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Abstract: In this paper, the mechanical behavior of a functionally graded carbon nanotube-reinforced
composite (FG-CNTRC) plate is numerically investigated. According to the concept of a hierarchical
model, the displacement is decomposed into the in-field functions and the assumed thickness-wise
monomial. The former is defined on the plate midsurface and is approximated by the 2-D meshfree
natural element method (NEM). The FG-CNTRC plate is modeled as a homogenized orthotropic body,
and its effective elastic properties are determined by referring to MD simulation and the linear rule of
mixtures. Regarding the thickness-wise distribution of CNTs, one uniform and three functionally
gradient distributions are taken. Through comparative numerical experiments, the reliability of the
numerical method is justified with the maximum relative difference of 6.12%. The effects of the
volume fraction and vertical distribution of CNTs, the plate width-thickness and aspect ratios, and the
boundary conditions on the bending, free vibration, and buckling behaviors of FG-CNTRC plates are
examined. It is found that the mechanical behavior of FG-CNTRC plates is significantly dependent of
these major parameters.

Keywords: CNT-reinforced; functionally graded; composite plate; bending; free vibration; buckling load

1. Introduction

Carbon nanotubes (CNTs) have been spotlighted as an innovative material for the 21st
century due to their outstanding thermo–mechanical properties [1]. They are fabricated
by rolling graphene sheets into the form of a cylinder and are divided into single- and
multi-walled carbon nanotubes according to the number of graphene sheets. The excellent
properties not only promise CNTs as next-generation multi-functional reinforcements for
polymer composites [2] but also remarkably extend the conventional polymer composites to
a variety of engineering fields. As a representative application, carbon nanotube-reinforced
composites (CNTRCs) were recently introduced, and extensive studies have focused on
their fabrication methodology and thermo–mechanical behavior [3]. A simple technique
for fabricating the aligned arrays of CNTs was presented by Ajayan et al. [4] by utilizing
cutting thin slices. The elastic properties of CNTRC were predicted by Hu et al. [5] through
structural deformation analyses for various loading conditions and were also evaluated by
Han and Elliott [6] through molecular dynamics (MD) simulation.

However, the success in applying CNTRCs to engineering applications relies on the
in-depth investigation of their thermo–mechanical behaviors because CNTRCs can have
various forms of structural elements under various loading and boundary conditions.
Wuite and Adali [7] presented the mechanical responses of a CNTRC beam that were pre-
dicted by multiscale simulation using laminated beam theory. Formica et al. [8] presented
an equivalent continuum theory to investigate the vibration behavior of CNTRCs, and
Arani et al. [9] investigated the buckling behavior of laminated CNTRC plates by com-
bining analytical and FE methods. Wang and Shen [10] applied the higher-order shear
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deformation theory (SDT) to the non-linear vibration analysis of a CNTRC plate resting on
an elastic foundation. Through these early studies, it was found that the target performance
of CNTRCs reached a maximum when CNTs were parallel with the direction of the external
load. Therefore, the conventional uniform dispersion of CNTs within a polymer matrix
encounters a limitation in the improvement of the thermo–mechanical performance [10,11].

The conventional fabrication method for nano-composites allowed only uniform or
random CNT dispersion, which naturally provided CNRTCs with uniform elastic properties
in space. However, this restriction in producing the spatial material-property distribution
can be resolved if the concept of functionally graded material (FGM) [12] is adopted. In
FGMs, the volume fractions of the base constituents through the thickness can be artificially
designed such that the target performance reaches its maximum. Smaranda et al. [13]
prepared composites under the free membrane form and reported the structural and
conductive properties of these new composite materials. Motivated by the concept of FGMs,
Shen [14] and Ke et al. [15] presented a purposeful CNT distribution with CNTRCs through
the thickness for the sake of bending deformation suppression and vibration control.
Among the functionally graded CNT distributions, the three most representatives are FG-V,
FG-O, and FG-X. These CNTRCs with functional CNT distributions are called FG-CNTRCs,
and these became a hot research subject for many subsequent investigators [16–20].

