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Abstract

Position-specific scoring matrix (PSSM), also called profile, is broadly used for representing the evolutionary history of a
given protein sequence. Several investigations reported that the PSSM-based feature descriptors can improve the prediction
of various protein attributes such as interaction, function, subcellular localization, secondary structure, disorder regions,
and accessible surface area. While plenty of algorithms have been suggested for extracting evolutionary features from PSSM
in recent years, there is not any integrated standalone tool for providing these descriptors. Here, we introduce PSSMCOOL, a
flexible comprehensive R package that generates 38 PSSM-based feature vectors. To our best knowledge, PSSMCOOL is the
first PSSM-based feature extraction tool implemented in R. With the growing demand for exploiting machine-learning algo-
rithms in computational biology, this package would be a practical tool for machine-learning predictions.
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Introduction

Position-specific scoring matrix (PSSM) is defined as a matrix
that involves information about the probability of amino acids
or nucleotides occurrence in each position, which is derived
from a multiple sequence alignment. This matrix is similar to
the substitution matrix but it is more intricate due to including
the alignment position information. In such a matrix, the rows

represent the position of residues in an alignment and the col-
umns specify the name of residues. This representation can be
reversed so that the rows and columns would determine the
name of residues and their corresponding positions in the align-
ment, respectively. The values of this matrix are the residues’
binary logarithm derived from multiple alignment scores.
Briefly speaking, the procedure of building PSSM can be summa-
rized as three main steps (Fig. 1A).
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In these matrices, the positive numbers indicate that identi-
cal or similar sequences have been aligned and the negative
numbers are indicators of a non-conserved alignment. This ma-
trix, which can be considered a summary of the ensemble of
corresponding sequences, is a quantified description for the
conservation degree in each position of the alignment.

As far as the significance of PSSM is concerned, we investi-
gated the studies that used the PSSM-based feature for predict-
ing a protein attribute. By a thorough search on the literature in
PubMed using PSSM and Prediction as keywords, we obtained
306 articles.

Moreover, the information conveyed through PSSMs is widely
used in predicting various attributes of proteins ranging from the
prediction of secondary and tertiary structures [1], protein–protein
interactions [2], accessible surface area [3], flexibility [4], binding
sites domains [5, 6], post-translational modification [7], protein lo-
calization [8], identifying the binding regions of protein–RNA [9],
and protein–DNA [10] to the prediction of drug–target interaction
[11]. Figure 2 shows the categorized papers based on their subjects
that utilized PSSM-based features.

Feature extraction or feature encoding is a fundamental step
in the construction of high-quality machine learning-based mod-
els. Specifically, this is a key step in various prediction problems
in bioinformatics and computational biology [2, 12–14]. In the last
two decades, a variety of new features have been proposed to train
models for predicting several protein attributes. Such schemes are
mostly based on sequence information or representation of di-
verse physicochemical properties. Although the features derived
directly from protein sequences (such as amino acid composi-
tions, conjoint triad, and k-mer composition) are regarded as es-
sential factors for training efficient models, an increasing number
of studies have shown that evolutionary information, which can
be extracted from PSSMs, is much more informative than
sequence-based information alone [2, 14, 15].

Several servers and software packages have been introduced
to extract some specific descriptors from biological molecules,
namely repRNA [16], repDNA [17], Pse-in-One [18, 19], Pse-
Analysis [20], PseAAC [21], propy [22], PROFEAT [23], protr/
ProtrWeb [24], and POSSUM [25]. All these tools, except for
POSSUM and a recent version of protr, generate sequence-based
and physiochemical features and commonly lack PSSM profile

information. Moreover, more than 38 different PSSM-based fea-
ture types have been proposed in recent years. The POSSUM
web server is the only tool devoted to the feature extraction
from PSSMs. This tool provides 21 out of 38 PSSM-based feature
types (unfortunately, the POSSUM tool was not accessible at the
time of writing this manuscript). To the best of our knowledge,
PSSMCOOL is the most comprehensive tool for extracting
sequence-based evolutionary-related features from PSSMs.

