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1  |  INTRODUC TION

Our understanding that brain microglia display diversity in gene 
expression depending on developmental age, region, and in the 
context of health and disease has rapidly increased over the last sev-
eral years. The advances emerge from the insights of genetic and 

molecular tools, which permit interrogation at the single- cell level. 
Microglia are the innate immune cell guardians of the central ner-
vous system responding to infection, injury, or any chronic condi-
tion that disrupts normal homeostatic functions. While common to 
all the former insults is the initiation of an inflammatory response, 
the exact molecular mechanisms in each context differ and must be 
defined. Although not without obvious limitations, rodent models 
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Abstract
Osteopontin (OPN) also known by its official gene designation secreted phosphopro-
tein- 1 (SPP1) is a fascinating, multifunctional protein expressed in a number of cell 
types that functions not only in intercellular communication, but also in the extracel-
lular matrix (ECM). OPN/SPP1 possesses cytokine, chemokine, and signal transduc-
tion functions by virtue of modular structural motifs that provide interaction surfaces 
for integrins and CD44- variant receptors. In humans, there are three experimentally 
verified splice variants of OPN/SPP1 and CD44’s ten exons are also alternatively 
spiced in a cell/tissue- specific manner, although very little is known about how this 
is regulated in the central nervous system (CNS). Post- translational modifications of 
phosphorylation, glycosylation, and localized cleavage by specific proteases in the 
cells and tissues where OPN/SPP1 functions, provides additional layers of specificity. 
However, the former make elucidating the exact molecular mechanisms of OPN/SPP1 
function more complex. Flexibility in OPN/SPP1 structure and its engagement with 
integrins having the ability to transmit signals in inside- out and outside- in direction, 
is likely why OPN/SPP1 can serve as an early detector of inflammation and ongoing 
tissue damage in response to cancer, stroke, traumatic brain injury, pathogenic infec-
tion, and neurodegeneration, processes that impair tissue homeostasis. This review 
will focus on what is currently known about OPN/SPP1 function in the brain.
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for the study of neuro- immune mechanisms are invaluable in allow-
ing researchers to design targeted and carefully controlled studies 
not possible in humans. The barriers have been particularly acute 
for studying neurological complications and associated central ner-
vous system (CNS) immune impacts of the human immunodeficiency 
virus type- 1 (HIV- 1). While antiretroviral therapy is highly success-
ful in preventing the spread between people, it is not curative. 
Based on some estimates, approximately 30%- 50% of those living 
and aging with HIV have an elevated risk for neurologic complica-
tions,1 although other findings suggest a much lower prevalence.2 
The virus assumes latent infection in resting CD4 lymphocytes and 
brain microglia, which turnover very slowly by some estimates, with 
a half- life of four or more years.3,4 Current therapies for HIV cannot 
eliminate these reservoirs and other viral tissue sanctuary sites.5

Several models of humanized mice have allowed recent advances 
in probing the molecular basis of neuro- immune interactions.6- 8 This 
review will focus on emerging insights on the role of osteopontin 
(protein name)/secreted phosphoprotein- 1 (gene designation) at the 
intersection of the nervous and immune systems in the field known 
as neuroimmunology. Single- cell RNA sequencing from the last sev-
eral years has implicated OPN/SPP1 as a highly expressed gene in 
microglia of the early postnatal brain9 and in adults after injury.10- 12 
Furthermore, OPN/SPP1 knockout mice are viable and show no 
gross physical or behavioral abnormalities but disorganized wound 
remodeling and defective macrophage infiltration after injury or in-
fection is seen.13 However, little is known about OPN/SPP1's funda-
mental basic molecular mechanism (s) of action in the injured central 
nervous system. We focus on how OPN/SPP1’s innate immune func-
tion is activated in the context of viral infection and the ensuing im-
pact on neurons and homeostatic regulation but believe the findings 
have broad applicability. Indeed, OPN/SPP1 is a potent sensor in the 
central nervous system responding to different types of acute or cu-
mulative damage in cellular/tissue state or physiology that disrupts 
homeostasis, for example, in neurodegenerative disorders in which 
inflammation is a prominent component.14 In multiple sclerosis and 
Alzheimer's disease (AD) models and humans, OPN/SPP1 is elevated 
in the plasma and CSF in those with advanced disease.15- 19 It is also 
a member of a highly expressed gene signature of so- called neuro-
degenerative microglia that includes ApoE.10- 12 Through ongoing re-
search, we aim to gain a deeper mechanistic understanding of OPN/
SPP1 function as an upstream regulator of neuroinflammatory sig-
naling, identify the branch point(s) at which its downstream signals 
bifurcate to activate gene expression pathways that (1) are neuro-
protective, (2) facilitate immune cell recruitment via tissue- level sig-
nals, and (3) modulate pro- inflammatory signaling via glial- neuronal 
crosstalk, all to restore homeostasis in the CNS.