More recently, Civalek and Avcar [21] analyzed the free vibration and buckling be-
haviors of FG-CNTRC-laminated non-rectangular plates using a four-node straight-sided
transformation method. Arefi et al. [22] presented the size-dependent deflection analysis
of FG-CNTRC micro-plates by applying the third-order shear deformation theory to the
principle of virtual work. Gopalan et al. [23] attempted to experimentally and numerically
investigate the dynamic characteristics of flax/bio epoxy functionally laminated composite
plates and performed an optimization study using the response surface method (RSM).
Cheshmeh et al. [24] investigated the buckling and free vibration of FG-CNTRC rectangular
plates using the higher-order shear deformation theory. Alazwari et al. [25] investigated
the effect of thickness stretching on the free vibration, bending, and buckling behavior of
FG-CNT-reinforced composite nanoplates using a four-unknown quasi-3D higher-order
shear deformation theory.

However, the mechanical behavior of FG-CNTRCs still needs exploration, particularly
the effects of major parameters on the bending, free vibration, and buckling behaviors.
Moreover, the application of NEM, the latest introduced meshfree method, to FG-CNTRC
plates has rarely been presented. In this context, this study intends to establish an NEM-
based 2-D numerical method for parametrically and profoundly examining the mechanical
behavior of 3-D FG-CNTRC plates. The displacement is expressed as a product of the
in-plane vector functions and the thickness monomials, according to the concept of the
hierarchical model [26]. The former is defined based on the midsurface of the plate and
is solved by the natural element method [27], while the latter is assumed a priori. The
FG-CNTRC plate is viewed as an orthotropic body, and its effective mechanical properties
are determined by referring to the MD simulation and the rule of mixtures. Through
the numerical experiments, the validity of the present method is justified. The bending
deformation, free-vibration, and buckling behaviors of FG-CNTRC plates are investigated
as the major parameters.

2. Modeling of FG-CNTRC Plates

Figure 1a depicts a rectangular polymer plate in which SWCNTs are inserted uniformly
through the thickness, where CNTs are parallel to the x− direction and the dimensions
of the plate are length a, width b, and thickness d. Figure 2b represents three different
functionally graded (FG) CNT distributions: FG-V, FG-O, and FG-X. Since CNTRC plates
can be viewed as a two-phase composite, their equivalent elastic properties can be estimated
using the rules of mixtures or the Mori-Tanaka method [12]. In this study, a modified linear
rule of mixtures in which the CNT efficiency parameters ηj(j = 1, 2, 3) are introduced is
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employed. Based on this method, the equivalent elastic and shear moduli of the FG-CNTRC
plate are calculated as follows [13]:

E1 = η1VCNTECNT
1 + VmEm (1)

η2

E2
=

VCNT

ECNT
2

+
Vm

Em (2)

η2

G12
=

VCNT

GCNT
12

+
Vm

Gm (3)
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Figure 2. NEM: (a) uniform NEM grid; (b) L/I functions.

VCNT and Vm = 1− VCNT indicate the volume fractions of CNTs and the polymer
matrix, respectively. In Equations (1)–(3), the orthotropic elastic properties of CNT are
labeled as CNT while those of the isotropic polymer matrix are denoted by m. The scale-
dependence of the equivalent elastic properties of CNTRCs is reflected by the CNT efficiency
parameters ηj which were calculated by equating the equivalent elastic properties predicted
by MD simulation with those obtained by the rule of mixtures [28].

The volume fraction VCNT of carbon nanotubes in the UD- and FG-CNTRC plates
through the thickness is given by

VCNT(z) =


V∗CNT , UD
(1 + 2z/d)V∗CNT , FG−V
2(1− 2|z|/d)V∗CNT FG−O
2(2|z|/d)V∗CNT FG− X

(4)
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with
1

V∗CNT
= 1 +

ρCNT

ρm

(
1

wCNT
− 1
)

(5)

Here, wCNT denotes the mass fraction of CNTs within the CNTRC plate, and ρm and
ρCNT are the densities of the matrix and CNT, respectively.