Materials and methods

Various PSSM-derived features have been implemented as a
comprehensive R package named PSSMCOOL. This R package
includes 31 functions that extract 38 different PSSM-based fea-
tures; that is, some of them are capable of generating more than
one feature vector. These functions take a PSSM file for the pro-
tein of interest, as the input and output of the corresponding
feature vector. In some functions, depending on the desired fea-
ture types, parameters are adjustable by users.

The implemented feature extraction algorithms are based
on matrix transformations from the original PSSM profiles,
which can be categorized into three types: Row transforma-
tions, column transformations (see Fig. 1B), and a mixture of
row and column transformations (Table 1). For obtaining fea-
tures derived from row transformation, we performed the fol-
lowing procedure: Two rows of PSSM were summed or
subtracted or one or more rows were multiplied by a number.
Similarly, by adding or reducing two or multiple columns, the
features that were formed based on column transformation
were obtained.

The 10 important features implemented within the
PSSMCOOL package are summarized below. More details and
formulas are provided on the online documentation.

PSSM-AC

This feature, which stands for auto-covariance transformation
[33], calculates the j-th column average and subtracts this from
the i-th and iþ g-th rows of this column and finally, these num-
bers are multiplied (Fig. 3). The values of j vary between 1 and
20. By changing the i variable from 1 to L�g, the acquired

Figure 1: (A) The process used to build a PSSM. To build a PSSM, protein sequences are given to sequence databases such as NCBI as FASTA files for performing BLAST

search. Having multiple alignments performed, a PSSM file can be obtained. The obtained PSSM can be used as a new query against the dataset. (B) Schematic presenta-

tion of row and column transformation. The feature vector specified as blue is obtained by summing the rows and columns highlighted in pink.
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numbers are summed where L represents the length of the pro-
tein. The formula for generating this feature is provided in
Equation (1).

PSSM� ACi;j ¼
1
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DPC–PSSM

This feature is related to dipeptide composition (DPC) [26] and
originally was proposed for protein structural class prediction.
For calculating this descriptor, the elements of two successive
rows and two different columns are multiplied (see Fig. 4). This
operation is performed on different rows and columns. Then,
the computed values are summed and for every two successive
rows, this sum is divided by L�1, where L is the protein length.

Trigram-PSSM

This feature is a feature vector with a length of 8000, which is
extracted from PSSM [41]. If the elements of every three succes-
sive rows and three different columns of PSSM are multiplied
and this operation is done for all three possible consecutive
rows and eventually the acquired numbers are summed, we
will have one of the elements of the final feature vector that
corresponds to a specific combination of three amino acids out
of 8000 possible combinations (Fig. 5). Equation (2) indicates
how this feature can be generated.

Tm;n;r ¼
XL�2

i¼1

Pi;mPiþ1;nPiþ2;r: (2)

PSe-PSSM

This feature originally was used to predict the membrane
proteins and their types [47]. The PSe-PSSM feature vector is
a vector with a length of 320 in which the 20 first numbers
are the averages of 20 rows of PSSM [46]. The rest numbers
of the final feature vector are computed as follows: For each
column, the mean square of differences between the i-th
and (iþlag)-th elements is computed for each column where
lag can be any integer number between 1 and 15. Therefore,
the length of the final feature vector will be 20� 15þ 20.
Figure 6 and Equation (3) show how this feature is
generated.

pðkÞ ¼ 1
ðL� lagÞ

XL�lag

i¼1

ðpi;j � piþlag;jÞ2

j ¼ 1; 2; . . . ; 20; lag ¼ 1; 2; . . . ; 15
k ¼ 20þ jþ 20ðlag � 1Þ

: (3)

K-separated-bigram-PSSM

This feature is almost identical to the DPC feature; in fact, the
DPC feature is part of this feature (for K¼ 1). As shown in Fig. 7,
for every two different columns, it considers rows that have dis-
tance k [36].

Figure 2: The frequency of categorized articles that employed PSSM-derived information in the years 1999–2021.