2  |  OPN/SPP1 STRUC TURE- AC TIVIT Y 
REL ATIONSHIPS THAT INFLUENCE 
FUNC TION

Although first reported in osteoclasts and independently as a highly 
phosphorylated protein in bone matrix,20,21 other cells including T, 

B, NK, and NKT lymphocytes, myeloid cells, osteoblasts, osteocytes, 
epithelial cells, and specific neurons express OPN/SPP1. Given this 
cellular distribution, OPN/SPP1 expression can be detected in joints, 
adipose tissue, liver, lung, and at the highest levels in brain tissue. 
Most OPN/SPP1 mRNAs encode a traditional signal peptide allow-
ing cellular secretion and accumulation in blood, urine, bile, and 
milk.22,23 No crystal structure is available for OPN/SPP1. However, 
biophysical modeling studies predict that the protein folds into two 
distinct alpha- helical and beta- pleated sheet conformations with a 
disordered tertiary structure.24,25 Intrinsically disordered proteins 
have the property of forming more stable structures upon bind-
ing to their targets.25 There are several excellent detailed reviews 
on the history of OPN/SPP1 discovery, its protein structure, and 
a general overview of its function in bone tissue, cancer, and an-
giogenesis.14,26,27 An additional body of work has explored the role 
of a non- secreted form OPN/SPP1 involved in dendritic cell type- 1 
interferon immunity.28- 30 We will highlight herein what is currently 
known about key aspects of OPN/SPP1 function in the brain.

OPN/SPP1, a highly acidic protein of 45- 75 kDa, participates in 
diverse cellular pathways through the use of (1) discrete functional 
domains, (2) by serving as a substrate for specific proteases, (3) 
post- translational modifications, and (4) the activity of splice vari-
ants. Indeed, variation in its apparent molecular weight seen upon 
native or denaturing SDS- PAGE reflects the type and extent of post- 
translational modifications. Specific amino acid motifs allow OPN/
SPP1 to bind to integrins and CD44 and interact with calcium- binding 
factors and heparin.31- 35 Integrins form heterodimers and have the 
unique capacity to signal from the cell surface to the nucleus or in 
the reverse direction, sensing an intracellular signal transmitted out-
side the cell.36,37 Integrins' additional layer of signaling specificity 
lies in their differential cell-  and tissue- specific expression.

Cleavage sites in OPN/SPP1 for specific matrix metalloproteases 
and thrombin result in N- terminal and C- terminal peptides with bi-
ologic function controlling the polarization of Th1 and Th2 cell sub-
sets.38- 43 Through the engagement of specific integrins, OPN/SPP1 
can activate phosphoinositide- 3 kinase and MAPK cascades leading 
to the inhibition of NF- kB from repressive complexes in the cyto-
plasm, allowing it to enter the nucleus and drive gene expression 
associated with immunity, vascular disease,44 tissue remodeling, 
cell migration, or cell survival.45 Using deletion analyses studies, we 
found that distinct OPN/SPP1 protein motifs such as the aspartate 
domain, C-  and N- terminal peptides, and the calcium or CD44- 
binding domains possess fusion or adhesive properties that enhance 
HIV- 1 cell- to- cell spread.46