In a similar manner, the equivalent Poisson’s ratio ν12 and the equivalent density ρ of
the CNTRC plate are calculated as follows:

ν12 = VCNTνCNT
12 + Vmνm

12 (6)

ρ = VCNTρCNT + Vmρm (7)

3. Analysis of Bending, Free-Vibration, and Buckling

The displacement u =
{

ux, uy, uz
}T in the bending, free-vibration, and buckling of

the FG-CNTRC plate is expressed by a (1,1,0)* hierarchical model [26], which is equivalent
to the first-order SDT.

ux(x) = Θ0
x(x, y) + Θ1

x(x, y)
(

2z
d

)
=

1

∑
m=0

Θm
x (x, y)

(
2z
d

)m
(8)

uy(x) = Θ0
y(x, y) + Θ1

y(x, y)
(

2z
d

)
=

1

∑
m=0

Θm
y (x, y)

(
2z
d

)m
(9)

uz(x) = Θ0
z(x, y) =

0

∑
m=0

Θm
z (x, y)

(
2z
d

)m
(10)

Here, Θm
α (x, y) and (2z/d)m are 2-D in-plane vector functions and 1-D assumed thick-

ness monomials, respectively. Figure 2a demonstrates a uniform NEM grid consisting of
N grid points (nodes) and M Delaunay triangles. The NEM grid is generated on the plate
midsurface ω (see Figure 1a). For each grid point, the Laplace interpolation (L/I) function
ϕJ(x) illustrated in Figure 2b is assigned with the help of Delaunay triangulation and the
Voronoi diagram [27,29,30]. With a finite number of L/I functions, both actual and virtual
displacements uh and vh are approximated as

uh
α(x) =

qα

∑
m=0

(
N

∑
J=1

Um
α,J ϕJ(x, y)

)
·
(

2z
d

)m
(11)

vh
β(x) =

qβ

∑
`=0

(
N

∑
I=1

V`
β,I ϕI(x, y)

)
·
(

2z
d

)`

(12)

Here,
(
qx, qy, qz

)
= (1, 1, 0) and Um

α,J are the nodal displacements corresponding to the
thickness monomial (2z/d)m of uα at node J.

Under the assumption of qx = qy = qz = q for the convenience of concise expression,

the virtual strain vector ε
(

vh
)

and the actual stress vector σ
(

uh
)

are denoted as

ε
(

vh
)
=

q

∑
`=0

N

∑
J=1

B`
JU

`
J ·
(

2z
d

)`

(13)

σ
(

uh
)
= Dε

(
uh
)
=

q

∑
m=0

N

∑
J=1

DBm
J Um

J ·
(

2z
d

)m
(14)
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with the (6× 6) orthotropic elastic constant matrix D [31]. The partial differential operator
B`

J is defined by

B`
J =

ϕJ,X 0 0 ϕJ,y 0 `ϕJ/z
0 ϕJ,y 0 ϕJ,x `ϕJ/z 0
0 0 `ϕJ/z 0 ϕJ,y ϕJ,x

T

(15)

with ϕJ,α = ∂ϕj/∂α. Then, the principle of virtual work leads to the coupled simultaneous
equations defined by

KU = F (16)

to compute the nodal displacements {U}m
β,J =

{
Um

x.J , Um
y,J , Um

z,J

}T
.