PSSMCOOL | 3



Table 1: Implemented feature extraction algorithms and their application for predicting various problems in PSSMCOOL and a comparison be-
tween our package and POSSUM tool

Descriptor name Dimension PSSMCOOOL POSSUM Reference First usage

Row transformation AAC-PSSM 20 � � [26] Protein structural class
AATP 420 � � [27] Protein structural class
AB-PSSM 400 � � [28] Protein function
CS_PSe_PSSM 700 � � [29] Protein structural class
D-FPSSM 20 � � [2] Protein–protein interaction
DISSULFID a � � [30] Cysteine reactivity
Kiderafactor a � � [31] Ligand-binding site
MEDP 420 � � [32] Protein structural class
PSSM-composition 400 � � [33] Secreted effector proteins
RPM-PSSM 400 � � [28] Protein function
S-FPSSM 400 � � [2] Protein–protein interaction
Smoothed-PSSM b � � [34] RNA-binding sites

Column transformations DMACA-PSSM 210 � � [35] Protein types in Gram-negative bacteria
DPC-PSSM 400 � � [36] Protein fold recognition
DWTPSSM 80 � � [37] Protein crystallization prediction
EEDP 400 � � [38] Protein structural class
k-separated-bigrams PSSM 400 � � [36] Protein fold recognition
LPC_PSSM 280 � � [39] Protein structural class
MBMGACPSSM 560 � � [32] Protein structural class
SCSH2 b � � [14] Protein–protein interaction
SOMA_PSSM 160 � � [40] Protein structural class
TPC 400 � � [27] Protein structural class
tri-gram-PSSM 8000 � � [41] Protein fold recognition

Combination of row and
column transformations

AADP-PSSM 420 � � [26] Protein structural class
Average_Block 400 � � [42] Protein classification
Discrete cosin transform 400 � � [43] Protein–protein interaction
DP-PSSM 120 � � [44] Subcellular localizations
EDP 20 � � [38] Protein structural class
Gray_PSSM_PseAAC 100 � � [45] Antifreeze proteins
Pse-PSSM b � � [46, 47] Membrane proteins
PSSM400 400 � � [42] Protein classification
PSSM-AC 200 � � [33] Secreted effector proteins
PSSM_BLOCK b � � [48] Protein self-interactions
PSSM-CC b � � [33] Secreted effector proteins
PSSM_SEG 100 � � [49] Protein fold recognition
PSSM_SD 80 � � [49] Protein fold recognition
RPSSM 110 � � [50] Protein structural classes
Single_Average 400 � � [42] Protein classification
SVD_PSSM 20 � � [42] Protein classification

aThese features produce a matrix of features whose dimension varies based on the choice of the parameters.
bFeature vector dimension varies based on the choice of the parameters.

Figure 3: Extraction of PSSM_AC feature from PSSM. Here, the average of column j is �0.8, which is subtracted from �1 corresponding to the i, jth element, and �1 corre-

sponding to the iþ g, jth element. This results in �0.2 for both subtractions. The obtained numbers are multiplied to gain 0.04. This must be repeated in the range of

i¼1 to L�g and the resulting numbers must be summed and finally divided by L�g.
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Figure 4: Extraction of DPC_PSSM feature from PSSM. As shown in the figure, the values of two consecutive rows from different columns are multiplied (�12) and

summed for the range of k¼1 to k¼ L�1. The finally obtained number must be divided by L�1.

Figure 5: Extraction of Trigram_PSSM feature from PSSM. The extraction of this feature is similar to DPC–PSSM extraction but instead of using two consecutive rows,

the values of three consecutive rows in three different columns must be multiplied and summed. For the example provided here, the result of the multiplication is

�12. This multiplication should be done for the range of i¼1 to L�2 for each combination of three columns and the obtained values must be summed.

Figure 6: Extraction of PSe_PSSM feature from PSSM. The first 20 values in this feature vector are the averages of 20 columns of PSSM. The remaining 300 values are

computed by the mean square of differences between the i-th and iþlag-th rows for each column (lag values vary between 1 and 15). For i¼3 and iþ lag¼9, the squared

difference would be (3�(�1))2¼4. If lag¼6, this will be calculated for the range of i¼1 to i¼ L�lag, and the resulting values must be summed and divided by L�lag.
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Figure 7: Extraction of K-separated-bigram-PSSM feature from PSSM. This feature can be considered as an extension of the DPC feature. For each combination of two

columns, the sum of multiplication of the i-th row corresponding to one column and the iþ k-th row corresponding to the other column is computed where i varies be-

tween 1 and L�K. Here, for i¼ 3 and K¼6, the multiplication would be 0.