OPN/SPP1 is phosphorylated on at least 25% of its acidic res-
idues, depending on the specific cell type.47,48 The highly acidic 
charge of OPN/SPP1 confers on the bone's ability to regulate min-
eralization in extracellular matrix (ECM).47,49 N- linked and O- linked 
glycosylation50- 52 as well as transglutamination, which results in the 
increased polymerization of OPN/SPP1 in the ECM, can also play 
a role in either masking interaction domains or enhancing select 
functions of OPN/SPP1 in the particular cell and tissue relevant con-
text.53- 56 Given the sheer number of acidic residues and, therefore, 
the limits of studying the direct contributions of phosphorylation to 
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OPN/SPP1 activity in vivo, most studies in this regard are biochem-
ical, use modified peptides, mass spectrometry analyses, and cell- 
based assays to then infer the likely impact of phosphorylation on 
functions like integrin- binding ability.23,57

Therefore, a central key concept in understanding whether 
OPN/SPP1 function contributes to disease progression or resolution 
depends on whether the injury is (1) acute or chronic, (2) which cells 
express OPN/SPP1, (3) the type of tissue, and (4) what receptors 
are activated in the local microenvironment. For example, in mul-
tiple sclerosis, in which high OPN/SPP1 is associated with a wors-
ening disease, studies from a mouse model of the disorder found 
that OPN/SPP1 through NF- κB and Fox3a activation promotes the 
survival of myelin- reactive T- cells.58 In sporadic amyotrophic lateral 
sclerosis (ALS), a recent study using an expression- weighted cell- 
type transcriptome enrichment strategy on a human cohort and two 
different ALS mouse models implicated elevated OPN/SPP1 expres-
sion in perivascular fibroblasts (also known as vascular leptomen-
ingeal cells)59,60 and their altered function commencing before the 
manifestation of disease symptomology.61 In contrast, in the eye, it 
was found that treatment of retinal ganglion cells having severed 
axons with OPN/SPP1 protein and insulin growth factor- 1 (IGF- 1) 
resulted in significantly enhanced regrowth of axons than with IGF- 1 
alone.62

Adding to the complexity of understanding OPN/SPP1 function 
in specific cellular contexts is the expression of distinct allelic vari-
ants resulting from alternative splicing.63 The interaction surfaces of 
three verified allelic variants (OPN- a, OPN- b, and OPN- c), including 
integrin- , calcium- , and CD44/heparin- binding regions, have been 
identified.31,47,50 The OPN- a transcript is selectively increased in 
HIV- infected human macrophages, and anti- sera that detect this 
variant was used in subsequent studies.46,64,65 Future studies will 
ascertain whether specific OPN/SPP1 splice variants or peptides 
are expressed in brain glial and neuronal subpopulations and play 
differential roles in neuroinflammatory signaling. Given the need to 
substantiate form with function, identifying and studying the rele-
vant tissue- specific OPN/SPP1 variant (s) would advance the field.

3  |  A SENSOR OF CNS INJURY AND 
INDUCER OF NEUROPROTEC TIVE 
SIGNALING

Several years ago, we and others reported that OPN/SPP1 in the 
cerebrospinal fluid was highest in HIV- infected individuals with 
moderate- to- severe cognitive impairment (CI).64,66 In addition, 
both astrocytes and microglia in HIV- infected human brain tissue 
showed reactivity to monoclonal anti- sera against OPN/SPP1 pro-
tein. However, the levels in those with CI were significantly different 
in the latter.65 Given this association and findings from an in vitro 
study of HIV- infected human macrophages where we found that 
OPN/SPP1 was a significantly upregulated gene,46 we did not know 
whether the response was an effort of the host to protect cells or a 
stealth property of the virus from enhancing its replication potential. 

In addition, OPN/SPP1 can activate the transcription factor NF- κB, a 
potent activator of HIV gene expression in immune cells. Therefore, 
we hypothesized that increased OPN/SPP1 expression in the brain 
would enhance HIV replication and exacerbate viral- mediated dam-
age to neuronal integrity. However, using primary cultures of rat cor-
tical neurons, we found that, instead, OPN/SPP1 protected these 
cells from the damaging effects of HIV envelope protein on axonal 
and dendritic spine integrity.67,68