In Equation (16), the stiffness matrix K and the load vector F are defined by

[K]`m
αβ,I J =

∫ d/2

−d/2

[∫
ω

{(
BT

I D1BJ

)
+
(

BT
I D2BJ

)
RI

}
dω

]
·
(

2z
d

)`+m
dz (17)

{F}`α,I =
∫

∂ΩN

tα ϕIds · (2z∗/d)` (18)

The subscript RI in Equation (17) denotes the selectively reduced integration (SRI) [32,33]
using one Gauss point to avoid shear locking for the bending-dominated thin structure.
The numerical integration in Equation (17) is carried out by combining the thickness-wise
analytical integration and the in-plane Gauss numerical integration. For the SRI integration,
the elastic constant matrix D should be divided as follows:

D1 =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 G12 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, D2 = diag
(
0, 0, 0, 0, G′23, G′31

)
(19)

where G′23 = G23/κ and G′31 = G31/κ with κ = 6/5 being the modified shear correction factor.
For the free-vibration analysis of the FG-CNTRC plate, the harmonic response

u(x; t) = u(x) · ejωt is considered, together with the mass matrix [M]`m
αβ,I J defined by

[M]`m
αβ,I J =

∫ d/2

−d/2

[∫
ω

ρ(z)(ϕII)
(

ϕJI
)
dω

]
·
(

2z
d

)`+m
dz (20)

with the (3× 3) identity matrix I. Then, the weak formulation of the eigenvalue problem
provides the modal equations given by(

K−ω2M
)

U = 0 (21)

for computing the natural frequencies
{

ωJ
}N

J=1 and natural mode s
{

UJ
}N

J=1.
Next, the following virtual work principle is considered to derive the discretized

equations of the linear buckling problem:

δU − δWex = 0 (22)

Here, the virtual strain energy δU and the virtual work δWex are given as follows:

δU =
∫ d/2

−d/2

∫
ω

δεTσdωdz (23)



Polymers 2022, 14, 2664 6 of 14

δWex =
∫

ω
δ

{
uz,x
uz,y

}T

z=0

[
N0

x 0
0 N0

y

]{
uz,x
uz,y

}
z=0

dω (24)

Substituting the previous Equations (11)–(14) into Equations (23) and (24) results in
the eigenvalue equations given by

(K− λKG)U = 0 (25)

to calculate the buckling loads
{

λJ
}N

J=1 and the associated buckling modes
{

UJ
}N

J=1. Here,
the geometric stiffness matrix KG is defined by

[KG]
`m
I J =

∫
ω

{
ϕJ,x ϕJ,y

}[γ1(= 1) 0
0 γ2

]{
ϕI,x
ϕI,y

}
dω ·

(
2z
d

)`+m

z=0
(26)

Here, (γ1, γ2) = (1, 0) indicates the uniaxial buckling while (γ1, γ2) = (1, 1) denotes
the biaxial buckling. The lowest eigenvalue λ1 becomes the critical buckling load Ncr, and
the in-plane loads N0

x and N0
y are γ1Ncr and γ2Ncr, respectively.

4. Results and Discussion

Figure 3a shows a simply supported FG-CNTRC plate subject to a uniform distributed
load q0 equal to 1.0× 105 N/m2. The width a is 0.1 m and the thickness d is a set vari-
able for the sake of parametric investigation. The matrix is PmPV [9] and its isotropic
elastic properties are Em = 2.1 GPa, νm = 0.34, and ρm = 1150 kg/m3. CNTs have
the orthotropic material properties given by ECNT

1 = 5.6466 TPa, ECNT
2 = 7.080 TPa,

vCNT
12 = 0.175, GCNT

12 = 1.9445 TPa, and ρCNT = 1400 kg/m3, respectively. It is assumed
that ECNT

3 = ECNT
2 , νCNT

23 = νCNT
31 = 0, and GCNT

23 = GCNT
31 = GCNT

12 .
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Figure 3. A square CNTRC plate under a uniformly distributed load q0: (a) geometry and dimensions;
(b) a 21× 21 uniform NEM grid.

