many T. thermophilus strains
have been isolated from high-temperature environments worldwide (2–7). Among
them, strains HB8 (type strain) and HB27, both of which were isolated from Mine Hot
Spring, have been extensively studied, particularly for proteins (8–13) and ribosomes
(14–16), taking advantage of their high thermostability. Since 1968, we have repeatedly
visited Mine Hot Spring and screened for thermophiles, but the vast majority of the iso-
lates have been attributed to T. thermophilus. We have been interested in long-range
species conservation in this unique habitat and initiated “fixed-point microbial commu-
nity analysis” at the site.

In 2018, we collected a boiling water sample at Mine Hot Spring to screen for ther-
mophiles. The sample was spread over Thermus medium (ATCC medium 697) agar
plates (4.0% [wt/vol]) containing 0.4mM MgCl2 and 0.35mM CaCl2. After incubation at
70°C overnight, dozens of orange-yellow colonies appeared on the plates. We selected
one of the strains, designated HB5018, for whole-genome sequence analysis. Cells
were grown to saturation at 70°C in Thermus medium containing 0.4mM MgCl2 and
0.35mM CaCl2, and genomic DNA was purified using a blood and cell culture DNA mid-
ikit (Qiagen). Sequencing was performed by combining GridION (Oxford Nanopore
Technologies [ONT]) and MiSeq (Illumina) technologies.

For long-read sequencing, unsheared genomic DNA (1mg) was treated with a
short-read eliminator kit (Circulomics), and a library was constructed using a ligation
sequencing kit (ONT) and analyzed on a FLO-MIN106 R9.41 flow cell (ONT). For all soft-
ware, default parameters were used except where otherwise noted. Base calling was
conducted using Guppy v.4.0.11 to generate 43,824 reads (652Mb) with an average
length of 14,861.5 bases. The raw sequencing data were filtered (Q$ 10; read length,
$1,000 bases) using NanoFilt v.2.3.0 (17), yielding 34,122 reads with a maximum read
length of 303,772 bases, and an N50 value of 38,694 bases, spanning 558Mb. For short-
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read sequencing, the Nextera DNA Flex library prep kit (Illumina) was used with the
unsheared genomic DNA (500 ng) to generate libraries (;700-bp inserts). Paired-end
(2� 256-base) sequencing was performed on a MiSeq instrument (Illumina), yielding
990,974 paired-end reads. Adapters and low-quality data were trimmed using fastp
v.0.20.1 (18) (Q$ 30; read length $ 10 bases), yielding 628,050 paired-end reads with
an average length of 217 bases, spanning 136Mb.

The long- and short-read data were assembled de novo using Unicycler v.0.4.8 (19)
and Flye v.2.8 (20) to yield structurally consistent assembled sequences, which were
then iteratively polished with Pilon v.1.23 (21) to generate a single circular chromo-
some of 1,954,551 bp (GC content, 69.3%) and four circular plasmids (pHB5018b
through pHB5018e). Rotation and circularity were confirmed via Unicycler (Table 1).
Automatic annotation using DFAST v.1.2.4 (22) revealed that the chromosome con-
tained 2,090 protein-coding, 50 tRNA, and 6 rRNA genes. A JSpecies analysis (23)
revealed that the HB5018 chromosome showed the highest average nucleotide iden-
tity (99.11%; 89.12% aligned nucleotides) with that of HB8 (GenBank accession number
NC_006461) among the known T. thermophilus genome sequences, suggesting strict
species conservation in the habitat over 50 years.

Data availability. The complete genome sequence of T. thermophilus HB5018 is
available from DDBJ/EMBL/GenBank under the accession numbers summarized in
Table 1. The raw sequencing data were deposited in the SRA under the accession num-
ber DRA011331 (BioProject accession number PRJDB11006 and BioSample accession
number SAMD00269939).
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