Interestingly, the mechanism involves a two- pronged activation 
of the mammalian target of rapamycin (mTORC1/2) pathway sig-
naling.67 G- protein coupled receptors, such as chemokine receptor 
CXCR4, but not CD4, are expressed on many neurons. However, 
the HIV envelope requires both of the latter receptors to success-
fully fuse to the target cell membrane and release its pre- integration 
complex into the cell. Interaction of the HIV envelope with neuro-
nal CXCR4 or CCR5 chemokine receptors induces pathologic exci-
totoxicity and cell death.69- 71 HIV envelope engagement of CXCR4 
alone on cortical neurons stimulates mTORC2 downstream signaling 
through stress glucocorticoid kinase 1 (SGK1) and phosphorylation 
of AKT at S473.67 Concomitantly, OPN/SPP1 binding and signaling 
through β1 integrin receptors activates mTORC1 pathway signaling 
through p70 S6 kinase, pS6 ribosomal protein to increase axon length 
and the density of dendritic spines on cortical neurons.67 Studies ex-
amining neurite regrowth after axotomy found that a combination 
of insulin growth factor- 1 and OPN/SPP1 via mTORC signaling was 
superior at promoting regrowth of available corticospinal tracts than 
IGF- 1 alone.62 While mTORC signaling controls HIV latency,72 au-
tophagy, apoptosis,73 and even homing of gut CCR6+CD4+ T- cells74 
before our study, little had been published about mTORC roles in 
HIV neuropathologic mechanisms.

Seminal studies showed that OPN/SPP1 plays a neuroprotec-
tive role in stroke.75- 77 More recent investigations suggest that 
the mechanism is partly related to the balance in inflammatory to 
anti- inflammatory signaling.75 In a rat model of ischemia, intranasal 
delivery of an OPN/SPP1 seven- amino acid peptide confers protec-
tion against ischemia. The heptamer peptide downregulates the ex-
pression of IL- 1β, IL- 6, and TNF- α78 through a putative mechanism 
involving αvβ3 integrin.79 A very recent elegant study delineated a 
mechanism between T- regulatory cells expressing OPN/SPP1 that 
infiltrate the brain after chronic stroke injury and engage integrin- β1 
expressed specifically on microglia to stimulate the proliferation 
and differentiation of new oligodendrocytes having the capacity 
to remyelinate the injured brain.80 Details of the exact mechanisms 
remain to be further explored. Another recent study showed that 
dying neurons in the acute phase express OPN/SPP1 and induce 
similar expression in infiltrating monocytes that ultimately cooper-
ate with other glial cells to phagocytize the damaged neurons.81

Hippocampal neurons play essential roles in the consolidation of 
memory learning and the regulation of emotions. The neurochem-
ical messenger dopamine regulates reward responses and is im-
paired in untreated HIV infection and those experiencing long- term 
neurologic complications.71,82 We found that OPN/SPP1 protected 
against HIV Env induced decreases in dendritic spine density that 
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depended on β1 integrin expression on rat hippocampal neuronal 
cultures devoid of glial cells.68 Moreover, through the engagement 
of β3- integrin signaling, OPN/SPP1 alone increased spine density.68 
At least ten different integrin heterodimers are expressed in the 
central nervous system, and their roles in regulating the strength 
and propagation of electrochemical signals have long been known.83 
Multiple significant ligand- receptor interactions occur at the synap-
tic cleft.84- 86 The strength and timescale of these interactions are 
influenced by perineuronal nets, which support synaptic plasticity 
and protect cells from oxidative stress.87- 90 These cellular/molecu-
lar strategies to protect neuronal function are collectively known as 
homeostatic plasticity.91,92 The disruption of homeostatic plasticity 
likely underlies several neurological and neuropsychiatric disorders, 
given the direct evidence for alterations in integrin expression and 
positive associations with specific allelic variants.36 We found that 
changes in PNN density were regulated in a differential fashion by 
signaling through β1-  or β3- integrins in the presence of HIV Env and 
OPN/SPP1.68 Based on what is currently known about the contri-
butions of PNN to signal propagation, we suggest that OPN/SPP1, 
in its role as an extracellular matrix protein, facilitates proper signal 
transmission. In the brain, glial cells can also express PNNs and a 
variety of other ECM proteins supporting the health and integrity 
of the basement membrane. As neuroinflammatory processes can 
disrupt basement membrane physiology, a fuller understanding of 
the mechanisms requires multicellular systems and in vivo models 
that would allow such contextual insights.93