The CNT efficiency parameter ηj for the numerical simulations was chosen by referring
to Zhu et al. [20] and is recorded in Table 1. Figure 3b shows a 21× 21 uniform NEM grid
generated on the midsurface of the plate. The stiffness and mass matrices and load vector
were integrated by making use of the 2-D in-plane Gaussian integration using 7 points
and the thickness-wise trapezoidal rule using 40 equal segments. The simply supported
condition is implemented as follows: U0

z = 0 for all sides of the midsurface, U0
x = U1

x = 0
for two sides 1© and 3©, and U0

y = U1
y = 0 for the other two sides 2© and 4©.
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Table 1. The CNT efficiency parameters for three different values of V∗CNT .

V*
CNT η1 η2 η3

0.11 0.149 0.934 0.934
0.14 0.150 0.941 0.941
0.17 0.149 1.381 1.381

The bending analyses were carried out by changing the value of V∗CNT , the width-
thickness ratio a/d, and the CNT distributions. The calibrated central deflections uc

z/d are
recorded in Table 2 for comparison with those of Zhu et al. [19]. First of all, one can see that
the present method is in good agreement with Zhu et al., with the peak relative difference
of 1.01% at FG-X for V∗CNT = 0.11 and a/d = 10. In addition, the difference between the
two methods becomes smaller and is proportional to a/d. This agrees with the fact that
all the plate theories approach a certain limit theory (for example, the Kirchhoff theory for
isotropic plates) as the thickness decreases [26].

Table 2. Calibrated central deflection uc
z/d with respect to V∗CNT , a/d, and the CNT distribution.

V*
CNT CNTRC

Width-to-Thickness Ratio a/d

10 20 50

Present Ref. [20] Present Ref. [20] Present Ref. [20]

0.11

UD 3.768 × 10−3 3.739 × 10−3 3.639 × 10−2 3.628 × 10−2 1.155 1.155
FG-V 4.481 × 10−3 4.466 × 10−3 4.905 × 10−2 4.879 × 10−2 1.658 1.653
FG-O 5.223 × 10−3 5.230 × 10−3 6.192 × 10−2 6.155 × 10−2 2.153 2.157
FG-X 3.209 × 10−3 3.177 × 10−3 2.735 × 10−2 2.701 × 10−2 0.794 0.790

0.14

UD 3.329 × 10−3 3.306 × 10−3 3.017 × 10−2 3.001 × 10−2 0.935 0.918
FG-V 3.906 × 10−3 3.894 × 10−3 4.068 × 10−2 4.025 × 10−2 1.356 1.326
FG-O 4.521 × 10−3 4.525 × 10−3 5.146 × 10−2 5.070 × 10−2 1.771 1.738
FG-X 2.86 × 10−3 2.844 × 10−3 2.285 × 10−2 2.256 × 10−2 0.639 0.627

0.17

UD 2.413 × 10−3 2.394 × 10−3 2.354 × 10−2 2.348 × 10−2 0.750 0.752
FG-V 2.875 × 10−3 2.864 × 10−3 3.185 × 10−2 3.174 × 10−2 1.080 1.082
FG-O 3.37 × 10−3 3.378 × 10−3 4.038 × 10−2 4.020 × 10−2 1.407 1.416
FG-X 2.032 × 10−3 2.012 × 10−3 1.756 × 10−2 1.737 × 10−2 0.513 0.513

Figure 4a comparatively represents the magnitude of uc
z/d for three different values of

V∗CNT , where the case without reinforcement with CNTs is included. First, it is apparent that
the central deflection is significantly reduced by reinforcing only a small amount of CNTs
(more than seven times at a/d = 50 when compared with the non-reinforced plate). Second,
the magnitude of uc

z/d becomes smaller in proportion to V∗CNT . Figure 4b represents the
effect of the vertical CNT distribution on the magnitude of uc

z/d, where FG-X produces
the lowest value while FG-O leads to the highest one. FG-V and UD show the second
and third highest levels, respectively. This relative variation of uc

z/d can be understood
from the fact that the bending stiffness is influenced by the vertical distribution pattern of
CNTs. FG-X has the highest bending stiffness because CNTs are concentrated on the bottom
and top sides, and vice versa for FG-O. This result informs us that the desired mechanical
behavior of the FG-CNTRC plate can be obtained when the vertical CNT distribution is
suitably designed.
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Figure 4. Comparison of calibrated central deflection uc
z/d: (a) to V∗CNT (SSSS, UD); (b) to the CNT

distribution (SSSS, V∗CNT = 0.17).