Figure 8: Extraction of AB-PSSM feature from PSSM. The first feature vector is obtained by placing 20 vectors corresponding to each block next to each other. For having

these vectors, the row vectors (with length 20) related to each block are added together and the resulting vector is divided by the length of that block. For computing

the second feature vector, the average of positive numbers in each column related to each block is calculated. Then, 20 values corresponding to 20 blocks are placed

next to each other. By performing this procedure for each individual column, a feature vector with a length of 400 could be obtained.

Figure 9: Extraction of PSSM400 feature from PSSM. To calculate this feature, a sub-matrix representing the conservation of each standard amino acid will be com-

puted. To obtain this sub-matrix, for each standard amino acid (here, the serine amino acid), all the corresponding columns are extracted. By calculating the average of

columns in the extracted sub-matrix, a vector of length 20 will be acquired for each standard amino acid type. By putting the vectors (with the length of 20) for all 20

amino acids, the final feature vector with a length of 400 could be obtained.
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AB-PSSM

The AB-PSSM feature was used for protein function prediction
[28]. This feature consists of two types of feature vectors. At
first, each protein sequence is divided into 20 equal parts, each
of which is called a block. In each block, the row vectors of the
PSSM related to that block are added together and the resulting
final vector is divided by the length of that block, which is equal
to 5% of protein length (see Fig. 8). Finally, concatenating these
20 vectors, the first feature vector of length 400 is obtained. For
the second feature, in each block, the average of the positive
numbers is computed for all 20 columns. Finally, these 400 aver-
ages will be used as the second feature vector.

CS-PSe-PSSM

This feature consists of a combination of several types of
features; in general, the obtained feature vector would be of

length 700 [29]. The sub-features that have been integrated
as the single feature vector (CS-PSe-PSSM) are CSAAC,
CSCM, segmented PsePSSM features, and segmented
ACTPSSM.

SCSH2

This feature has been utilized for protein–protein interactions
prediction [14]. To produce this feature vector, we need to ex-
tract the consensus sequence corresponding to the protein se-
quence based on the PSSM scores. Having placed these two
sequences next to each other, a matrix with a dimension of 2�L
will be created. In the next step, each entry in this matrix is con-
sidered a node and connected to the two entries, which are im-
mediately below it (except for the two entries in the last row).
Finally, we will have a graph similar to a bipartite graph called
the SCSH graph. Now in this graph, each path of length

Figure 10: Comparison of run time between PSSMCOOL and POSSUM. POSSUM can be run in two modes. In the slower mode, it writes header for each extracted feature

in the output files (POSSUM_h) and in the faster mode POSSUM writes features to the output file without headers (POSSUM_wh). Each point shows the average run

time (in seconds) per 100 residues for each protein across all features.
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k specifies a (kþ 1)-mer. Finally, a k-mer composition feature
vector can be obtained using this graph. k is equal to 2 in
SCSH2.

PSSM400

This feature was employed in protein classification and pro-
tein–protein interaction prediction [42]. To generate this feature
vector, for each of the standard amino acids, the corresponding
rows in the PSSM are extracted and considered a sub-matrix
(see Fig. 9). Now, for this sub-matrix, the column-wise average
is considered the feature vector (a 20-dimensional vector).
Finally, by putting together these feature vectors for all 20
amino acids, a feature vector of length 400 for each protein can
be acquired.

SVD–PSSM

Singular value decomposition (SVD) is a general-purpose matrix
factorization approach that has many useful applications in sig-
nal processing and statistics, as well as computational biology
[42]. To compute this feature, SVD is applied to the PSSM repre-
sentation of a protein for reducing its dimensionality. The final
feature vector would be a 20-dimensional vector for all protein
and peptide sequences with length �20.