The second important receptor for OPN/SPP1 is CD44, a widely 
expressed multifunctional transmembrane glycoprotein involved 
in activating cells as diverse as immune and epithelial cells and ke-
ratinocytes.94- 96 The complexity in CD44 expression lies partly in 
the alternative splicing of its ten exons and differential expression 
during development, adulthood, and post- translational regulatory 
mechanisms.40,97,98 The most common form found on immune 
cells is called CD44 standard (CD44s), with variants designated 
as CD44v followed by the number of the exon (s) included in the 
mature transcript. There is evidence of a linkage between variant 
expression associated with pro- inflammatory cytokines like IFN- γ 
and function in health versus cancer.33,99 In specific contexts, the 
function of CD44 may be regulated by the stability of transcript 
expression. In the brain, neurons, glia, and astrocytes, in particular, 
display marked region- specific heterogeneity in allelic variant ex-
pression.100- 102 Differentially expressed CD44 allelic variants have 
been found in the basal ganglia, hippocampus, cerebellum, and spi-
nal cord.100- 102 CD44 activation has been reported for both pro- and 
anti- inflammatory signaling.103,104 In a non- human primate model 
of viral- induced neuroinflammation, the trafficking of CD44v6 ex-
pressing monocytes to the brain predicted which animals developed 
encephalitis.105,106 Importantly, with the CD44 interaction domain 
in OPN/SPP1 located at its C- terminus, cleavage of OPN/SPP1 by 
thrombin or MMPs leads to the exposure of cryptic epitopes that 
facilitate ligand- receptor engagement in cancer cells.33 Whether 
similar such interactions occur among cells in the CNS remains to 
be defined.

The extracellular domains of CD44 variants are substrates for 
extensive glycosylation and other interactions within the ECM 
with proteoglycans, hyaluronan, growth factors, and cytokines.96 
Many peptidases and proteases that target OPN/SPP1 in the ECM 
can also modify CD44. This suggests that both ligand and recep-
tor activity can be modified to satisfy gene expression needs in 
particular contexts. OPN/SPP1 interaction with CD44 on immune 
cells has been reported. However, far less is known about the 
functional consequences of OPN/SPP1 engagement of CD44 on 
astrocytes. Given astrocytes' critical trophic and neuroprotective 
roles, such signaling is expected to contribute to molecular mecha-
nisms that resolve neuroinflammation, for example, in the context 
of HIV breach of the brain in which the function of astrocytes is 
dysregulated.107- 110 A common principle and critically important 
consideration when investigating and interpreting results are that 
the same protein, if expressed, often has differential functions in 
the developing versus adult brain and in health versus injury or 
disease. This strategy is a powerful demonstration of the econ-
omy and agile nature of the biological design. Given the multilayer 
context- dependent levels of CD44 regulation, there is a clear need 
for additional research. Most recent studies have reinforced the 
existing strong associations of CD44 with cancer pathogenesis. 
The rapidly emerging use of sc- RNA sequencing will be invaluable 
in allowing a deeper investigation of CD44v expression under 
health and disease and inform experimental designs to gain deeper 
mechanistic insights about OPN/SPP1- CD44 function in nervous 
system cells.

4  |  CROSSTALK WITH A MICROGLIAL- 
NIGROSTRIATAL NEUROINFL AMMATORY 
NET WORK

Convincing evidence for the strong association between pro- 
inflammatory gene expression and many neurodegenerative dis-
orders and neuropsychiatric conditions reported over the last 
5- 10 years has focused attention on the roles of non- neuronal cells 
in the initiation, development, and chronic persistence of neuronal 
dysfunction.

A unique vantage point provided by the study of HIV’s detrimen-
tal impact on the CNS is that virus replication in brain microglia and 
macrophages and T- cells infiltrating across the blood- brain barrier 
(BBB) activates innate immune signaling.111 Before much was known 
about HIV- 1 pathogenesis, 40 years ago, individuals presenting with 
dementia were the defining hallmark of infection and a profound 
state of immunodeficiency. Today, one remaining but formidable 
barrier despite current life- sustaining therapies is the problem of 
long- lived peripheral and CNS tissue reservoirs from which rep-
licating HIV can re- emerge.112 Indeed, the former, combined with 
the fact that none of the therapies block HIV transcription, means 
that the body continues to, in a chronic fashion, respond through 
innate and adaptive immune response signaling.113 In this regard, 
people living and aging with HIV infection are impacted by comorbid 
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conditions such as cardiovascular disease, metabolic disorder, and 
certain cancers, exacerbated by chronic systemic-  and neuroinflam-
matory signaling.114