Figure 5a comparatively shows the thickness-wise distributions of calibrated normal
stress σxx = σxxd2/

(
q0a2) to the vertical CNT distribution pattern. The width-thickness

ratio a/d and V∗CNT are 50 and 0.17, and the stresses were measured along the thickness
at point O. UD shows a typical anti-symmetric linear variation, but three different FGs
exhibit curved nonlinear variations. It is because the (1,1,0)* hierarchical model leads to
liner axial stress distribution through the thickness of the homogeneous material. However,
for the inhomogeneous material, the vertical distribution of the axial stress is dependent on
the vertical distribution of CNTs. FG-O and FG-X produce anti-symmetric variation, but
FG-V shows a leaning parabolic variation. This is caused by the thickness-wise distribution
of CNTs, which characterizes the bending stiffness along with the thickness. Figure 5b
comparatively shows the thickness-wise distributions of shear stress τzx = τzxd2/

(
q0a2)

at point O. As in the previous Figure 5b, FG-O represents the highest value and FG-X
provides the lowest value owing to the difference in the bending stiffness among the four
CNTRC plates. Differing from UD, FG-O, and FG-X, FG-V exhibits a leaning shear stress
distribution owing to the non-symmetric vertical distribution of CNTs, as in σxx in Figure 5a.
Therefore, this result confirms once again that the behavior of bending deformation and
stress is strongly influenced by the thickness-wise distribution of the CNTs.
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Next, the free-vibration behavior of the CNTRC plate was examined under the value of
V∗CNT , the width-thickness ratio a/d, and the CNT distribution pattern. A simply supported
square FG-CNTRC plate shown in Figure 4a was taken, using the same material properties
for the matrix and CNTs. However, the NEM grid density was changed from 21 × 21
to 41 × 41 in order to secure the modal analysis accuracy. A total of twenty-one modes
were extracted from the Lanczos and Jacobi iterations. In Table 3, the six lowest calibrated
natural frequencies ω = ω

(
a2/d

)√
ρm/Em are compared with those of Zhu et al. [20]. First,

it can be observed that the natural frequencies of modes (2,1) and (2,2) are higher than
those of modes (1,3) and (1,4), regardless of V∗CNT and the thickness-wise CNT distribution.
This mode sequence of FG-CNTRC plates is not the same as that of isotropic plates [34],
which is due to the difference in the elastic properties between the x- and y-axes. The
elastic properties of the y-axis are smaller than those of the x-axis because CNTs are parallel
to the x-direction, as depicted in Figure 1a. Second, the comparison of detailed natural
frequencies between the two methods informs us that the peak relative difference equal
to 6.07% occurs at V∗CNT = 0.14 of FG-V. Thus, the accuracy of the present method has
been verified.

Table 3. Calibrated natural frequencies ω = ω
(
a2/d

)√
ρm/Em with respect to V∗CNT and the

CNT distribution.

V*
CNT

Mode
(m,n)

UD FG-V FG-O FG-X

Present Ref. [20] Present Ref. [20] Present Ref. [20] Present Ref. [20]

0.11

(1,1) 19.265 19.223 16.323 16.252 14.427 14.302 22.923 22.984
(1,2) 23.859 23.408 21.717 21.142 20.058 19.373 26.847 26.784
(1,3) 36.131 34.669 34.715 33.350 33.027 31.615 38.406 37.591
(1,4) 56.365 54.043 54.075 53.430 52.990 51.370 58.430 56.946
(2,1) 72.560 70.811 63.844 60.188 54.111 53.035 85.007 83.150
(2,2) 74.799 72.900 64.256 62.780 57.185 55.823 86.811 84.896