Case study

We presented a case study and procedure that can be followed
in order to use the PSSMCOOL for extracting features and build-
ing models for a prediction problem. For this case study, the

Figure 11: Feature extraction run time for features implemented in the PSSMCOOL. Trigram and DFMCA were the most computationally intensive features. However,

the maximum run time corresponding to DFMCA did not exceed 23 min for a protein with >34 000 residues as the worst scenario. In addition, the average run time per

100 residues is 2.05 s for trigram and is <0.19 s for all other features. The configurations of the machine that was used for extracting features are as follows Windows 10

�64; CPU: corei7 7700 HQ; RAM : 16 GB; and R version 4.1.2.
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interactions between presynaptic proteins were extracted
from the IntAct database [51]. As the first step, proteins with
non-unique Uniprot accession numbers were discarded. For the
positive set (protein–protein interactions), interactions from
spoke expanded co-complexes and negative interactions were
filtered out. Negative data set was constructed according to ran-
dom pairing method as described in Refs. [2, 14, 52]. The final
data set contained 1730 interactions (positive and negative) be-
tween 631 unique proteins. In this case study, “FPSSM2” func-
tion was used for feature extraction. Also, Bagged CART
(treebag), and Single C5.0 Tree from caret package were used for
classification. These two classifiers achieved 0.996 and 0.998 ac-
curacy, respectively (R scripts corresponding to this case study
are available at: https://github.com/BioCool-Lab/PSSMCOOL).

Run-time analysis

A set of human proteins was used to compare the time required
for extracting features with PSSMCOOL and POSSUM. The hu-
man proteome was partitioned into 100 bins for assembling this
set based on the protein lengths. Then, one random protein was
selected from each bin and finally, a set comprised of 100 pro-
teins was constructed. Figure 10 illustrates the performance of
each tool for feature extraction in terms of run time. POSSUM
can be run in two modes. In the slower mode, it writes header
for each extracted feature in the output files (POSSUM_h) and in
the faster mode, it writes features to the output file without
headers (POSSUM_wh). Twenty-one features were used for
making this comparison. Run time per 100 residues was calcu-
lated for each protein and these times were averaged across all
these 21 features afterward. As Fig. 10 shows, the run times cor-
responding to PSSMCOOL are significantly lower than both
POSSUM_h and POSSUM_wh. On average, PSSMCOOL only
needs 0.14 s per 100 residues for feature extraction. It is worth
mentioning that using POSSUM for several proteins requires
writing command-line scripts, which does not seem to be very
convenient for researchers who lack prior experience in Unix-
based operating systems.

For almost all features implemented in PSSMCOOL, the cor-
responding run time is proportional to the protein length.
However, this does not apply to three features, including disul-
fide, PSSMSEG, and PSSMSD, which are not dependent on the
protein length. Their run time depends on the frequency of spe-
cific amino acids within the input proteins. Figure 11 shows the
details of the run time corresponding to 29 different feature
types in PSSMCOOL for 631 proteins used in the case study using
a laptop with the following configuration; operating system:
Windows 10 �64; CPU: corei7 7700 HQ; RAM: 16 GB; R version
4.1.2. Evidently, trigram and DFMCA are the two most computa-
tionally intensive features (P< 2.2E�22; t-test). Nevertheless,
the average run time for these two feature extractions was 2.05
and 0.19 s per 100 residues in the protein, respectively.
Regarding the mean length of the human proteome, which is
553, on average feature extraction takes 1 s for each protein us-
ing a non-high-performing personal laptop.

Results and discussion

In this work, we present PSSMCOOL, a comprehensive, practical,
and publicly accessible R package, developed to make the feature
extraction of PSSMs feasible for researchers. Since it supplies 18
additional features, compared with the preceding available toolkit
(POSSUM), it can greatly help for extracting features and develop-
ing new methods for the prediction of various protein attributes.

The PSSMCOOL is freely accessible at: https://cran.r-project.org/
web/packages/PSSMCOOL/index.html. Soaring data production
has opened the door to the new applications of machine-learning
methods in biology. One of the most significant steps toward the
development of an efficient predictive model is feature extraction.
The extraction of features by PSSMCOOL would be of great help
for bioinformaticians who are interested in building predictive
models for protein attribute prediction.

Availability of data and materials

Project name: PSSMCOOL;
Project home page: https://cran.r-project.org/web/packages/

PSSMCOOL/index.html;
Operating systems: Windows, Linux, Mac;
Programming language: R;
Other requirements: R;
License: Not applicable;
Any restrictions to use by non-academics: No restrictions;
GitHub page: https://github.com/BioCool-Lab/PSSMCOOL.
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