Given the strong association of OPN/SPP1 expression with HIV 
infection and neurologic disorder,64,66,105 we hypothesized that this 
protein synergizes with HIV in worsening microglial activation and 
neuronal injury. We turned to an established humanized mice model 
shown to recapitulate aspects of HIV CNS dysfunction to test this 
hypothesis. Mouse neonatal pups (1- 2 days old) of the NOD.Cg- 
Prkdcscid- IL2rγtm1Wjl/SzJ strain were engrafted with human CD34+ 
hematopoietic stem cells reconstituting mice with human T- cells, B- 
cells, and monocytes and hence providing cellular targets for HIV- 1 
infection. Global OPN/SPP1 expression was inhibited 2 weeks after 
HIV infection and in controls using previously validated aptamers 
shown to block both RNA and protein production.115 To our surprise, 
we found that knockdown of OPN/SPP1 expression in HIV- infected 
adult CD34+ humanized mice exacerbated neuroinflammation as 
measured by the activation of microglia quantified using translo-
cator protein (TSPO) positron emission tomography (PET) neu-
roimaging.115 DPA- 713 is a high- affinity ligand for the peripheral 
benzodiazepine receptor (aka TSPO receptor) expressed in the outer 
mitochondrial membrane and elevated in neurodegenerative disor-
ders.116- 118 When microglia and, to a lesser extent, astrocytes are 
activated, TSPO receptor expression increases.

Interestingly, suppression of OPN/SPP1 in uninfected control 
mice did not change basal neuroinflammation.115 These results 
demonstrate that OPN/SPP1, by mechanisms that remain to be 
defined, (1) senses pathologic changes in brain homeostatic states 
and (2) regulates the neuroinflammatory response.68 Interestingly, 
in HIV- infected mice, a specific region of the brain known as the 

striatum, a region necessary for cognitive function, decision- making, 
and reward, showed intense labeling for TSPO.115 Moreover, a sub-
group of these TSPO+ neurons stained for tyrosine hydroxylase 
positive (TH+), a well- established marker for dopaminergic neurons. 
The highly selective reactivity of TSPO+TH+ neurons in the striatum 
was quite notable and suggested that these cells respond to/sense 
the inflammatory state of the brain.68 These findings indicate that 
OPN/SPP1 has a role in regulating a “neuroinflammatory” pathway 
through dopaminergic nigrostriatal signaling. Interestingly, seven 
different dopaminergic neuronal populations have been identified in 
both mice and humans.119- 121 Much is known about the activation/
disruption of dopaminergic signals in people with HIV71,122- 125 and 
from mouse models of HIV Tat/substance use disorders.71,126- 130 The 
vulnerability of striatal dopaminergic neurons was demonstrated 
in a simian immunodeficiency virus model by Scheller et al, and in 
people with HIV.125,131,132 A series of seminal and follow- up studies 
showed that injury by HIV Tat alone and with opioids leads to se-
lective loss of MOR+ dopaminergic neurons in the striatum.71,124,133 
Degradation of striatal and cortical circuits while aging with HIV and 
ART treatment continues to be reported.122,123,134- 137 Moreover, 
dysregulation of dopaminergic signaling by chronic, even low- grade 
system- wide inflammation is strongly associated with psychiatric 
disorders.138,139 A study in 2021 found that brain levels of HIV RNA 
in human tissue from the National NeuroAIDS Tissue Consortium 
(NNTC) correlate with increased inflammation in the basal ganglia 
and white matter.140 Recognizing the limitations of the available 
human studies, variation in radioligands, and how radiotracer uptake 
was measured,2,141 several TSPO neuroimaging studies in people 
with HIV found evidence of microglial activation.142- 145 A recent 
study demonstrated in mice that long- term treatment with diazepam 