0.14

(1,1) 21.394 21.354 18.053 17.995 15.912 15.801 25.495 25.555
(1,2) 25.607 25.295 23.102 22.643 21.157 20.563 29.094 29.192
(1,3) 37.525 36.276 35.839 34.660 33.843 32.509 40.344 39.833
(1,4) 57.741 55.608 56.444 54.833 53.821 52.184 60.439 59.333
(2,1) 80.100 78.110 67.859 66.552 59.805 58.748 89.442 87.814
(2,2) 82.079 80.015 70.429 68.940 62.573 61.277 93.039 91.299

0.17

(1,1) 23.743 23.697 20.074 19.982 17.708 17.544 28.326 28.413
(1,2) 29.523 28.987 26.914 26.204 24.665 23.783 33.455 33.434
(1,3) 44.881 43.165 43.269 41.646 40.674 38.855 48.301 47.547
(1,4) 70.129 67.475 68.922 66.943 65.351 63.179 73.793 72.570
(2,1) 89.534 87.385 75.563 74.030 66.489 65.154 105.213 102.939
(2,2) 92.360 90.031 79.191 77.343 70.311 68.579 107.597 105.334

Figure 6a comparatively represents the variation in the calibrated fundamental fre-
quencies (CFFs) ω(1,1) to the volume fraction V∗CNT . It is found that CFFs increase in
proportion to V∗CNT because the stiffness increase is superior to the mass increase. This
explanation can be justified from the fact that the non-CNTRC plate (i.e., V∗CNT = 0) pro-
vides a much lower CFF. Figure 6b compares CFFs with respect to the thickness-wise CNT
distributions. By referring to the previous Figure 5b for the calibrated central deflection,
one can realize that the trend is completely reversed. That is, FG-X exhibits the highest
CFF while FG-O provides the lowest one. UD and FG-V show the second and third highest
levels, respectively. Thus, it has been justified once again that the vertical distribution
of CNTs is important, and FG-X is the stiffest while FG-O is the weakest. The results of
Figure 7a,b inform us that the vibration characteristic of the CNTRC plate is markedly
influenced by the volume fraction V∗CNT and the thickness-wise CNT distribution.
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Next, the critical buckling loads of the FG-CNTRC plate were calculated and compared
with the analytical solutions of Chesmeh et al. [24], as given in Table 4. The plate was simply
supported, its width–thickness ratio a/d was 100, and three different vertical distributions
and volume fractions of CNTs were taken. The critical buckling loads were calibrated as
Ncr = Ncra2/Emd3. The midsurface of the plate was uniformly discretized by 15× 15 grid
points, and the lowest six buckling load parameters and buckling modes were solved by
Lanczos transformation and Jacobi iteration. It was found that the calibrated buckling
loads obtained by the present NEM were slightly higher than the analytical solutions by
Chesmeh et al. [24]. This is consistent with the fact that the numerical approximation
provides buckling loads that are higher than the analytical solutions. The maximum
relative error occurred at the uniaxial for V∗CNT = 0.17 of FG-O, and its magnitude was
6.12%. Therefore, the accuracy of the present method has been justified once again.
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Table 4. Calibrated uniaxial and biaxial buckling load Ncr = Ncra2/Emd3 with respect to V∗CNT and
the CNT distribution.