F I G U R E  1  In the healthy brain, neuronal function or homeostatic plasticity is optimal with positive impact on cognition, mood, well- 
being, and behavior. Any disturbance to this homeostatic state due to exogenous factors circulating in peripheral blood that disrupt the 
function or integrity of the blood- brain barrier will induce an increase in OPN/SPP1 in perivascular cells, immune cells, glial, and specific 
neuronal cell populations. Likewise, infection and neurodegenerative processes occurring in the brain parenchyma will also elevate OPN/
SPP1 expression. All of the aforementioned brain cell types express the receptors for OPN/SPP1, integrins, CD44, or a combination of both. 
The result is the activation of gene expression pathways that are neuroprotective and serve to downregulate the pro- inflammatory response 
as the damaging stimulus is cleared
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accelerated microglia engulfment of synapses and cognitive impair-
ment through TSPO, as the effects were mitigated in TSPO knock-
out animals.146

Importantly, we felt it necessary to first conduct our HIV ro-
dent study without antiretroviral treatment, given some evidence 
suggesting that specific therapies may worsen neuroinflammation.2 
Seminal studies in the 1980s- 1990s using postmortem brain and 
CSF from HIV- infected people reported on what has been rediscov-
ered during the current COVID19 pandemic as a "cytokine storm".147 
Even now, many people with HIV on therapy continue to experience 
elevated levels of pro- inflammatory cytokine expression in plasma 
and the CNS in what is referred to as systemic inflammation.113 To 
the best of our knowledge, our study represents the first report in 
a humanized mouse model for HIV- induced neuroinflammation as 
quantified by PET- neuroimaging.68 The fact that this model could re-
capitulate this aspect of HIV CNS damage suggests that it is a suitable 
system to further investigate details of the molecular mechanisms.

Surprisingly, a comprehensive understanding of the molecular 
function (s) of TSPO in neuroinflammation is lacking. There was 
some evidence to suggest that TSPO played a role in steroid syn-
thesis; however, embryonic knockouts of TSPO are viable and show 
no defects in this pathway, and microglia of both humans and mice 
lack the enzymes to convert cholesterol into steroids.148 Other data 
suggest that TSPO may have an anti- inflammatory role,141 decreas-
ing NF- κB activation and pro- inflammatory cytokine gene expres-
sion.149 Interestingly, immune cells express TSPO receptors through 
which their regulatory activity can be influenced by the binding and 
downstream signaling of benzodiazepines.150,151 In addition, a recent 
study reported increased expression of the TSPO receptor on im-
mune cells in treated HIV+ people suggesting a possible association 
with inflammatory signaling.152

5  |  CONCLUDING REMARKS

Advances in molecular- based single- cell technologies and data- 
mining approaches61,153 are helping us understand microglial phe-
notype and inferred functional heterogeneity in unhealthy, healthy, 
and aging brain.154- 158 Immune- altered microglial subtypes in the 
midbrain of healthy C57Bl mice displayed an inflammatory gene ex-
pression profile and appear primed for immunologic responses.155,159 
Alternatively, tolerogenic microglial subpopulations found in the 
cortex, hippocampus, and cerebellum are elicited after a second ex-
posure to lipopolysaccharide.160,161 With the continued refinement 
of experimental models, we are gaining a clearer picture of the in-
tricate dance orchestrated between interactions at the blood- brain 
barrier,162 in brain subcellular structures and individual players (glial, 
neurons, immune cells, and support cells) of the CNS and innate/
adaptive immune systems.163 An essential theme in strategies aimed 
at ameliorating the devastating impacts of neurodegenerative dis-
orders, acute injury, and neuroinfectious sequelae such as HIV- 1, 
prion disease,164 or SARS- CoV- 2, is shifting the neuroimmunological 
response from one that solely senses and responds to damage. To 

return to the healthy homeostatic state and minimize lasting dam-
age to the CNS, there must be timely and efficient downshifting and 
switching from inflammatory to neuroprotective signaling. OPN/
SPP1 has the ideal genetic architecture, molecular properties, and 
functional versatility to serve in such capacity (Figure 1). OPN/SPP1 
engages the requisite integrin or CD44v receptors expressed in the 
affected local microenvironment outside or inside the cell and prop-
agates the necessary downstream signals. However, while we have 
a few clues, much more research is needed in each relevant disease 
context to fully understand the molecular details in order to develop 
effective targeted therapeutic strategies.
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