Load V*
CNT Method UD FG-O FG-X

Uniaxial

0.11
Ref. [28] 39.2456 21.4573 56.7512
Present 39.4211 21.6428 56.9679

0.14
Ref. [28] 49.2112 26.3671 71.8512
Present 49.6621 26.9072 72.1240

0.17
Ref. [28] 59.5136 31.2315 87.8012
Present 60.8003 33.1455 88.3366

Biaxial

0.11
Ref. [28] 11.1118 7.4945 14.2417
Present 11.2592 7.6119 14.4603

0.14
Ref. [28] 13.1545 8.3545 16.2198
Present 13.4774 8.8108 17.6572

0.17
Ref. [28] 17.2852 11.2654 22.8545
Present 17.5464 11.7204 22.9129

Figure 7a compares the variations of Ncr to the width-thickness ratio a/d for various
distributions of CNTs. First of all, one can see that the calibrated buckling loads increase
and saturate as a/d becomes larger. Regarding the vertical CNT distribution, the highest
and lowest levels occur at FG-X and FG-O and the second and third highest levels occur
at UD and FG-V, respectively. This trend is almost the same as one of the previous free
vibrations, and it is because the buckling load increases in proportion to the plate stiff-
ness, which is influenced by the vertical CNT distribution. This trend is also observed in
Figure 7b, which represents the influence of the CNT volume fraction V∗CNT on the cali-
brated buckling load Ncr. It can be seen that Ncr uniformly increases in proportion to the
value of V∗CNT . Therefore, the buckling could be effectively suppressed by increasing V∗CNT
and/or adopting FG-X.

Figure 8a represents the influence of boundary conditions on the variation of Ncr to
the width-thickness ratio a/d, where S and C denote simply supported and clamped. A
combination of four characteristics denotes a combination of boundary conditions that is
enforced to sides 1©, 2©, 3©, and 4© shown in Figure 3. The highest and lowest levels are
seen at CCCC and SSSS, while SCSC and CSCS provide the curves close to CCCC and SSSS,
respectively. It is because two sides ( 2© and 4©) play an important role in the boundary
condition for the FG-CNTRC plates in which CNTs are parallel to the x− direction, and
these two sides are clamped at SCSC while simply supported at CSCS.
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Figure 8b compares the variations in Ncr with the aspect ratio a/b for different bound-
ary conditions, where the CNT distribution is UD and the width-thickness ratio a/d is 10.



Polymers 2022, 14, 2664 12 of 14

One can see that the buckling load increases and saturates as the aspect ratio a/b becomes
larger because the plate becomes stiffer as the constrained plate becomes narrower with the
side length a kept the same. The difference in Ncr between boundary conditions becomes
insensitive as the aspect ratio increases. This is because the width of the two dominant
sides 2© and 4© becomes shorter as the aspect ratio increases so that the type of boundary
condition specified for these sides does not lead to a marked difference.

5. Conclusions

The bending, free-vibration, and buckling behaviors of FG-CNTRC plates were inves-
tigated by 2-D NEM. Based on the hierarchical model, the displacement was split into the
2-D in-plane vector functions and the assumed thickness monomials. The in-plane displace-
ment part was solved by the 2-D natural element method. The numerical experiments were
performed to validate the introduced method and to explore the bending, free-vibration,
and buckling characteristics of the FG-CNTRC plates. The following observations were
drawn from the numerical results:

• The accuracy of the present method is justified with the peak relative differences
between the proposed method and the references, which are 1.01% for the central
deflection, 6.07% for the natural frequencies, and 6.12% for the buckling loads.

• The central deflection is significantly reduced by introducing only a small amount of
CNTs, and its reduction is proportional to V∗CNT . The natural frequencies and buckling
loads show a completely reverse trend.

• The (2,1) and (2,2) modes show higher frequencies than the (1,3) and (1,4) modes
because CNTs are parallel to the x-direction. In other words, the stiffness in the
x-direction is much higher than that in the y-direction.

• UD, FG-O, and FG-X produce anti-symmetric normal stress distributions and sym-
metric shear stress distributions; FG-V does not show such distribution but rather a
leaning parabolic distribution.

• The buckling load is sensitive to the type of boundary condition, and it increases and
saturates in proportion to the aspect ratio. The difference in the buckling load between
boundary conditions becomes insensitive in proportion to the aspect ratio.

• The comparison of the magnitudes of the central deflection, fundamental frequency,
and buckling load shows that the order of stiffness of the FG-CNTRC plates is FG-X >
UD > FG-V > FG-O.

The current study was conducted from the macroscopic point of view. However, the
microscopic factor such as the microstructural evolution would be important, and this
represents a topic that deserves future work.
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